算法设计与分析7快速排序
- 格式:pptx
- 大小:271.56 KB
- 文档页数:28
算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。
参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。
参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。
参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。
参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。
()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。
()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。
()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。
参考答案:O(nlog2n)9.下列代码的时间复杂度是()。
参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。
参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。
参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。
针对该问题的任何算法需要的时间复杂度的下限必为。
( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。
一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。
若给定集合S,则可在时间内找到这条分界线L。
实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。
(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。
(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。
并将随后输入的一组数据储存在整数数组中。
(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。
3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。
(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。
2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。
二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。
算法设计与分析_武汉理工大学中国大学mooc课后章节答案期末考试题库2023年1.在寻找 n 个元素中第 k 小元素问题中,如快速排序算法思想,运用分治算法对 n个元素进行划分,如何选择划分基准?下面()答案解释最合理。
答案:以上皆可行。
但不同方法,算法复杂度上界可能不同2.减少子问题个数,就是减少时间复杂度函数T(n)=aT(n/b)+f(n) 中的()值。
答案:a3.使用分治法求解不需要满足的条件是()。
答案:子问题不能够重复4.改进分治算法的方法有()。
答案:减少子问题的个数_减少合并的时间_改进分治的均衡度5.阅读以下代码:int Fun(int n){ if(n <= 1) return 1; int First = Fun(n-1); intSecond = Fun(n-2); int iSum = First + Second; return iSum;}调用该函数,假设输入参数n值为5,当程序第二次执行语句 iSum = First + Second时,iSum的值为()。
答案:36.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。
这要求原问题和子问题()。
答案:问题规模不同,问题性质相同7.【图片】表示当输入规模为【图片】时的算法效率,以下算法效率最优的是()答案:8.以下哪些是算法的基本特点()。
答案:有穷性_确定性_可行性9.以下关于渐近记号的性质,正确的有()答案:10.下列关于算法的说法中正确的有()。
答案:算法必须在有限步操作之后停止_算法的每一步操作必须是明确的,不能有歧义或含义模糊_算法执行后一定产生确定的结果11.若一个算法的递归方程为【图片】,则其时间复杂度为()答案:12.以下关于记号【图片】的定义,正确的是()答案:存在正常数和使得对所有有:。
1、二分搜索算法是利用( A )实现的算法。
A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。
A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是( A )的一搜索方式。
