最新刘世鹏--多路温度采集系统设计
- 格式:doc
- 大小:564.00 KB
- 文档页数:27
一种多路温度无线采集系统的设计作者:杨杰来源:《数字技术与应用》2010年第05期摘要:设计了一个基于DF无线传输模块和温度传感器DS18B20的多路温度无线采集系统。
整个系统是以AT89S51单片机为核心来进行终端节点温度数据采集,并对无线通信模块与上位机之间的数据通信进行控制,实现了无线多路温度数据采集的功能。
关键词:无线单片机温度采集通信协议中图分类号: 文献标识码:A文章编号:1007-9416(2010)05-0000-001引言随着现代电子技术的发展,数字式温度传感器出现了,这使温度测量技术发生了根本性的变化,从模拟测量方法发展到了数字式测量方法。
数字式温度测量方法无论在测温精度还是实时性方面都有了很大的提高。
随着网络及通信技术的飞速发展,短距离无线通信以其特有的抗干扰能力强、可靠性高、安全性好、受地理条件限制少、安装施工简便灵活等特点,在许多领域都有着广泛的应用前景。
传统的多路温度采集系统通信方式,主要是采用固定的点对点之间的有线通信,采用RS一485总线或CAN总线需要把各设备利用网线连接起来,施工麻烦而且费用高。
如果能在每个采集数据的终端使用无线的方式进行数据传送,可以完全去掉通信设备之间的物理线路连接,不仅简化了施工难度和系统复杂度,还可以大大地降低成本。
本系统正是基于短距离无线通信技术而开发的,适合低成本的短距离无线温度采集场合,具有广阔的应用前景。
2系统方案总体方案本系统包括一个上位机和N个下位机。
上位机主要负责温度N路温度数据的汇总处理,下位机也就是温度采集端,主要负责温度的采集,上位机与下位机之间通过无线的方式进行数据传输,下位机之间不能直接通信。
因为N路下位机完全一样,所以只制作了2个下位机来做测试。
系统总体方案如图1所示。
本系统采用单片机作为主控制器,温度传感器采用数字式温度传感器DS18B20,显示采用低功耗的LCD液晶1602。
本系统的无线模块没有采用现成的无线收发芯片,而采用了低成本的DF无线收发模块。
1 绪论温度是一个很重要的物理参数,自然界中任何物理、化学过程都紧密地与温度相联系。
在工业生产过程中,温度检测和控制都直接和安全生产、产品质最、生产效率、节约能源等重大技术经济指标相联系,因此在国民经济的各个领域中都受到普遍重视。
温度检测类仪表作为温度计量工具,也因此得到广泛应用。
随着科学技术的发展,这类仪表的发展也日新月异。
特别是随着计算机技术的迅猛发展,以单片机为主的嵌入式系统已广泛应用于工业控制领域,形成了智能化的测量控制仪器,从而引起了仪器仪表结构的根本性变革。
1.1 温度检测类仪表的现状传统的机械式温度检测仪表在工矿企业中己经有上百年的历史了。
一般均具有指示温度的功能,由于测温原理的不同,不同的仪表在报警、记录、控制变送、远传等方面的性能差别很大。
例如热电阻温度计,它的测温范围是-200℃~650℃,测量准确,可用于低温或温差测量,能够指示报警、远传、控制变送,但维护工作量大并且不能记录;光学温度计测温范围是300℃~3200℃,携带使用方便,价格便宜,但是它只能目测,也就是说必须熟练才能测准,而且不能报警、远传、控制变送。
近年来由于微电子学的进步以及计算机应用的日益广泛,智能化测量控制仪表己经取得了巨大的进展。
我国的单片机开发应用始于80 年代。
在这20 年中单片机应用向纵深发展,技术日趋成熟。
智能仪表在测量过程自动化,测量结果的数据处理以及功能的多样化方面。
都取得了巨大的进展。
目前在研制高精度、高性能、多功能的测量控制仪表时,几乎没有不考虑采用单片机使之成为智能仪表的。
从技术背景来说,硬件集成电路的不断发展和创新也是一个重要因素。
各种集成电路芯片都在朝超大规模、全CMOS 化的方向发展,从而使用户具有了更大选择范围。
这类仪器能够解决许多传统仪器不能或不易解决的问题,同时还能简化仪表电路,提高仪表的可靠性,降低仪表的成本以及加快新产品的开发速度。
智能化控制仪表的整个工作过程都是在软件程序的控制下自动完成的。
一、实验目的1. 掌握多路温度监测系统的基本原理和设计方法。
2. 熟悉温度传感器的应用和特性。
3. 学会使用相关电子元件和仪器进行系统搭建。
4. 提高动手能力和实践操作技能。
二、实验原理多路温度监测系统主要利用温度传感器对多个测温点进行实时监测,并将采集到的温度数据传输到上位机进行处理和分析。
本实验采用DS18B20温度传感器和AT89C51单片机为核心控制器,通过单总线接口实现多路温度数据的采集。
三、实验仪器与设备1. 单片机开发板:AT89C512. DS18B20温度传感器:3个3. LCD1602显示屏:1个4. 按键模块:1个5. 电源模块:1个6. 蜂鸣器:1个7. 连接线:若干四、实验步骤1. 系统搭建:(1)将AT89C51单片机插入开发板,连接电源模块;(2)将3个DS18B20温度传感器通过单总线接口连接到AT89C51单片机的P3.7端口;(3)将LCD1602显示屏、按键模块、蜂鸣器等外围设备连接到相应的端口;(4)连接电源,确保系统正常工作。
2. 程序编写:(1)编写AT89C51单片机程序,实现温度采集、显示、报警等功能;(2)编写LCD1602显示屏显示程序,显示当前温度、温度状态、温度阈值等信息;(3)编写按键模块控制程序,实现温度阈值设置、模式切换等功能;(4)编写蜂鸣器报警程序,当温度超过阈值时,蜂鸣器发出报警声。
