因式分解的十二种方法
- 格式:docx
- 大小:21.25 KB
- 文档页数:9
因式分解的十二种方法因式分解是代数中的一个非常重要的概念,它可以帮助我们将一个复杂的代数表达式简化为更简单的乘积形式。
在因式分解的过程中,有许多不同的方法可以使用。
下面将介绍因式分解的十二种常见方法。
一、公因式提取法(通用方法):公因式提取法是因式分解中最基础也是最常见的一种方法。
它的基本思想是通过提取出一个或多个公因式,将原表达式分解为因子相乘的形式。
例如,对于表达式6x+9y,可以提取出3作为公因式,从而得到3(2x+3y)。
二、配方法(分组法):配方法是一种将高次项与低次项相乘的方法。
通过将原表达式分组,然后将每组中的项相乘,最后将各组之间的结果相加。
例如,对于表达式x^2+5x+6,可以将其写成(x^2+2x)+(3x+6),然后将每组中的项相乘,即得到x(x+2)+3(x+2),再进行合并得到(x+2)(x+3)。
三、分解差平方:分解差平方是一种将平方差分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的差分解为两个因数的乘积。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
四、分解和差平方:分解和差平方是一种将平方和分解为两个因数相乘的方法。
它的基本思想是将一项的平方与另一项的平方的和分解为两个因数的乘积。
例如,对于表达式x^2+4,可以将其分解为(x+2i)(x-2i),其中i是虚数单位。
五、完全平方差公式:完全平方差公式是一种将二次三项式分解为两个完全平方的差的方法。
它的基本形式可以表示为a^2-b^2,其中a和b可以是任意代数式。
根据完全平方差公式,可以将a^2-b^2分解为(a+b)(a-b)。
例如,对于表达式x^2-4,可以将其分解为(x+2)(x-2)。
六、分组分解法:分组分解法是一种将多项式分解为若干个二次三项式相加的方法。
它的基本思想是通过分组,将多项式分成多个二次三项式的和,然后对每个二次三项式进行因式分解。
例如,对于表达式x^3+x^2+x+1,可以将其分为(x^3+x^2)+(x+1),然后对每个二次三项式进行因式分解,得到x^2(x+1)+1(x+1),再进行合并得到(x^2+1)(x+1)。
因式分解的十二种方式因式分解是数学中的重要概念,它可以帮助我们简化和解决各种数学问题。
本文将介绍因式分解的十二种常用方式。
1. 公因式提取法公因式提取法是用于将多项式中的公因式提取出来。
首先找到多项式中所有项的公因式,然后将公因式提取出来,剩下的部分则是提取后的因式。
例如,对于多项式2x + 6,可以提取公因式2,得到2(x + 3)。
2. 完全平方公式完全平方公式是用于将平方差式因式分解的方法。
根据完全平方公式,平方差可以写成两个平方数的差。
例如,对于平方差a^2 - b^2,可以因式分解为(a + b)(a - b)。
3. 一元二次方程一元二次方程可以通过将其因式分解为两个一元一次方程来求解。
首先将方程设置为等于零,然后根据因式分解的方式将其分解成两个一元一次方程。
例如,对于一元二次方程x^2 - 5x + 6 = 0,可以因式分解为(x - 2)(x - 3) = 0,从而得到x的解为2和3。
4. 分组法分组法是用于将多项式中的项进行分组然后进行因式分解的方法。
通过分组,可以在多项式中找到共同的因式,然后进行提取和化简。
例如,对于多项式3a + 6b + 9c + 18d,可以将其进行分组,得到(3a + 6b) + (9c + 18d),然后提取公因式,得到3(a + 2b) + 9(c +2d)。
5. 十字相乘法十字相乘法是用于将二次三项式进行因式分解的方法。
通过十字相乘法,可以找到二次三项式的两个因式,从而进行因式分解。
例如,对于二次三项式x^2 + 5x + 6,可以使用十字相乘法得到(x + 2)(x + 3)。
6. 定积分法定积分法是用于计算定积分的方法,也可以用于对多项式进行因式分解。
通过计算定积分,可以得到多项式的因式分解形式。
例如,对于多项式x^3 - 1,可以通过计算定积分得到(x -1)(x^2 + x + 1)。
7. 化简法化简法是用于对复杂多项式进行因式分解的方法。
因式分解的十二种方法因式分解是一种将一个数或代数式分解成更简单的乘积的方法。
在数学中,有很多种因式分解的方法可以使用,根据不同的情况可以采用不同的方法,下面将介绍十二种常见的因式分解方法。
1.提取公因子法:当一个式子存在公因子时,可以先将公因子提取出来,然后再进行进一步的因式分解。
2. 公式法:利用公式进行因式分解,例如(a+b)^2=a^2+2ab+b^23.分组法:将一个多项式按照不同的组合方式进行分组,然后再分别进行因式分解,最后将得到的结果合并。
4.平方差公式法:对于一个二次型式,可以利用平方差公式进行因式分解,例如a^2-b^2=(a+b)(a-b)。
5. 完全平方公式法:对于一个完全平方式,可以通过完全平方公式进行因式分解,例如a^2+2ab+b^2=(a+b)^26. 二次因式法:对于一个二次多项式,可以通过二次因式法进行因式分解,例如ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为方程ax^2+bx+c=0的根。