A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是( B )。
A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是( A ).A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法中通常以自底向上的方式求解最优解的是( B )。
A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是(C )。
A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是(D )。
A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题9。
实现循环赛日程表利用的算法是( A ).A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是(C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是( D )。
A、广度优先B、最小耗费优先C、最大效益优先D、深度优先12.下列算法中通常以深度优先方式系统搜索问题解的是( D ).A、备忘录法B、动态规划法C、贪心法D、回溯法13.备忘录方法是那种算法的变形。
( B )A、分治法B、动态规划法C、贪心法D、回溯法14.哈弗曼编码的贪心算法所需的计算时间为( B )。
A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)15.分支限界法解最大团问题时,活结点表的组织形式是( B ).A、最小堆B、最大堆C、栈D、数组16.最长公共子序列算法利用的算法是( B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是( A ).A、分治法B、动态规划法C、贪心法D、回溯法18.下面是贪心算法的基本要素的是( C )。
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
快速排序算法实验报告快速排序算法实验报告引言快速排序算法是一种高效的排序算法,它的时间复杂度为O(nlogn),在实际应用中被广泛使用。
本实验旨在通过实际的实验数据,验证快速排序算法的效果和性能,并对其进行分析和总结。
实验设计本实验采用C++语言编写快速排序算法,并通过随机生成的数据进行排序实验。
实验中使用了不同规模的数据集,并记录了排序所需的时间和比较次数。
实验步骤1. 实现快速排序算法快速排序算法的核心思想是通过选取一个基准元素,将待排序的序列分为两部分,一部分比基准元素小,一部分比基准元素大,然后对这两部分继续进行快速排序。
具体实现时,可以选择序列的第一个元素作为基准元素,然后使用分治法递归地对子序列进行排序。
2. 生成测试数据为了验证快速排序算法的性能,我们生成了不同规模的随机数序列作为测试数据。
测试数据的规模分别为1000、10000、100000和1000000。
3. 进行排序实验使用生成的测试数据,对快速排序算法进行实验。
记录每次排序所需的时间和比较次数,并将结果进行统计和分析。
实验结果通过对不同规模的数据集进行排序实验,我们得到了以下结果:数据规模排序时间(ms)比较次数1000 2 872810000 12 114846100000 124 13564771000000 1483 15737267分析与讨论从实验结果可以看出,随着数据规模的增大,排序所需的时间和比较次数也呈指数级增长。
这符合快速排序算法的时间复杂度为O(nlogn)的特性。
另外,通过观察实验结果,我们可以发现快速排序算法的性能受到多个因素的影响。
首先,基准元素的选择对算法的效率有很大的影响。
如果选择的基准元素恰好是序列的中位数,那么排序的效率会更高。
其次,数据的初始顺序也会影响排序的效果。
如果数据已经是有序的,那么快速排序算法的效率将大大降低。
此外,快速排序算法还存在一些优化的空间。
例如,可以通过随机选择基准元素来避免最坏情况的发生。
快速排序算法实验报告快速排序一、问题描述在操作系统中,我们总是希望以最短的时间处理完所有的任务。
但事情总是要一件件地做,任务也要操作系统一件件地处理。
当操作系统处理一件任务时,其他待处理的任务就需要等待。
虽然所有任务的处理时间不能降低,但我们可以安排它们的处理顺序,将耗时少的任务先处理,耗时多的任务后处理,这样就可以使所有任务等待的时间和最小。
只需要将n 件任务按用时去从小到大排序,就可以得到任务依次的处理顺序。
当有 n 件任务同时来临时,每件任务需要用时ni,求让所有任务等待的时间和最小的任务处理顺序。
二、需求分析1. 输入事件件数n,分别随机产生做完n件事所需要的时间;2. 对n件事所需的时间使用快速排序法,进行排序输出。
排序时,要求轴值随机产生。
3. 输入输出格式:输入:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
输出:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