3. 系统测试:(1)启动系统,观察LCD1602显示屏是否正常显示温度信息;(2)调整按键模块,设置温度阈值,观察系统是否能够正确判断温度是否超过阈值;(3)将温度传感器放置在不同温度环境下,观察系统是否能够准确采集温度数据。
五、实验结果与分析1. 系统搭建成功,LCD1602显示屏正常显示温度信息;2. 通过按键模块设置温度阈值,系统能够正确判断温度是否超过阈值;3. 将温度传感器放置在0℃、25℃、50℃等不同温度环境下,系统能够准确采集温度数据。
基于STM32的多点温度采集系统设计摘要:本文介绍了一种基于STM32的多点温度采集系统设计,该系统实现了对多个测点的温度采集,可广泛应用于物联网、环境监测、科学实验等领域。
文章首先介绍了该系统的硬件组成和软件设计,然后详细说明了各个模块的实现方法和细节,最后进行了测试和分析。
实验结果表明,该系统稳定可靠,具有较高的测量精度和较低的功耗,具有良好的应用前景。
关键词:STM32;温度采集;多点采集;物联网;环境监测一、概述随着物联网和环境监测技术的迅速发展,温度传感器越来越广泛地应用于各个领域。
温度采集系统可以帮助人们获取物理环境中的温度数据,从而提高环境安全性和生产效率,对于科学实验和工业制造行业尤其重要。
本文介绍了一种基于STM32的多点温度采集系统设计,该系统能够同时实时监测多个测点的温度数据,具有较高的精度和较低的功耗,可广泛应用于物联网、环境监测、科学实验等领域。
二、系统硬件设计该系统主要由STM32微控制器、多个DS18B20温度传感器、LCD显示屏、蜂鸣器、SD卡模块和电源模块等组成,如图1所示。
其中,STM32作为控制中心,与多个DS18B20温度传感器进行通信,获取温度数据,并将数据显示在LCD屏幕上。
电源模块采用锂电池供电,通过电源管理模块和充电管理模块对系统电源进行管理,以确保系统运行的稳定性和可靠性。
该系统的软件设计包括底层驱动程序和上层应用程序。
底层驱动程序主要实现与DS18B20温度传感器的通信,包括初始化DS18B20传感器、发送指令、读取温度数据等操作。
上层应用程序主要实现数据采集、处理、显示和存储等功能,包括读取传感器数据、计算温度值、显示温度值、存储温度数据等操作。
四、系统功能模块实现4.1 DS18B20传感器驱动程序DS18B20是一个数字式温度传感器,使用1-Wire总线方式进行通信,具有精度高、响应快、体积小等特点。
该系统采用STM32的GPIO接口模拟1-Wire总线方式与DS18B20传感器进行通信。
毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。
除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。
对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。
本人完全意识到本声明的法律结果由本人承担。
2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。
本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。
3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。
4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。
论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。
论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。
学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。
本人完全了解大学有关保存,使用毕业论文的规定。
同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。
本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。
如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。
本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。
本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。
基于ZigBee技术的温度数据采集监测系统的设计一、概述随着物联网技术的飞速发展,无线传感器网络在工业生产、环境监测、智能农业等领域得到了广泛应用。
温度数据采集作为基础且关键的环境参数之一,对于保障生产安全、提高生产效率、实现智能化管理具有重要意义。
ZigBee技术作为一种短距离、低功耗的无线通信技术,凭借其低成本、易部署、高可靠性等特点,已成为无线传感器网络的主流技术之一。
本文旨在设计一种基于ZigBee技术的温度数据采集监测系统。
该系统利用ZigBee无线传感器网络采集环境温度数据,通过数据传输和处理,实现对温度信息的实时监测和分析。
系统设计注重实用性和可靠性,力求在保证数据准确性的同时,降低成本和提高效率。
本论文的主要内容包括:对ZigBee技术和无线传感器网络进行概述,分析其在温度数据采集监测系统中的应用优势详细阐述系统设计的整体架构,包括硬件选型、软件设计、网络通信协议等方面对系统的关键技术和实现方法进行深入探讨,如数据采集、传输、处理及显示等通过实验验证系统的性能和稳定性,并对实验结果进行分析和讨论。