7.和差立方公式法:对于一个和差立方的多项式,可以通过和差立方公式进行因式分解。
8. 因式分解的配方法:通过配方法进行因式分解,例如ab+ac=a(b+c)。
9.分解因式法:将一个多项式根据不同的性质进行因式分解,例如差平方分解、和的平方分解等。
10.二次根与一次根相结合法:对于一个多项式,通过将二次根与一次根相结合,得到更简单的因式分解结果。
11. 分组求积法:对于一个多项式,可以通过分组求积法进行因式分解,例如(a+b)(c+d)=ac+ad+bc+bd。
12.全等公式法:利用全等公式进行因式分解。
以上是常见的十二种因式分解方法。
不同的方法适用于不同的情况,需要根据具体的问题选择合适的方法进行因式分解。
因式分解是数学中的一个重要概念,通过因式分解可以简化计算过程,提高解题效率。
因此,掌握不同的因式分解方法对于提高数学能力和解决实际问题都有很大的帮助。
因式分解的十二种方法(已整理)1. 提取公因式:将多项式中的公因子提取出来。
例如:4x^2 + 8x = 4x(x + 2)2. 平方差公式:将两个平方数的差表示为乘积形式。
例如:x^2 - 4 = (x + 2)(x - 2)3. 完全平方公式:通过平方根将平方项表示为乘积形式。
例如:x^2 + 6x + 9 = (x + 3)^24. 平方三项式:将三项式表示为两个平方的和或差。
例如:x^2 + 4x + 4 = (x + 2)^25. 相异平方差公式:将两个相异的平方根相乘,并加上或减去乘积的两倍。
例如:4x^2 - 25 = (2x + 5)(2x - 5)6. 完全立方公式:通过立方根将立方项表示为乘积形式。
例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)7. 立方和:将两个立方数的和表示为乘积形式。
例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)8. 左移、右移公式:通过改变变量的指数来分解多项式。
例如:x^3 - 8 = (x - 2)(x^2 + 2x + 4)9. 分组法:通过将多项式中的项分成组,然后分别进行分解。
例如:2x^3 + 3x^2 + 6x + 9 = x^2(2x + 3) + 3(2x + 3) = (x^2 + 3)(2x + 3)10. 精简法:通过合并多项式中的相似项来分解多项式。
例如:3x^2 + 2x + 5x + 1 = x(3x + 2) + 1(5x + 1) = (x + 1)(3x + 2)11. 求和公式:将多个项相加,并使用求和公式进行分解。
例如:2x + 3y + 4x + 6y = (2x + 4x) + (3y + 6y) = 6x + 9y12. 配方法:对于二次多项式,使用配方法将其分解为两个一次多项式的乘积。
例如:2x^2 + 5x + 3 = (2x + 3)(x + 1)。
数学因式分解的12种方法数学因式分解的12种方法数学因式分解是数学中的一项基础技能,它指的是将一个多项式化简成若干项乘积的形式。
因式分解可用于求解方程、化简式子、计算概率等各种领域,是数学学习过程中必不可少的内容。
下面介绍12种数学因式分解的方法,以便更好地掌握这项技能。
1. 相加法当括号内所有的项都有一个公共因子时,我们可以应用“相加法”来求得它们的积。
例如,3x+6x可以写成3(x+2x)的形式,而8a+12a+20a则可以写成4(2a+3a+5a)的形式。
2. 分组法这个方法通常用于处理有四项甚至更多项的式子,它可以将这些项分成两组,使得每组内都有一个公共因子,从而进行因式分解。
例如,2x^3+3x^2+2x+3=2x^2(x+1)+3(x+1)=(2x^2+3)(x+1)。
3. 因数分解法这个方法是将一个多项式写成多个项的乘积形式,然后查找其每一项的因数。
例如,6x^2+11x+4可以分解成(3x+4)(2x+1)的形式。
4. 公因数法当多项式的每一项都有相同的公因数时,可以用公因数法将其化简。
例如,24x^2+36x=12x(2x+3)。
5. 平方公式平方公式是将一个多项式化简为若干项平方的和的形式,例如(a+b)^2=a^2+2ab+b^2。
它常常可以应用于因式分解中,例如4x^2-4y^2=4(x^2-y^2)=(2x+2y)(2x-2y)。
6. 完全平方公式完全平方公式是指一个二次多项式可以表示成两个一次多项式的平方和差的形式,例如(a+b)(a-b)=a^2-b^2。
应用完全平方公式,可以将二次多项式分解为相加或相减的两个一次项。
7. 差平方公式差平方公式是指一个多项式之差可以表示为二次项的差的形式,例如a^2-b^2=(a+b)(a-b)。
应用差平方公式,可以将含有二次项的多项式化简为二次项之差的形式,进而进行因式分解。
8. 转化法如果一个多项式不容易因式分解,我们可以通过变量代换的方法来转化它。
因式分解的十二种方法学
引言:
因式分解是代数学中重要的概念,可以将多项式分解为较简单
的因子。
掌握因式分解的方法对于解决各种代数问题至关重要。
本
文介绍了因式分解的十二种方法学。
方法一:公因式提取法
将多项式中的公因式提取出来,使其成为因式分解的一个因子。
