第五章分子生物学研究法--DNARNA及蛋白质操作技术
- 格式:ppt
- 大小:2.67 MB
- 文档页数:90
可编辑修改精选全文完整版第五章分子生物学研究法(上)DNA、RNA及蛋白质操作技术分子生物学研究之所以从20世纪中叶开始得到高速发展,其中最主要的原因之一是现代分子生物学研究方法、特别是基因操作和基因工程技术的进步。
基因操作主要包括DNA分子的切割与连接、核酸分子杂交、凝胶电泳、细胞转化、核酸序列分析以及基因的人工合成、定点突变和PCR扩增等,是分子生物学研究的核心技术。
基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,使之进入新的宿主细胞内并获得持续稳定增殖能力和表达。
因此,基因工程技术其实是核酸操作技术的一部分,只不过我们在这里强调了外源核酸分子在另一种不同的寄主细胞中的繁衍与性状表达。
事实上,这种跨越天然物种屏障、把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力,是基因工程技术区别于其它技术的根本特征。
本章将在回顾重组DNA技术发展史的基础上,讨论DNA操作技术、基因克隆、表达分析技术及蛋白质组学、单核苷酸多态性分析等现代生物学领域里最广泛应用的实验技术和方法。
5. 1 重组DNA技术史话近半个多世纪来,分子生物学研究取得了前所未有的进步,概括地说,主要有三大成就:第一,在20世纪40年代确定了遗传信息的携带者、即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;第二,50年代提出了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;第三,50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,阐明了遗传信息的流动与表达机制。
但是,由于缺乏有效的分离和富集单一DNA分子的技术,科学家无法对这类物质进行直接的生化分析。
事实上,DNA分子体外切割与连接技术及核苷酸序列分析技术的进步直接推动了重组DNA技术的产生与发展。
因为重组DNA的核心是用限制性核酸内切酶(Restriction endonuclease,RE)和DNA连接酶对DNA分子进行体外切割与连接,所以,科学家认为,这些工具酶的发现和应用是现代生物工程技术史上最重要的事件(表5-1)。
分子生物学第五章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术第三节RNA操作技术第四节SNP的理论与应用第五节基因克隆技术第六节蛋白质组与蛋白质组学技术夏玉琼2013-10-10目录RNA操作技术cDNA文库的构建基因文库的筛选SNP的理论与应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学cDNA文库的构建切割位点用四碱基特异性的限制性内切酶部分消化DNA 片段,有的仍有切割位点质粒DNA将DNA 克隆进质粒DNA细菌克隆每个细菌都带有不同片段的DNA细菌转化分子生物学 夏玉琼 西安电子科技大学cDNA文库的构建cDNA的长度0.5-8 kb载体:质粒载体和噬菌体类载体完整的cDNA文库包含大于5*105的独立克隆分子生物学 夏玉琼 西安电子科技大学目录RNA操作技术cDNA文库的构建基因文库的筛选SNP的理论与应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学基因文库的筛选含义通过某种特殊方法从基因文库中鉴定出含有所需重组DNA分子的特定克隆的过程筛选方法核酸杂交法PCR筛选法免疫筛选法分子生物学 夏玉琼 西安电子科技大学核酸杂交法培养基上的菌落盖上硝酸纤维素膜移去硝酸纤维素膜裂解、中和去除细菌蛋白DNA 印迹32P 标记探针杂交放射自显影图像挑出阳性克隆保存母板分子生物学 夏玉琼 西安电子科技大学PCR筛选法需获得基因特异性引物将整个基因文库保存在多孔培养板上用设计好的基因探针对每个孔PCR筛选,挑出阳性的孔对阳性的孔再稀释到次级多孔板中PCR筛选重复稀释重复筛选直到与目的基因对应的单个克隆分子生物学 夏玉琼 西安电子科技大学免疫筛选法文库铺于E.coli 