4. 测试数据:输入 95 3 4 26 1 57 3 输出1 2 3 3 4 5 5 6 7三、概要设计抽象数据类型因为此题不需要存储复杂的信息,故只需一个整型数组就可以了。
算法的基本思想对一个给定的进行快速排序,首先需要选择一个轴值,假设输入的数组中有k个小于轴值的数,于是这些数被放在数组最左边的k个位置上,而大于周知的结点被放在数组右边的n-k个位置上。
k也是轴值的下标。
这样k把数组分成了两个子数组。
分别对两个子数组,进行类似的操作,便能得到正确的排序结果。
程序的流程输入事件件数n-->随机产生做完没个事件所需时间-->对n个时间进行排序-->输出结果快速排序方法:初始状态 72 6 57 88 85 42 l r第一趟循环 72 6 57 88 85 42 l r 第一次交换 6 72 57 88 85 42 l r 第二趟循环 6 72 57 88 85 42 r l 第二次交换 72 6 57 88 85 42 r l反转交换 6 72 57 88 85 42 r l这就是依靠轴值,将数组分成两部分的实例。
算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
《算法设计与分析》复习题参考答案一、概念题:请解释下列术语。
1.数据元素的集合。
2.队列是一个线性表,限制为只能在固定的一端进行插入,在固定的另一端进行删除。
3.对于算法a,如果存在一多项式p(),使得对a的每个大小为n的输入,a的计算时间为o(p(n)),则称a具有多项式复杂度4.二叉树的层数i与该层上的结点数n的关系为:n(i)=i2。
5.如果可满足性约化为一个问题L,则称该问题为NP-难度的。
6.算法就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算。
7.多数据单指令流8.若图的任意两个节点间均存在路径可达,则称该图为连通图。
9. 是指一个数学模型以及定义在该模型上的一组操作。
10.算法的复杂度只能用指数函数对其限界。
11.函数或过程直接或间接调用它自己。
12.和高度相同的满二叉树的每个对应的顶点编号相同的树13.由所有可行状态所构成的树。
14.如果L时NP难度的且L∈NP,则称问题L是NP-完全的。
15.算法是一个步骤的序列,满足:有穷性、可行性、确定性、输入、输出;过程不需要满足由穷性。
16.有向图的每条边有起点与终点之分,且用箭头指向边的终点。
无向图的边无起点和终点之分,边无箭头。
17.树(tree)是一个或多个结点的有限集合,,它使得:①有一个特别指定的称作根(root)的结点;②剩下的结点被分成m≥0个不相交的集合tl,…,tm,这些集合的每一个都是一棵树,并称t1,…,tm为这根的子树(subtree)。
18.P是所有可在多项式时间内用确定算法求解的判定问题的集合。
19.运算结果是唯一确定的算法20. nP是所有可在多项式时间内用不确定算法求解的判定问题的集合二、填空题1.n2.O ( n )3.最优化问题4.宽度优先搜索5.结点的最大级数6.互异7.内结点和外结点8.方形9.内部路径长度、外部路径长度10.一次11.归并分类算法12.贪心选择性质13.最优子结构14.二元归并15.最小成本生成树16.最优性17.最优决策18.可容许最大成本c19.最小成本三、程序填空题。
《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
一、选择题(20分)1.最长公共子序列算法利用的算法是(B )。
A、分支界限法B、动态规划法C、贪心法D、回溯法2.实现棋盘覆盖算法利用的算法是(A )。
A、分治法B、动态规划法C、贪心法D、回溯法3.下面是贪心算法的基本要素的是(C )。
A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解4.回溯法的效率不依赖于下列哪些因素( D )A.满足显约束的值的个数B. 计算约束函数的时间C. 计算限界函数的时间D. 确定解空间的时间5.下面哪种函数是回溯法中为避免无效搜索采取的策略(B )A.递归函数 B.剪枝函数C。
随机数函数 D.搜索函数6.采用最大效益优先搜索方式的算法是(A )。
A、分支界限法B、动态规划法C、贪心法D、回溯法7.贪心算法与动态规划算法的主要区别是(B )。
A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解8. 实现最大子段和利用的算法是(B )。
A、分治策略B、动态规划法C、贪心法D、回溯法9.优先队列式分支限界法选取扩展结点的原则是(C )。
A、先进先出B、后进先出C、结点的优先级D、随机10.下列算法中通常以广度优先方式系统搜索问题解的是(A)。
A、分支限界法B、动态规划法C、贪心法D、回溯法二、填空题(22分每空2分)1.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质。
2、大整数乘积算法是用分治法来设计的。
3、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法。
4、舍伍德算法总能求得问题的一个解。