本论文的研究成果将为无线传感器网络在温度数据采集监测领域的应用提供有益参考,对推动相关行业的技术进步和产业发展具有积极意义。
1.1 研究背景随着物联网技术的飞速发展,无线传感器网络(Wireless Sensor Networks, WSN)在环境监测、工业控制、智能农业等领域得到了广泛的应用。
作为WSN的关键技术之一,ZigBee技术因其低功耗、低成本、短距离、低速率、稳定性好等特点,成为实现WSN的重要手段。
温度数据采集监测系统作为WSN的一个重要应用,通过对环境温度的实时监测,为生产生活提供准确的数据支持,对于保障生产安全、提高生活质量具有重要意义。
传统的温度数据采集监测系统多采用有线方式,存在布线复杂、扩展性差、维护困难等问题。
为了解决这些问题,基于ZigBee技术的无线温度数据采集监测系统应运而生。
HUNAN UNIVERSITY 毕业设计(论文)设计论文题目:基于ZigBee的多点温度采集系统设计与实现学生姓名:宋强军学生学号:专业班级:通信工程三班学院名称:信息科学与工程学院指导老师:肖玲学院院长:章兢2011 年6 月1 日基于ZigBee的多点温度采集系统设计与实现摘要随着生产技术的发展,温度数据检测技术广泛应用于工业远程控制系统,并逐步显示出远程和网络的特性。
传统的温度采集系统,主要方式是有线连接节点,此方法的特点是布局复杂和可扩展性差。
事实上,在某些领域有线连接方式甚至不能应用。
因此,最理想的方法是采用无线连接收集和传送数据。
作为新兴的短距离,低功耗低成本的无线通信技术,zigbee 已广泛应用于工业控制,消费性电子,家电自动化,医疗监控等领域。
本文在对无线传感器及其网络协议技术分析的基础上,设计出一种基于zigbee为基础的无线温度采集系统。
用基于zigbee网络的无线方式通过温度测量节点收集温度数据。
通过串口通信线路连接主要节点和前端电脑。
然后,电脑存储温度数据至数据库,以便实现数据的统一管理。
论文首先介绍了Zigbee技术研究内容以及无线传感器网络的研究现状。
随后总结了Zigbee技术的优点,接下来对Z-Stack协议栈结构进行了分析。
接着介绍了系统的硬件和软件设计。
首先从硬件方面论述了温度传感器模块、数据汇聚模块的系统构成。
接着论述了系统的软件设计,主要对上位机用户监控界面的设计和温度传感器模块、数据汇聚模块的设计这三部分进行了介绍。
数据汇聚模块实现组建网络、分配网络地址的功能,温度传感器模块实现加入网络、数据采集、数据存储、数据上传、通信、等功能。
关键词:Zigbee,无线传感器网络,多点温度采集,Z-StackDesign and Realization of Multi-Node TemperatureAcquisition System Based on ZigBeeAbstractWith the development of producing technology, monitoring techniques of temperature data are being applied to all kinds of industrial process control systems and gradually showing the feature of far-distant and networking. In the traditional temperature acquisition system, the method to connect nodes is wired, this way possesses the characteristic of complex layout and poor extensibility. In fact, the wired way even cannot be utilized in some application. Therefore, the ideal way to collect and transmit data is employing wireless connection. As a kind of emerging short-distant, low-power consumption and low-cost wireless communication technology, ZigBee , medical monitoring and so on.In this Paper,on the basis of the wireless sensor network Protocol analysis technology,, a kind of temperature acquisition system which based on ZigBee wireless transmission technology is designed in this article, the temperature data collected through the temperature measuring nodes is transmitted to the major-node by ZigBee network in a wireless method,the major-node communicates with the upper computer through the