形成噬菌斑转移到硝酸纤维素膜吸收λ噬菌体中表达的外源蛋白保存原板,加入一抗筛选膜上的噬菌斑印迹洗去未结合的抗体加入酶偶联的二抗加底物显色从保存板上挑出阳性噬菌斑一抗:第一抗体,识别目标蛋白二抗:抗体的抗体,能增强信号,增加该方法的灵活性分子生物学 夏玉琼 西安电子科技大学目录RNA操作技术SNP的理论与应用SNP概述SNP的检测技术SNP的应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学SNP概述single nucleotide polymorphism,pronounced “snips”单核苷酸多态性基因组DNA序列中由于单个核苷酸的突变而引起的多态性,发生频率1%或更高例如:某些人的染色体上的某个位置为A,而另外一些人的同样位置是T,染色体DNA同一位置上的每个碱基类型叫做一个等位位点继RFLP和SSR之后的第三代遗传标记遗传标记:在遗传分析上用作标记的基因分子生物学 夏玉琼 西安电子科技大学第一代遗传标记:RFLPRFLP标记是发展最早的DNA标记技术。
第五章分子生物学研究方法(上)——DNA、RNA及蛋白质操作技术重点:1. DNA操作技术2. 基因克隆的主要载体系统难点:1. DNA操作技术2. 基因克隆的主要载体系统课时分配:8学时第一节重组DNA技术史上话一、二十世纪分子生物学的三大成就(1)20世纪40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;(2)50年代提出了DNA分子的双螺旋结构模型和半保留复制机制,解决了自我复制和世代交替问题;(3)50年代至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,阐明了遗传信息的流动与表达机制。
二、基因工程1、基因操作gene manipulation主要包括DNA分子的切割与连接、核酸分子杂交、凝胶电泳、细胞转化、核酸序列分析以及基因的人工合成、定点突变和PCR扩增等,是分子生物学研究的核心技术。
2、基因工程genetic engineering将外源DNA,通过具有复制能力的载体分子形成重组DNA分子,导入受体细胞,进行持久稳定的复制和表达,使受体细胞产生外源DNA或蛋白质。
是核酸操作技术的一部分。
3 工具基因的剪刀——限制性内切酶基因的针线——DNA连接酶基因的运输工具——载体4 基本步骤提取目的基因目的基因与载体结合将目的基因导入受体细胞目的基因的检测和表达三、DNA 重组技术recombinant DNA technique其核心是用限制性核酸内切酶和DNA连接酶对DNA分子进行体外切割与连接。
四、重组DNA技术史上的主要事件1973 Cohen第一例成功的克隆实验1978 Genentech公司人胰岛素世界上第一种基因工程蛋白药物1982 第一个基因工程药物--重组人胰岛素在英、美获准使用1985 第一批转基因家畜(兔、猪和羊),中国转基因鱼1993 基因工程西红柿在美国上市1997 英国爱丁堡罗斯林研究所多莉羊1999.9 中国获准加入人类基因组计划.负责测定人类基因组全部序列的1%2000.6.26 科学家公布人类基因组工作草图2001.2.11 公布人类基因组基本信息五、生物技术工程:基因工程、蛋白质工程、酶工程、细胞工程第二节DNA操作技术一、DNA的分离,提取1. 材料的选择:物种、组织的选择2. 组织匀浆:细胞分散、破碎(EDTA:乙二胺四乙酸;Tris-Hcl:三羟甲基氨基甲烷)3. 破碎细胞:SDS表面活性剂4. 除蛋白:蛋白酶K、酚、氯仿抽提5. 除RNA:RNA酶6. DNA回收:乙醇、异丙醇沉淀7. 质量鉴定:(1)琼脂糖凝胶电泳,常用溴化乙锭(EB)染色,紫外灯下观察和照相。
DNARNA及蛋白质操作技术DNA操作技术DNA操作技术广泛应用于生物学研究、医学诊断、犯罪侦查等领域。
下面将介绍几种常见的DNA操作技术。
1.PCR(聚合酶链反应)PCR是一种重要的DNA操作技术,可以迅速扩增目标DNA序列。
PCR的主要步骤包括:变性、退火和延伸。
首先,将DNA样本加热至95℃,使DNA双链解离为单链;然后,降温至退火温度,引物与目标DNA序列特异性结合;最后,在延伸温度下,DNA聚合酶沿DNA模板合成新的DNA链。
通过不断重复这个循环,可以将目标DNA序列扩增成数百万个拷贝。