5、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。
6.快速排序template<class Type>void QuickSort (Type a[], int p, int r){if (p<r) {int q=Partition(a,p,r);QuickSort (a,p,q-1); 哈密顿环问题的算法可由回溯法设计实现。
快速排序算法实验报告《快速排序算法实验报告》摘要:本实验通过对快速排序算法的理论分析和实际测试,验证了快速排序算法在处理大规模数据时的高效性和稳定性。
实验结果表明,快速排序算法在平均情况下具有较高的时间复杂度和空间复杂度,能够在短时间内对大规模数据进行快速排序,适用于各种实际应用场景。
1. 算法简介快速排序算法是一种基于分治思想的排序算法,通过不断地将数据分割成较小的子集,然后分别对子集进行排序,最终将所有子集合并成有序序列。
其基本思想是选择一个基准元素,将小于基准的元素放在基准的左边,大于基准的元素放在基准的右边,然后递归地对左右两部分进行排序,直到整个序列有序。
2. 实验设计为了验证快速排序算法的效率和稳定性,我们设计了以下实验步骤:(1)编写快速排序算法的实现代码;(2)使用不同规模的随机数据进行排序,并记录排序所需的时间;(3)对比快速排序算法与其他排序算法的效率和稳定性。
3. 实验结果我们使用C++语言编写了快速排序算法的实现代码,并对不同规模的随机数据进行了排序实验。
实验结果显示,快速排序算法在处理大规模数据时表现出了较高的效率和稳定性,排序时间与数据规模呈线性关系,且远远快于其他排序算法。
此外,快速排序算法在最坏情况下的时间复杂度为O(n^2),但在平均情况下的时间复杂度为O(nlogn),具有较好的性能表现。
4. 结论通过实验验证,我们得出了以下结论:(1)快速排序算法在处理大规模数据时具有较高的效率和稳定性;(2)快速排序算法在平均情况下具有较高的时间复杂度和空间复杂度,适用于各种实际应用场景;(3)快速排序算法在最坏情况下的时间复杂度为O(n^2),需要注意避免最坏情况的发生。
综上所述,快速排序算法是一种高效且稳定的排序算法,能够在短时间内对大规模数据进行快速排序,适用于各种实际应用场景。
在实际开发中,我们应该充分利用快速排序算法的优势,并注意避免最坏情况的发生,以提高算法的效率和稳定性。
考研算法设计与分析知识点详解算法设计与分析是考研计算机科学与技术专业中重要的一门课程,掌握好这门课的知识点对于考研的顺利通过非常关键。
本文将详细介绍考研算法设计与分析的知识点,帮助考生全面了解和掌握。
一、算法基础概念在学习算法设计与分析之前,我们首先需要了解一些算法基础概念。
算法是一种用来解决问题或执行任务的精确规程,它包括输入、输出和一系列明确的操作步骤。
算法的设计目标通常是使其具有高效性、正确性和可读性。
1. 时间复杂度时间复杂度是衡量算法执行时间的一种度量方式,表示算法执行所需要的时间与问题规模的关系。
常见的时间复杂度包括常数时间O(1)、对数时间O(logn)、线性时间O(n)、平方时间O(n^2)等。
2. 空间复杂度空间复杂度是衡量算法所需内存空间的一种度量方式,表示算法所需的额外存储空间与问题规模的关系。
常见的空间复杂度包括常数空间O(1)、线性空间O(n)、平方空间O(n^2)等。
二、常见算法设计与分析方法在算法设计与分析中,有一些常见的方法和技巧可以帮助我们解决问题,并提高算法的效率和性能。
1. 分治法分治法是一种将问题分解为若干个子问题,然后组合子问题的解得到原问题解的方法。
典型的分治法问题包括归并排序算法和快速排序算法。
2. 动态规划动态规划是一种将问题分解为若干个子问题,并保存子问题的解以避免重复计算的方法。
典型的动态规划问题包括背包问题和最短路径问题。
3. 贪心算法贪心算法是一种每次都选取当前最优解的策略来解决问题的方法。
贪心算法通常用于求解最优化问题,如霍夫曼编码和最小生成树问题。
4. 回溯法回溯法是一种通过不断试错来搜索问题解空间的方法。
回溯法通常用于求解组合问题、排列问题和图的遍历问题。
三、算法设计与分析实例分析为了更好地理解算法设计与分析的知识点,我们将以两个实例进行详解分析。
1. 快速排序算法快速排序算法是一种高效的排序算法,基于分治法的思想。
它的基本思想是选取一个枢纽元素,将待排序数组划分为两部分,使得左边部分的元素都小于枢纽元素,右边部分的元素都大于枢纽元素。
一、算法设计实例1、快速排序(分治法)int partition(float a[],int p,int r) {int i=p,j=r+1;float x=a[p];while(1){while(a[++i]<x);while(a[--j]<x);if(i>=j)break;swap(a[i],a[j]);}a[p]=a[j];a[j]=x;return j;}void Quicksort(float a[],int p,int r){//快速排序if(p<r){int q=partition(a,p,r);Quicksort(a,p,q-1);Quicksort(a,p+1,r);}}2、归并排序(分治法)void mergesort(Type a[],int left,int right) {if(left<rigth){int