serialport line, thereafter, the PC stores the temperature data into the databasein order to realizing the uniformly control of the data. Firstly, the general research situation in the field of Zigbee and the development trend are reviewed. It also reviews the research content of the WSN. Then the paper discusses the network Structure .Following the paper takes an in-depthstudy of the Z-Stack designed by TI. In the field of ,the structure ofmodules is described in details including the temperature sensor moduleand the data acquisition module .In the software design ,GUI and module’ssoftware are discussed, which includes the formation of networks ,address assignment ,join the network ,data acquisition, data storage ,data upload, communication.Key words: Zigbee, wireless sensor network, Multi-Node Temperature Acquisition ,Z-Stack目录1 绪论......................................................................................................................................1.1无线传感器网络...........................................................................................................1.1.1无线传感器网络概况 ........................................................................................1.1.2无线传感器网络应用现状 ................................................................................1.1.3无线传感器网络未来展望 ................................................................................1.2基于Zigbee技术的无线传感器网络.........................................................................1.3本文主要结构...............................................................................................................2 TI Z-Stack协议栈..............................................................................................................2.1.1 Zigbee协议栈结构............................................................................................2.2 Zigbee网络拓扑结构..................................................................................................2.3 Z-Stack协议栈介绍 ....................................................................................................2.3.1网络寻址.............................................................................................................2.3.2绑定.....................................................................................................................2.3.3路由协议.............................................................................................................2.3.4消息发送函数.....................................................................................................2.3.5网络的组建过程 (1)2.3.6消息接收函数 (1)2.4本章小结 (1)3 系统介绍 (1)3.1系统的整体介绍 (1)3.2系统硬件介绍 (1)3.2.1主要硬件简介 (1)3.2.2温度传感器模块电路原理图 (1)3.2.3数据汇聚模块(协调器) (1)4 软件设计实现 (1)4.1上位机(PC机)监控界面 (1)4.2模块的软件设计 (2)4.2.1数据汇聚模块(协调器)的软件设计 (2)4.2.2温度传感器模块(终端节点)的软件设计 (2)4.3 本章小结 (2)5 总结与展望 (3)5.1总结 (3)致谢 (3)参考文献 (3)1 绪论1.1无线传感器网络1.1.1无线传感器网络概况无线传感器网络与传统的网络不同,它是以数据为中心的自组织无线网络,网络的节点部署密集,网络拓扑结构动态变化。
基于单片机的多路温度采集控制系统的设计一、系统设计思路1、系统架构:本系统的所有模块分为两个主要的部分:单片机部分和PC部分。
单片机部分是整个温度控制系统的中心模组,它负责多路温度传感器的信号采集、温度计算和显示,还有一些辅助操作,如温度上下限报警等;PC部分主要实现数据采集、分析、处理、显示等功能,与单片机的交互可通过RS485、USB等接口进行。
2、硬件设计:本系统设计确定采用AT89C52单片机作为系统的处理核心,在系统中应用TLC1543数据采集芯片,采用ADC转换器将多个温度传感器的数据采集,使系统实现多路温度检测同时显示.另外,为了实现数据采集记录,系统可以选用32K字节外部存储封装。
二、系统总控程序设计系统总计程序采用C语言进行编写,根据实际情况,主要分为以下几个主要的模块:(1)初始化模块:初始化包括外设初始化、中断处理程序初始化、定时器初始化、变量初始化等功能。
(2)温度采集模块:主要对多路温度传感器的采集、计算并存储等操作,还可以实现温度的报警功能。
(3)录波模块:提供数据的实时采集、数据的存取、数据的滤波处理等功能。
(4)通信模块:主要是用于实现数据透传,采用RS485接口与PC端的上位机联网,可实现远程调试、远程控制等功能。
(5)用户界面模块:实现数据显示功能,可以根据用户的要求显示多路温度传感器检测到的数据。
三、实验检验(1)检查系统硬件的安装是否良好;(2)采用实测温度值与系统运行的实测温度值进行比对;(3)做出多路温度信号的对比,以确定系统读取的数据是否准确;(4)检查温度报警功能是否可以正常使用,也可以调整报警范围,试验报警功能是否可靠;(5)进行通信数据采集的联网检测,确保上位机和系统可以进行实时、准确的通信。
中南大学微机应用系统设计与综合实验设计报告设计题目多路温度采集系统编程设计指导老师设计者学号专业班级设计日期目录第一章微机应用系统课程设计的目的意义1.1 设计目的1.2 课程在教学计划中的地位和作用第二章温度采集系统软硬件设计任务2.1 设计内容及要求2.2 实验设备2.3 课程设计的内容及要求第三章总体设计方案3.1 设计思想3.2 总体设计流程图第四章硬件设计4.1 硬件设计概要4.2硬件设计接线图4.3 所用到的芯片及其各自功能说明4.3.1 芯片列表4.3.2 8086的功能简介4.3.3 8254的功能简介4.3.4 AD0809的功能简介第五章实验结果5.1 汇编程序结果5.2 C语言程序结果第六章源程序代码6.1 汇编程序代码6.2 C语言程序代码第七章系统的调试与使用第八章收获、体会参考文献第一章微机应用系统课程设计的目的意义1.1设计目的《微机原理与接口技术》是一门实践性和实用性都很强的课程,学习的目的在于应用。
本课程设计是配合课堂教学的一个重要的实践教学环节,它能起到巩固课堂和书本上的知识,加强综合能力,提高系统设计水平,启发创新思想的效果。
通过本课程设计希望达到以下目地:培养资料搜集和汇总的能力。
培养总体设计和方案论证的意识。
提高硬件,软件设计与开发的综合能力。
提高软件和硬件联合调试的能力。
熟练掌握相关测量仪器的使用方法。
掌握相关开发软件,仿真软件的使用方法。
1.2课程在教学计划中的地位和作用现在计算机科学在应用上得到飞速发展,因此,学习这方面的知识必须紧跟实际连接。
掌握这方面的知识更重要强调解决实际问题的能力。
该课程设计给我们提供了一个很好的机会,它要求我们结合课堂上和书本中学到的知识去独立设计一个硬件系统,它是我们迈向实践和应用的桥梁,我们学习书本上的知识是一个不断积累的过程,而该课程设计却使得我们能够尽情发挥他们,让我们更了解计算机的结构,工作原理以及软硬件的结合使用,虽然课程设计的时间比较短,但它却在整个教学计划中占据了及其重要的位置。
基于51系列单片机实现多路温度采集系统设计
李棚
【期刊名称】《科技信息》
【年(卷),期】2009(000)036
【摘要】本文介绍了基于单片机的多通道温度数据采集器的设计,采用AT89C51单片机作为CPU,设计了能与多种温度传感器配合使用的信号调理接口电路,考虑到远距离信号传输和系统的抗干扰能力,采用V/A/V的变送装置,能够很好的调整、传输传感器的输出信号.同时设计了一部分和硬件配套的软件,编写了CPU与A/D连接的数据采集子程序.
