粉末冶金成型技术
- 格式:docx
- 大小:37.23 KB
- 文档页数:3
第5章粉末冶金特种成形技术5.1概述粉末的制备、成形和烧结是粉末冶金过程中的三个基本环节。
传统的粉末冶金成形通常是将需要成形的粉末装入钢模内,在压力机上通过冲头单向或双向施压而使其致密和成形,压机能力和压模的设计成为限制压件尺寸及形状的重要因素。
由于粉末与模壁的摩擦而使压力降低,使成形密度不均匀,限制了大型坯件的生产。
所以,传统的粉末冶金零件尺寸较小,单重较轻,形状也简单。
随着粉末冶金产品对现代科学技术发展的影响日益增加,对粉末冶金材料性能以及产品尺寸和形状提出了更高的要求,传统的钢模压成形难以适应需要。
为了解决上述问题,很多学者广泛地研究了各种非模压成形方法,相对于传统的模压成形,将后者称之为粉末冶金特种成形技术。
粉末冶金成形技术一直处于不断发展演化过程中,从传统的单向压制到双向压制,再到等静压成形,从冷等静压成形到热等静压成形,还出现了准等静压成形(包括陶粒压制、STAMP工艺、快速全向压制等)、温压成形、流动温压成形、高压温压成形、喷射成形、挤压成形、粉浆浇注成形、粉末轧制成形、粉末锻造成形、金属粉末注射成形、粉末电磁成形等特种成形技术。
有些技术既是粉末成形过程,也是烧结过程,如粉末热等静压成形、放电等离子烧结、爆炸烧结、选择性激光烧结等。
目前,现代粉末冶金成形技术正朝着高致密化、高性能化、高生产效率、低成本方向发展。
不同的特种成形方法具有不同的特点,应从坯件的性能、形状和尺寸三方面适应制品的特殊需要。
本章将对它们的原理、特点、工艺及应用等进行论述。
其中粉末喷射成形、注射成形分别在第4章与第8章中讨论,而放电等离子烧结、爆炸烧结、选择性激光烧结技术在“粉末冶金特种烧结技术”中讨论。
5.2 等静压成形(IP)等静压成形(Isostatic Pressing)是借助于高压泵的作用把流体介质(气体或液体)压入耐高压的钢质密封容器内,高压流体的静压力直接作用在弹性模套内的粉末上,粉末体在同一时间内在各个方向上均衡地受压而获得密度分布均匀和强度较高的压坯。
高密度粉末冶金成形方法研究及优化一、引言高密度粉末冶金成形技术是一种通过在粉末表面施加压力和温度实现金属材料成形的加工工艺。
该技术具有高效率、低成本、高精度、可逆性和可重复性等优点。
因此,在改进传统的金属成形过程以及开发新型金属材料时,高密度粉末冶金成形技术已成为一种备受关注的重要研究领域。
二、高密度粉末冶金成形方法的分类高密度粉末冶金成形技术根据成形前后粉末状况的变化,可分为以下几种方法:1. 等静压成形 (HIP)等静压成形是一种将高密度金属粉末放入成型模具中,先以低压力进行预压,随后在高温和高压力的条件下加以成形的加工方法。
等静压成形方法可以制造出具有高密度和高性能的复杂形状金属零件,如滚轮轴承、配气机构、燃气轮机叶片等等。
2. 烧结成型烧结成型是一种通过在制备过程中在粉末中添加一些粘结剂,使得粉末在高温条件下粘结在一起,然后进行成形的方法。
这种方法可以制造出高精度、高可靠性和抗热性能强的机械结构件和高强度、低密度的材料。
3. 挤压成形挤压成形是一种通过将金属粉末放入旋转式模具中,在模具两端施加压力来实现成形的加工方法。
这种方法较其他成形方式更为简单,适用于制作一些规则结构的中间件、链接件和管道接头。
4. 等离子粉末成形等离子粉末成形是一种将金属粉末喷射到等离子体火焰中进行高温加热,通过表面张力形成液态金属,并恰当地加压形成零件的一种成形工艺。
等离子粉末成形方法操作简单、可加工出具有高密度、高强度和高耐磨性的金属零件。