mid=(left+right)/2;//取中点mergesort(a,left,mid);mergesort(a,mid+1,right);mergesort(a,b,left,right);//合并到数组bmergesort(a,b,left,right);//复制到数组a}}3、背包问题(贪心算法)void knapsack(int n,float m,float v[],float w[],float x[]) {sort(n,v,w)//非递增排序int i;for(i=1;i<=n;i++)x[i]=0;float c=m;for(i=1;i<=n;i++){if(w[i]>c)break;x[i]=1;c-=w[i];}if(i<=n)x[i]=c/w[i];}4、活动安排问题(贪心算法)void Greadyselector(int n,Type s[],Type f[],bool A[]) {//s[i]为活动结束时间,f[j]为j活动开始时间A[i]=true;int j=1;for(i=2;i<=n;i++){if(s[i]>=f[j]){A[i]=true;j=i;}elseA[i]=false;}}5、喷水装置问题(贪心算法)void knansack(int w,int d,float r[],int n){//w为草坪长度d为草坪宽度r[]为喷水装置的喷水半径,//n为n种喷水装置,喷水装置的喷水半径>=d/2sort(r[],n);//降序排序count=0;//记录装置数for(i=1;i<=n;i++)x[i]=0;//初始时,所有喷水装置没有安装x[i]=0for(i=1;w>=0;i++){x[i]=1;count++;w=w-2*sqart(r[i]*r[i]-1);}count<<装置数:<<count<<end1;for(i=1;i<=n;i++)count<<喷水装置半径:<<r[i]<<end1;}6、最优服务问题(贪心算法)double greedy(rector<int>x,int s){rector<int>st(s+1,0);rector<int>su(s+1,0);int n=x.size();//st[]是服务数组,st[j]为第j个队列上的某一个顾客的等待时间//su[]是求和数组,su[j]为第j个队列上所有顾客的等待时间sort(x.begin(),x.end());//每个顾客所需要的服务时间升序排列int i=0,j=0;while(i<n){st[j]+=x[i];//x[i]=x.begin-x.endsu[j]+=st[j];i++;j++;if(j==s)j=0;}double t=0;for(i=0;i<s;i++)t+=su[i];t/=n;return t;}7、石子合并问题(贪心算法)float bebig(int A[],int n) {m=n;sort(A,m);//升序while(m>1){for(i=3;i<=m;i++)if(p<A[i])break;elseA[i-2]=A[i];for(A[i-2]=p;i<=m;i++){A[i-1]=A[i];m--;}}count<<A[1]<<end1}8、石子合并问题(动态规划算法)best[i][j]表示i-j合并化最优值sum[i][j]表示第i个石子到第j个石子的总数量|0f(i,j)=||min{f(i,k)+f(k+1,j)}+sum(i,j)int sum[maxm]int best[maxm][maxn];int n,stme[maxn];int getbest();{//初始化,没有合并for(int i=0;i<n;i++)best[i][j]=0;//还需要进行合并for(int r=1;r<n;r++){for(i=0;i<n-r;i++){int j=i+v;best[i][j]=INT-MAX;int add=sum[j]-(i>0!sum[i-1]:0);//中间断开位置,取最优值for(int k=i;k<j;++k){best[i][j]=min(best[i][j],best[i][k]+best[k+1][j])+add;}}}return best[0][n-1];}9、最小重量机器设计问题(回溯法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void backstack(Qnode*p){if(p->ceng==n+1){if(bestw>p->wei){testw=p->wei;best=p;}}else{for(i=1;i<=m;i++)k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->val=vt;s->wei=wt;s->ceng=k+1;s->no=1;s->parent=p;backstrack(S);}}}10、最小重量机器设计问题(分支限界法)typedef struct Qnode{float wei;//重量float val;//价格int ceng;//层次int no;//供应商struct Qnode*Parent;//双亲指针}Qnode;float wei[n+1][m+1]=;float val[n+1][m+1]=;void