【总页数】2页(P434,436)
【作者】李棚
【作者单位】六安职业技术学院
【正文语种】中文
【相关文献】
1.基于单片机控制的粮仓多路温度采集系统设计
2.基于51单片机的多路温度采集控制系统设计
3.基于 MS P430的单片机多路温度采集系统设计*
4.基于ADC0809和51单片机的多路数据采集系统设计
5.基于P89C51单片机的多路数据采集系统的设计与实现
因版权原因,仅展示原文概要,查看原文内容请购买。
课程设计报告课程名称:多路温度采集系统设计学生姓名:刘世鹏学号:201016020214专业班级:T10102指导教师:李文圣完成时间:2013年6月10日报告成绩:多路温度采集系统设计1课程设计目的温度是一种最基本的环境参数,人们的生活与环境温度息息相关,因此研究温度的测量方法和装置具有重要的意义。
温度测量装置的关键是温度传感器,温度传感器的发展经历了三个发展阶段:(1)传统的分立式温度传感器,(2)模拟集成温度传感器,(3)智能集成温度传感器。
目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。
本人选择数字式多路温度采集系统设计。
系统主要技术指标:(1)2路温度采集电路及以上;(2)采集测温范围为-50~+110 ℃;(3)温度精度,误差在0.1 ℃以内;(4)显示模块,采用LED数码管显示。
2设计步骤按照系统设计功能的要求,系统由5个模块组成:主控制器、温度采集电路[1]、温度显示电路、报警控制电路及键盘输入控制电路。
数字式多路温度采集系统总体电路结构框图如图1所示。
图1 数字式多路温度采集系统结构框图采用智能温度传感器(DS18B20)采集环境温度并进行简单的模数转换;单片机(AT89C51)执行程序对温度传感器传输的数据进行进一步的分析处理,转换成环境对应的温度值,通过I/O口输出到数码显示管(LED)显示;由键盘输入控制选择某采集电路检测温度及显示;报警电路对设定的最高最低报警温度进行监控报警。
2.1温度采集电路设计温度采样处理电路由温度传感器、放大电路、A/D转换电路等组成。
采用分块结构的温度采样处理电路,其硬件电路结构复杂,也不便于数据的处理。
采用智能温度传感器采样处理电路,能够方便的进行温度的采集及简单的数据处理。
并且可以达到设计的技术指标要求。
本系统选择智能温度传感器DS18B20作为温度采集电路的核心器件。
由DS18B20及辅助电路构成温度采集电路。
第36卷第4期齐 齐 哈 尔 大 学 学 报(自然科学版) Vol.36,No.4 2020年7月 Journal of Qiqihar University(Natural Science Edition) July,2020 多通道温度数据采集方式下位机主控芯片的选择沙勇(齐齐哈尔大学学报(自然科学版)编辑部,黑龙江 齐齐哈尔 161006)摘要:温室大棚内进行多点温度采集,才能及时地了解作物成长的温度环境。
设计 一个多通道温度采集系统,当现场温度高出或着低于正常温度范围时系统能进行自动报警,着重讨下位机主控芯片、温度传感器等的选择及其应用。
关键词:温度采集;AT89S51;检测中图分类号:TP368.1 文献标志码:A 文章编号:1007-984X(2020)04-0048-03设计一个多通道温度采集系统,能对现场温度进行多路测量,从而更具体地 解现场温度的情况。
系统在完成温度数据的采集之后用显示器及时将现场的温度值显示出来,利用CAN 总线将采集到的数据实时有效地传输到监控机。
当现场温度高出或着低于正常温度范围时系统能进行自动报警,使工作人员及时采取相应措施进行调整。
采集系统主要分为温度采集节点、总线通信接口模块、上位机监控模块等。
着重讨下位机主控芯片的选择。
1 多路开关方式结构多路温度传感器将温度模拟信号采集后,先送至采样/保持电路,然后经过多路模拟开关的选择送至共用的A/D 模数转换器进行模数转换,最后传送到CPU 处理。
该温度采集方式与第一种多路A/D 转换方式相比,采集速度和模数转换进行慢些,且采样频率随采集通道数量的增加而下降。
要想在同一时刻采集到各通道的参数,采样保持电路就得用同一个控制信号。
该采集方式的结构框图如图1所示。
图1 采集结构图各路温度采集通道的模拟信号由模拟多路开关选择,先进入采样保持电路,再送至共用的A/D 转换器进行转换。
这种方式硬件比较简单,硬件成本低,比较适合采集温度变化缓慢的场所,但不能采集同一时刻的各种参数。
刘世鹏--多路温度采集系统设计课程设计报告课程名称:多路温度采集系统设计学生姓名:刘世鹏学号: 201016020214专业班级: T10102指导教师:李文圣完成时间: 2013年6月10日报告成绩:评阅意见:评阅教师日期多路温度采集系统设计1 课程设计目的温度是一种最基本的环境参数,人们的生活与环境温度息息相关,因此研究温度的测量方法和装置具有重要的意义。
温度测量装置的关键是温度传感器,温度传感器的发展经历了三个发展阶段:(1)传统的分立式温度传感器,(2)模拟集成温度传感器,(3)智能集成温度传感器。