方法二:配方法
对多项式进行配方,使其成为一个完全平方或差两个平方的形式,进而进行因式分解。
方法三:差两个立方和的分解法
将多项式化为两个立方和的差的形式,然后进行因式分解。
方法四:平方差公式法
利用平方差公式将多项式分解为两个因子的平方差的形式。
方法五:线性因式分解法
将多项式分解为线性因子的乘积。
方法六:因式定理法
利用因式定理,将多项式分解为一个因式和一个余式的乘积。
方法七:综合法
结合多种因式分解方法,根据多项式的特点灵活选择分解方法。
方法八:换元法
通过合理的代换将多项式转化为易于因式分解的形式。
方法九:质因数分解法
将多项式中的各项进行质因数分解,然后进行合并、化简。
方法十:分组法
对多项式进行适当的分组,然后进行因式分解。
方法十一:特殊公式法
应用特殊公式,将多项式分解为已知公式的形式。
方法十二:幂函数分解法
将多项式化为幂函数的形式,然后进行因式分解。
结论:
因式分解的十二种方法学提供了多种解决代数问题的工具。
掌握这些方法可帮助我们在解决问题时更加有效和灵活地进行因式分解操作。
因式分解十二种方法公式因式分解是数学中的一个重要概念,它可以将一个多项式分解为若干个因子的乘积。
在因式分解中,有许多不同的方法和公式可以使用。
下面将介绍十二种因式分解的方法和公式。
一、公式法公式法是一种较为常用和简便的因式分解方法。
它利用一些已知的公式,将多项式分解为更简单的形式。
例如,我们可以利用平方差公式将一个二次多项式分解为两个一次多项式的乘积。
又如,利用差平方公式可以将一个二次多项式分解为两个一次多项式的乘积。
二、提公因式法提公因式法是一种常见的因式分解方法。
它利用多项式中的公因式,将多项式分解为公因式和余项的乘积。
通过提取公因式,可以简化多项式的形式,便于后续的计算和分解。
三、配方法配方法是一种常用的因式分解方法,它适用于多项式中存在二次项的情况。
配方法通过将多项式中的一部分进行配方,从而将多项式分解为两个简化的多项式的乘积。
这种方法常用于分解二次多项式,可以将其分解为两个一次多项式的乘积。
四、分组分解法分组分解法是一种适用于四项多项式的因式分解方法。
它通过将多项式中的项进行分组,从而将多项式分解为多个简化的多项式的乘积。
这种方法常用于分解四项多项式,可以将其分解为两个二次多项式的乘积。
五、和差化积法和差化积法是一种常用的因式分解方法,它适用于多项式中存在和差项的情况。
和差化积法通过将多项式中的和差项进行化简,从而将多项式分解为简化的多项式的乘积。
这种方法常用于分解多项式中的高次项。
六、平方差公式平方差公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。
平方差公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。
七、差平方公式差平方公式是一种常用的因式分解公式,它用于将一个二次多项式分解为两个一次多项式的乘积。
差平方公式的形式为(a-b)(a+b)=a^2-b^2,其中a和b可以是任意实数或变量。
八、立方差公式立方差公式是一种常用的因式分解公式,它用于将一个立方多项式分解为两个一次多项式的乘积。
3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ , x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8、求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6解:令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6解:令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10、主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
因式分解的12种方法精讲因式分解是将一个代数式拆分成多个因子的过程。
在学习因式分解时,我们通常用到以下的12种因式分解方法。
1.公因式提取法:对于一个代数式,如果其中存在公共因子,可以将公共因子提取出来。
例如,对于表达式6x+9y,可以提取出公因式3,得到3(2x+3y)。
2.公式法:使用平方差公式、平方和公式、立方差公式等数学公式对代数式进行因式分解。
例如,对于一个二次多项式x^2+5x+6,我们可以使用平方和公式(x+2)(x+3)进行因式分解。
3.因式定理法:当一个多项式F(x)中有一个因子(x-a)时,可以使用因式定理法进行因式分解,将F(x)除以(x-a)得到商式和余式。
例如,对于多项式x^2-2x-3,我们可以使用因式定理法进行因式分解,得到(x-3)(x+1)。
4.分组分解法:对于含有多个项的代数式,可以将其进行分组,然后再分别对每个组进行因式分解。
例如,对于代数式x^3+x^2+x+1,我们可以将其分组为(x^3+x^2)+(x+1),然后分别因式分解为x^2(x+1)+1(x+1),得到(x+1)(x^2+1)。
5.提取完全平方根法:对于一个二次多项式,如果其形式符合完全平方根的形式,可以使用提取完全平方根法进行因式分解。