minloading(){float wt=0;float vt=0;float bestw=Max;//最小重量Qnode*best;s=new Qnode;s->wei=0;s->val=0;s->ceng=1;s->no=0;s->parent=null;Iinit_Queue(Q); EnQueue(Q,S);do{p=OutQueue(Q);//出队if(p->ceng==n+1){if(bestw>p->wei){bestw=p->wei;best=p;}}else{for(i=1;i<=m;i++){k=p->ceng;vt=p->val+val[k][i];wt=p->wei+wei[k][i];if(vt<=d&&wt<=bestw){s=new Qnode;s->ceng=k+1;s->wt=wt;s->val=val;s->no=i;s->parent=p;EnQueue(Q,S);}}}}while(!empty(Q));p=best;while(p->parent){count<<部件:<<p->ceng-1<<end1;count<<供应商:<<p->no<<end1;p=p->parent;}}11、快速排序(随机化算法—舍伍德算法)int partion(int a[],int l,int r){key=a[l];int i=l,j=r;while(1){while(a[++i]<key&&i<=r);while(a[--j]>key&&j>=l);if(i>=j)break;if(a[i]!=a[j])swap(a[i],a[j]);}if((j!=l)&&a[l]!=a[j])swap(a[l],a[j]);return j;}int Ranpartion(int a[],int l,int r) {k=rand()%(r-1+l)+1;swap(a[k],a[l]);int ans=partion(a,l,r);return ans;}int Quick_sort(int a[],int l,int r,int k){int p=Randpartion(a,l,r);if(p==k)return a[k];else if(k<p)return Quick_sort(a,l,p-1,k);else{int j=0;for(int i=p+1;i<=r;i++)b[j++]=a[i]return Quick_sort(b,1,j,k-p);}}12、线性选择(随机化算法—舍伍德算法)二、简答题1.分治法的基本思想分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
算法设计与分析(第二版)王红梅试题及解析本文主要介绍了《算法设计与分析(第二版)》一书中的王红梅试题及解析,旨在帮助读者更好地掌握算法的基础知识,提高算法设计与分析的能力。
一、算法设计与分析算法是计算机科学的重要组成部分,是解决计算问题的一种方法。
算法设计与分析是计算机科学的一项核心技术,也是计算机科学专业必修的一门课程。
算法的好坏将直接影响计算机程序的运行效率。
王红梅编写的《算法设计与分析(第二版)》是一本通俗易懂的教材,作者通过详细解析算法设计和分析的基本概念和方法,给出了很多数学原理和实例,帮助读者深刻理解算法设计和分析的基本原则和方法。
二、王红梅试题及解析1. 下面哪个算法的时间复杂度最小?A. 插入排序B. 选择排序C. 冒泡排序D. 快速排序答案:D解析:快速排序是一种分治算法,基于递归的思想进行排序,每次划分找到一个基准点,将比基准点小的数放到左边,比基准点大的数放到右边,递归进行排序,因此它的时间复杂度为O(nlogn),是四种算法中最小的。
2. 下列哪些数据结构可以用来实现递归算法?A. 数组B. 栈C. 队列D. 链表答案:B、D解析:递归算法通常使用栈和链表来实现,因为它们具有后进先出或者先进先出的特点,符合递归算法的调用过程。
3. 下列哪个算法不是稳定排序?A. 插入排序B. 冒泡排序C. 归并排序D. 堆排序答案:D解析:稳定排序表示排序后,具有相同值得元素,排序前后其相对位置不变。
插入排序、冒泡排序和归并排序都是稳定排序算法,只有堆排序不是稳定排序算法。
4. 设有n个元素的数组,采用冒泡排序,平均比较次数和平均移动次数分别是多少?答案:平均比较次数为n(n-1)/2,平均移动次数为3 n(n-1)/4。
解析:冒泡排序的平均时间复杂度为O(n²)。
在n个元素的数组中,每个元素最多需要比较n-1次,所以平均比较次数为(n-1 + n-2+ ... + 1) / n (n-1) / 2 = n(n-1)/2。
一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的代码实现。
3. 通过实验验证快速排序算法的效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发工具:PyCharm三、实验原理快速排序是一种常用的排序算法,它采用分而治之的策略,将待排序的数组分为两部分,使得左边的元素都比右边的元素小,然后递归地对左右两边的子数组进行排序。
快速排序的平均时间复杂度为O(nlogn),最坏情况下的时间复杂度为O(n^2)。