目前,国际上新型温度传感器正从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展。
本人选择数字式多路温度采集系统设计。
系统主要技术指标:(1)2路温度采集电路及以上;(2)采集测温范围为-50~+110 ℃;(3)温度精度,误差在0.1 ℃以内;(4)显示模块,采用LED数码管显示。
2设计步骤按照系统设计功能的要求,系统由5个模块组成:主控制器、温度采集电路[1]、温度显示电路、报警控制电路及键盘输入控制电路。
数字式多路温度采集系统总体电路结构框图如图1所示。
图1 数字式多路温度采集系统结构框图采用智能温度传感器(DS18B20)采集环境温度并进行简单的模数转换;单片机(AT89C51)执行程序对温度传感器传输的数据进行进一步的分析处理,转换成环境对应的温度值,通过I/O口输出到数码显示管(LED)显示;由键盘输入控制选择某采集电路检测温度及显示;报警电路对设定的最高最低报警温度进行监控报警。
2.1温度采集电路设计温度采样处理电路由温度传感器、放大电路、A/D转换电路等组成。
采用分块结构的温度采样处理电路,其硬件电路结构复杂,也不便于数据的处理。
采用智能温度传感器采样处理电路,能够方便的进行温度的采集及简单的数据处理。
并且可以达到设计的技术指标要求。
本系统选择智能温度传感器DS18B20作为温度采集电路的核心器件。
由DS18B20及辅助电路构成温度采集电路。
2.1.1 DS18B20简介(1)DS18B20的性能特点DS18B20是美国DALLAS半导体公司推出的一种改进型智能温度传感器,与传统的热敏电阻等温度传感器相比,它能够直接读出被测温度,并可根据实际要求通过简单的编程实现9~12位的数字值读数方式,可以在93.75ms至750ms内完成相应9位至12位的数字量转换。
它的测温精度可达到0.0625℃/LSB。
它的测温范围是-55~+125℃。
从DS18B20读出或写入信息仅需要一根口线,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,无需额外电源。
因而选用DS18B20是恰当的。
(2)DS18B20的外形和内部结构DS18B20采用3脚PR-35封装,其外形和内部结构框图分别如图2、图3所示。
图2 DS18B20外形结构图3 DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
64位光刻ROM的位结构图如图4所示。
64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。
开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码。
图4 64位ROM结构DS18B20温度传感器的内部存储器包括一个非易失性的可电擦除E2PRAM和一个高速暂存RAM。
E2PRAM包括存放高温度和低温度的触发器TH、TL和结构寄存器。
非易失性温度报警触发器TH和TL,可通过软件写入用户报警上下限。
高速暂存RAM的结构为9字节的存储器,结构图如图5所示。
头2个字节包含测得的温度信息。
第3、4字节是TH和TL的拷贝,每次上电复位时被刷新。
第5字节为配置寄存器,用于确定温度值的数字转换分辨率。
第6、7、8字节保留未用,表现为全逻辑1。
第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。
第5字节配置寄存器各位的定义如图6所示;低5位一直为1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式;R1和R0决定温度转换的精度位数(即设置分辨率),定义方法见表1。
图5 高速缓存RAM结构图6 配置寄存器表1 DS18B20分辨率的定义规定R1 R0 分辨率/位温度最大转换时间/ns0 0 1 1 011910111293.75187.53757509位分辨率时,精度为0.5℃/LSB;10位分辨率时,精度为0.25℃/LSB;11位分辨率时,精度为0.125℃/LSB;12位分辨率时,精度为0.0625℃/LSB。
转换精度越高所需转换时间越长。
为了达到本系统的技术指标,选择12位分辨率。
(3)DS18B20供电方式外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。
在外接电源方式下,可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V时,依然能够保证测量精度。
所以本系统采用外部电源供电方式。
在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度,同时在总线上可以挂接任意多个DS18B20传感器,组成多点测温系统。
外部电源供电方式如图7所示。
在外部供电方式下,DS18B20的GND引脚必须接地,不能悬空,否则不能转换温度,读取的温度总是85℃。