例如,对于多项式x^2+6x+9,我们可以将其因式分解为(x+3)^26.平方差公式法:对于一个二次多项式,如果其形式符合平方差公式的形式,可以使用平方差公式进行因式分解。
例如,对于多项式4x^2-9,我们可以使用平方差公式进行因式分解,得到(2x-3)(2x+3)。
7.代入因式法:对于一个二次多项式,如果已知一根或两根的值,可以使用代入因式法进行因式分解。
例如,对于多项式x^2-5x+6,如果我们已经知道其中一根是2,可以使用代入因式法进行因式分解,得到(x-2)(x-3)。
8.辗转相除法:对于一个不是二次多项式的代数式,可以使用辗转相除法进行因式分解。
辗转相除法的思想是将一个代数式除以一个因子,得到一个商式和余式,然后再对商式进行继续因式分解,直到余式无法再进行因式分解为止。
因式分解的十二种途径1. 公因式法则:如果一个多项式中的每一项都有相同的因子,可以通过提取公因式进行因式分解。
2. 平方差公式:对于两个数的平方差,可以使用平方差公式进行因式分解,即a² - b² = (a+b)(a-b)。
3. 完全平方公式:对于一个完全平方的多项式,可以使用完全平方公式进行因式分解,即a² + 2ab + b² = (a+b)²。
4. 分组法则:对于一个多项式中含有四项以上的情况,可以使用分组法进行因式分解。
将多项式中的项进行分组,然后尝试提取每个组的公因式进行因式分解。
5. 同底数幂公式:对于同底数的几个幂相乘的情况,可以使用同底数幂公式进行因式分解,即a^m * a^n = a^(m+n)。
6. 因子分解法则:对于一个多项式,可以尝试将其写成一些因子的积的形式,从而进行因式分解。
7. 代数和几何图像法则:有时候可以通过对代数表达式进行几何图像的分析来找到因式分解的途径。
8. 次高次幂定理:对于二次及高次多项式,可以使用次高次幂定理进行因式分解,即ax^(n+1) + bx^n + cx^(n-1) + ... + k = 0。
9. 有理根定理:对于具有整数系数的多项式,可以使用有理根定理来寻找有理根,从而进行因式分解。
10. 组合方法:可以尝试将多项式分解为两个或多个组合项的乘积,然后再进一步进行因式分解。
11. 复根定理:对于具有实系数的多项式,可以使用复根定理来寻找复根,从而进行因式分解。
12. 分解定理:对于具有多项式系数的多项式,可以使用分解定理来将多项式分解为线性和二次因子的乘积。
这些是因式分解中常用的十二种途径,通过使用不同的方法,在不同的情况下,选择合适的途径可以更加高效地进行因式分解。
因式分解的十二种方法因式分解的十二种方法学习初中数学因式分解方程首要培养学习兴趣,并培养学习习惯;其次是多做题,熟练掌握;最后就是掌握好因式分解方程的常用方算法,与做题相结合,能够让自己更好的理解这些方算法。
接下来店铺为你带来因式分解方程的十二种方算法,希望对你有帮助。
因式分解方程是我们解决许多数学问题的有力工具。
接下来的内容是初二数学知识点之因式分解方程。
因式分解方程定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解方程(也叫作分解因式)。
分解因式与整式乘法为相反变形。
同时也是解一元二次方程中公式法的重要步骤1、因式分解方程与解高次方程有密切的关系。
对于一元一次方程和一元二次方程,初中已有相对固定和容易的方法。
在数学上可以证明,对于一元三次和一元四次方程,也有固定的公式可以求解。
只是因为公式过于复杂,在非专业领域没有介绍。
对于分解因式,三次多项式和四次多项式也有固定的分解方法,只是比较复杂。
对于五次以上的一般多项式,已经证明不能找到固定的因式分解方程法,五次以上的一元方程也没有固定解法。
2 、所有的三次和三次以上多项式都可以因式分解方程。
这看起来或许有点不可思议。
比如X^4+1,这是一个一元四次多项式,看起来似乎不能因式分解方程。
但是它的次数高于3,所以一定可以因式分解方程。
如果有兴趣,你也可以用待定系数法将其分解,只是分解出来的式子并不整洁。
3 、因式分解方程虽然没有固定方法,但是求两个多项式的公因式却有固定方法。
因式分解方程很多时候就是用来提公因式的。
寻找公因式可以用辗转相除法来求得。
标准的辗转相除技能对于中学生来说难度颇高,但是中学有时候要处理的多项式次数并不太高,所以反复利用多项式的除法也可以比较笨,但是有效地解决找公因式的问题。
方法因式分解方程没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意三原则1.分解要彻底(是否有公因式,是否可用公式)2.最后结果只有小括号3.最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1))4.最后结果每一项都为最简因式归纳方法:1.提公因式法。
2.公式法。
3.分组分解法。
4.凑数法。
[x^2+(a+b)x+ab=(x+a)(x+b)]5.组合分解法。
6.十字相乘法。
7.双十字相乘法。
8.配方法。
9.拆项补项法。
10.换元法。
11.长除法。
12.求根法。
13.图象法。
14.主元法。
15.待定系数法。
16.特殊值法。
17.因式定理法。