快速排序算法的核心是选择一个基准值,然后将数组分为两个子数组,一个子数组的元素都比基准值小,另一个子数组的元素都比基准值大。
然后递归地对这两个子数组进行快速排序。
四、实验步骤1. 设计快速排序算法的函数,包括选择基准值、划分数组、递归排序等步骤。
2. 编写主函数,用于测试快速排序算法。
3. 使用不同大小的数组进行测试,观察算法的执行时间。
五、实验代码```pythondef quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr) // 2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)def test_quick_sort():import timetest_arrays = [[3, 6, 8, 10, 1, 2, 1],[5, 3, 8, 6, 2],[9, 1, 5, 3, 4, 7],[3, 3, 3, 3, 3, 3, 3, 3],[1],[]]for arr in test_arrays:start_time = time.time()sorted_arr = quick_sort(arr)end_time = time.time()print(f"Original array: {arr}")print(f"Sorted array: {sorted_arr}")print(f"Execution time: {end_time - start_time:.6f} seconds\n") test_quick_sort()```六、实验结果与分析1. 测试数组:[3, 6, 8, 10, 1, 2, 1]- 原始数组:[3, 6, 8, 10, 1, 2, 1]- 排序后数组:[1, 1, 2, 3, 6, 8, 10] - 执行时间:0.000097 seconds2. 测试数组:[5, 3, 8, 6, 2]- 原始数组:[5, 3, 8, 6, 2]- 排序后数组:[2, 3, 5, 6, 8]- 执行时间:0.000073 seconds3. 测试数组:[9, 1, 5, 3, 4, 7]- 原始数组:[9, 1, 5, 3, 4, 7]- 排序后数组:[1, 3, 4, 5, 7, 9]- 执行时间:0.000061 seconds4. 测试数组:[3, 3, 3, 3, 3, 3, 3, 3]- 原始数组:[3, 3, 3, 3, 3, 3, 3, 3] - 排序后数组:[3, 3, 3, 3, 3, 3, 3, 3] - 执行时间:0.000000 seconds5. 测试数组:[1]- 原始数组:[1]- 排序后数组:[1]- 执行时间:0.000000 seconds6. 测试数组:[]- 原始数组:[]- 排序后数组:[]- 执行时间:0.000000 seconds从实验结果可以看出,快速排序算法对于不同大小的数组都能在较短的时间内完成排序,且对于大部分情况,执行时间都在微秒级别。
《算法设计与分析》试卷1一、多项选择题(每空2分, 共20分):1.以下关于算法设计问题的叙述中正确的是__________。
A.计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B.利用计算机无法解决非数值问题C.计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中, 主要进行的是判断、比较, 而不是算术运算D、算法设计与分析主要研究对象是非数值问题, 当然也包含某些数值问题2.算法的特征包括_________。
A.有穷性B、确定性C.输入和输出D.能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制, 应与其它环节交织在一起其中正确的顺序是__________。
A.①②③④⑤⑥B.①③⑤②④⑥C.②④①③⑤⑥D.⑥①③⑤②④4.以下说法正确的是__________。
A.数学归纳法可以证明算法终止性B.良序原则是证明算法的正确性的有力工具C. x = 小于或等于x的最大整数(x的低限)D. x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C上所用的次数, 则递归方程为__________, 其初始条件为__________, 将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数, 则有递归方程为__________, 其中F1=F2=__________。
A.Fn=Fn-1+Fn-2 B、h(n)= 2h(n-1)+1C.1 D、h(1)= 1E、h(n)=2n-1F、06.在一个有向连通图中(如下图所示), 找出点A到点B的一条最短路为____ ______。
A.最短路: 1→3→5→8→10, 耗费: 20B、最短路:1→4→6→9→10, 耗费:16C.最短路: 1→4→6→9, 耗费: 12D.最短路: 4→6→9→10, 耗费: 13二、填空(每空2分, 共20分):1.快速排序法的基本思想是重新排列关键字, 把一个文件分成两个文件, 使得第一个文件中所有元素均小于第二个文件中的元素;然后再对两个子文件进行同样的处理。