2.DNA测序DNA测序是确定DNA序列的技术。
最早的DNA测序方法是Sanger测序,它利用带有不同标记的ddNTP和dNTP,在DNA合成过程中随机终止,得到不同长度的DNA片段。
这些片段通过聚丙烯酰胺凝胶电泳分离,然后根据标记的位置确定序列。
近年来,新一代测序技术的出现大大提高了测序速度和准确性,比如Illumina测序技术。
3.DNA克隆DNA克隆是将目标DNA序列插入载体DNA中的过程。
典型的DNA克隆技术包括限制性内切酶切割、连接酶反应和转化。
首先,用限制性内切酶切割目标DNA和载体DNA,产生能相互配对的粘性末端;然后,用连接酶将两者连接起来;最后,将连接物转化到宿主细胞中,宿主细胞通过复制连接物,使其扩增。
DNA克隆广泛应用于基因工程、蛋白表达和基因治疗等领域。
RNA操作技术RNA是生物体内转录出的中间产物,包括mRNA、rRNA、tRNA等不同类型。
下面将介绍几种常见的RNA操作技术。
1.RNA提取RNA提取是从生物体中分离纯化RNA的过程。
常用的RNA提取方法包括酚-氯仿法、离心柱法和磁珠法等。
其中,酚-氯仿法是最常用的方法,通过酚等有机溶剂和氯仿共同沉淀DNA和蛋白质,使RNA在上清液中得到富集。
2.RT-PCR(逆转录聚合酶链反应)RT-PCR是将RNA转录为cDNA,并利用PCR扩增cDNA的技术。
分子生物学考点整理符广勇朱兰第一章.绪论一、分子生物学概念分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,是研究核酸、蛋白质等所有生物大分子结构与功能相互关系的科学,是人类从分子水平上真正揭开生物世界奥秘、由被动地适应自然界转向主动地改造和重组自然界的基础学科。
二、重组DNA技术又称基因技术,是20世纪70年代初兴起的技术科学,目的是将不同的DNA片段按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
三、基因表达的调控基因表达的调控主要表现在信号传导研究、转录因子研究及RNA剪辑三个方面。
四、转录因子转录因子是能与基因5`端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。
第二章.染色体与DNA一、染色体上的蛋白质染色体上的蛋白质主要包括组蛋白和非组蛋白。
根据凝胶电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4。
这些组蛋白都含有大量的赖氨酸和精氨酸。
二、组蛋白的特性1.进化上的极端保守性不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4。
2.无组织特异性到目前为止,仅发现鸟类、鱼类及两栖类红细胞不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白这两个例外。
3.肽链上氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上。
4.组蛋白的修饰作用包括甲基化、乙酰化、磷酸化、泛素化及ADP核糖基化。
5.富含赖氨酸的组蛋白H5三、HMG蛋白叫高迁移率蛋白四、真核细胞DNA序列的分类1.不重复序列2.中度重复序列3.高度重复序列重复序列的意义:若某一重复序列出现错误,对基因的影响不大,稳定性较高;在短时间内可同时产生大量的基因产物。
重复序列的应用:应用于分子标记的作用:卫星DNA(便于分子标记)和微卫星DNA五、真核生物基因组与原核生物基因组的区别1.真核基因组庞大,原核生物基因组小2.真核基因组存在大量的重复序列,原核基因组没有重复序列3.真核基因组大部分是非编码序列,原核基因组大多是编码序列4.真核基因组的转录产物为单顺反子,原核基因组转录产物多为多顺反子5.真核基因是断裂基因,有内含子结构,原核基因为连续基因,几乎没有内含子结构6.真核基因组存在大量的顺式作用原元件,包括启动子、增强子和沉默子等,原核基因组基本没有增强子和沉默子7.真核基因组存在大量的DNA多态性,原核基因组很少有8.真核基因组具有端粒结构,原核基因组没有端粒结构六、重叠基因(Overlapping gene)指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上的基因的组成部分。