图7 DS18B20外部电源供电2.1.2温度采集电路结构温度采集电路结构如图8所示。
图中给出了2路温度采集电路,2只智能温度传感器DS18B20的信号输出端都连接到单片机的P1.7端,电阻R6作为上拉电阻。
如果需要增加,可以在P1.7端再连接更多的智能温度传感器DS18B20。
工作时,由程序控制读取某智能温度传感器DS18B20采集的温度数据,送单片机处理。
..4.7KR6VCC..DQ2VDD3GND1U5DS18B20DQ2VDD3GND1U6DS18B20VCCVCCEA/VP31X119X218RESET9RD17WR16INT012INT113T014T115P101P112P123P134P145P156P167P178P0039P0138P0237P0336P0435P0534P0633P0732P2021P2122P2223P2324P2425P2526P2627P2728PSEN29ALE/P30TXD11RXD10U9AT89C51..图8 多点温度采集电路2.2单片机控制电路设计单片机控制电路核心是单片机芯片,其加上工作基本电路,就可以展开控制工作。
2.2.1单片机芯片选择MCS8031和AT89C51[2]都具有4个8位I/O接口,但MCS8031没有内部程序存储器,需要外接,增加了电路的复杂性;AT89C2051和AT89C51都具有Flash ROM,可以省去外接程序存储器;但AT89C2051接口少,不利于功能扩展;故选用AT89C51。
AT89C51单片机内部结构及主要性能特点:40个引脚,双列直插式封装;有4个8位I/O接口;有全双工增强型UART,可编程串行通信;2个16位定时/计数器;5个中断源,2个中断优先级;有片内时钟振荡器(全静态工作方式,0~24 MHz);有128字节内部RAM,4KB Flash ROM(可以擦除1000次以上,数据保存10年);电源控制模式灵活(时钟可停止和恢复,空闲模式,掉电模式)。
2.2.2 AT89C51单片机工作基本电路设计AT89C51单片机正常工作,必须连接基本电路。
基本电路包括晶振电路[3]和复位电路[4]。
(1)晶振电路单片机的时钟信号通常有两种产生方式:一是内部时钟方式,二是外部时钟方式。
内部时钟方式是利用单片机内部的振荡电路产生时钟信号。
外部时钟方式是把外部已有的时钟信号引入到单片机内。
本设计采用内部时钟方式,电路如图9中所示。
在单片机的XTAL1和XTAL2引脚外接石英晶体(简称晶振),作为单片机内部振荡电路的负载,构成自激振荡器,可在单片机内部产生时钟脉冲信号。
C1和C2可以稳定振荡频率,并使快速起振。
本电路选用晶振12MHz,C1=C2=30pF。
(2)复位电路复位是使单片机处于某种确定的初始状态。
单片机工作从复位开始。
在单片机RST 引脚引入高电平并保持2个机器周期,单片机就执行复位操作。
复位操作有两种基本方式:一种是上电复位,另一种是上电与按键均有效的复位。
本设计采用后一种复位电路。
电路如图9中所示。
当RST获得高电平,随着电容C3的充电,RST引脚的高电平将逐渐下降。
若该高电平能保持足够2个机器周期,就可以实现复位操作。
选择C3=10µF,R1=10KΩ。
综上所述,单片机控制电路如图9所示。
图9 单片机控制电路2.3输入控制电路设计输入控制电路由按键及其接口构成,键盘是单片机最简单的输入设备。
常用键盘分为独立式键盘和矩阵式键盘。
本系统的输入控制简单,采用独立式键盘及接口电路[5]。
输入电路由2个按钮开关、2个10欧的限流电阻组成;键扫描识别采用软件查询的方法。
电路如图10所示,各键功能如表2所示。
..图10 按键输入控制电路表2 各键功能按键键名功能S1 第一路温度按键按下,LED数码显示管显示第一路温度。
S2 第二路温度按键按下,LED数码显示管显示第二路温度。
2.4显示电路设计显示电路采用LED数码管显示。
LED数码显示管有静态显示方式和动态显示方式,本系统采用串行输出[6]的静态显示方式。
利用4片串转并芯片74LS164将控制器输出的串行数据转换成并行数据输出,用来驱动4位LED数码显示管显示数据。
2.4.1 LED数码显示管静态显示工作原理LED显示器工作于静态显示方式时,各位的阴极(或阳极)选择线连接在一起并接地(或+5V);每位的段码线分别与1个8位的锁存器输出连接。
各LED显示某一字符时,相应段的发光二极管恒定地导通或截止,直到送入另一个字符的段码为止。
静态显示可以得到较高的显示亮度。
静态显示有并行输出和串行输出两种方式。
并行输出显示的十进制位数多时,需要并行I/O接口芯片的数量较多。
串行输出可以大大节省单片机的内部资源。
2.4.2显示电路结构显示电路由单片机AT89C51的P3.0端作数据输出,连接到低位74LS164的数据输入引脚端,其余3片74LS164的数据输入端分别接到它前面一位74LS164的数据输出端的最高位引脚端。
单片机AT89C51的P3.1、P1.4端分别接到一个与门电路的输入端,与门电路的输出端分别与每片74LS164的输出允许控制端相连接。