温馨提示:在高等数学上因式分解方程有一些重要结论,在初等数学层面上证明很困难,但是理解很容易。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的'性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解方程的一般步骤关于数学中因式分解方程的一般步骤内容学习,我们做下面的知识讲解。
因式分解方程的一般步骤如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。
因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解方程一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解方程,若题目没有明确指出在哪个范围内因式分解方程,应该是指在有理数范围内因式分解方程,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解方程的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解方程下面是对数学中因式分解方程内容的知识讲解,希望同学们认真学习。
因式分解方程因式分解方程定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解方程。
因式分解方程要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解方程与整式乘法的关系:m(a+b+c)公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
分解因式注意;①不准丢字母②不准丢常数项注意查项数③双重括号化成单括号④结果按数单字母单项式多项式顺序排列⑤相同因式写成幂的形式⑥首项负号放括号外⑦括号内同类项合并。
通过上面对因式分解方程内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解方程.因式分解方程的方算法多种多样,现总结如下:1、提公因算法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式算法是因为分解因式与整式乘算法有着互逆的关系,如果把乘算法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4b (2003南通市中考题)a +4ab+4b =(a+2b)3、分组分解算法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘算法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解方程为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5、配方算法对于那些不能利用公式算法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解方程.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项算法可以把多项式拆成若干部分,再用进行因式分解方程.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、换元算法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解方程,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8、求根算法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解方程为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除算法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9、图象算法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解方程为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解方程x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10、主元算法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解方程.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11、利用特殊值算法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解方程式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12、待定系数算法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解方程.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。