三、高密度粉末冶金成形方法的优化为了进一步提高高密度粉末冶金成形技术的加工效率、成形质量和材料性能,需要进行相应的优化。
优化方案一:材料的合理选择选择合适的材料是决定高密度粉末冶金成形成功与否的关键因素之一。
高密度粉末冶金成形的理想材料是那些粒度大小适中、形状均匀、流动性能好而且作为粉末冶金材料的化学成分方面相同或相似的金属粉末。
因此,选择质量优良、粘度适中的金属粉末是高密度粉末冶金成形过程中一个非常重要的环节。
DEFORM粉末冶金成形工艺数值模拟技术应用安世亚太公司晏建军1 前言金属粉末冶金成形已应用于多种工业机械零部件的成形工艺,包括齿轮、轮盘、汽车连杆等。
粉末冶金成形是将松散的粉末体加工成具有一定尺寸、形状以及一定密度和强度的坯块。
传统的成形方法有模压成形、等静压成形、挤压成形、轧制成形、注浆成形和热压铸成形等。
DEFORM金属粉末成形技术可实现粉末成形工艺过程的计算机数值模拟,预测粉末成形缺陷,优化加工工艺参数。
2 粉末冶金成形工艺优势及面临问题从制作机械零部件方面来看,粉末冶金法制作机械零部件是一种少切削、无切削工艺,可以大量减少切削加工量而节省机床,节约金属材料,提高劳动生产率。
用金属粉末冶金法制作机械结构零件时,比用其他加工方法的材料利用率高、能耗低。
粉末成形工艺过程的实现,涉及到工艺参数及模具结构设计等种种因素,粉末的初始装填密度、压机的锻压速度、压制力等对粉末冶金零件的成形形状、压实密度分布、成形应力应变等具有难以预测的影响,而成形零件的锻压质量又影响到产品的机械性能和使用寿命,因此如何更科学更准确地评估压实成形质量,是汽车齿轮、连杆等金属粉末加工产品的重要方面。
DEFORM塑性成形分析程度的金属粉末成形功能可预测成形过程中产品可能出现的缺陷、分析成形尺寸精度、各部位密度分布等现象,优化成形工艺参数,缩短研发周期。
3 DEFORM粉末冶金成形工艺方案的工业应用粉末冶金成形工艺模拟软件用于精确预测产品最终形状及机械加工件的密度分布,DEFORM数值模拟技术已成为产品及加工工艺设计和优化的有力工具。
在数值模拟计算系统中,可通过快速仿真分析,获得粉末成形模具粉料填充、材料流动、成形吨位、温度场分布、应力应变、能量及裂纹等信息,同时,该数值仿真系统可对粉末成形后的产品进行烧结工艺分析,预测烧结后的产品体积变化及内应力、密度,指导成形模具和工艺参数的优化设计。
在粉末冶金成形领域已获得良好的工业化应用。
粉末冶金工艺粉末冶金工艺是一种技术和工艺,它利用粉末来形成机械零件和金属结构件。
它可以制造出几乎所有形状、颜色和材料的零件,它的灵活性和可编程性使它成为制造业的有力工具。
粉末冶金工艺已成为金属制造业的主要技术之一,它可以制造出一些高性能的零件和结构件。
粉末冶金技术是一种三维成形技术,可以不需要加工就可以制造出一些复杂的零件。
粉末冶金技术的基本原理是在一定温度和压力下,利用粉末原料经过压实、加热、浸渍等工艺后,制造出机械零件和金属结构件。
这种技术可以制造出一些高性能的零件,这些零件的耐磨性和抗疲劳强度都可以达到很高的水平。
粉末冶金工艺可以分为坯料制备、热成形和表面处理三个主要步骤。
坯料制备是采用精细粉末形成坯料,一般可以采用烧结、压实、改性和表面处理等方法。
热成形是采用凝固剂进行固化,可以采用热固性成形、热压成形或真空固相烧结等方法。
表面处理是通过润滑剂或清洁剂对零件进行清洗、表面处理或润滑,以提高零件的抗腐蚀性和耐磨性。
由于粉末冶金工艺的多样性,可以制造出各种复杂的零件,由于它可以得到较高的精度和阻力,可以用于制造一些高端的零件和部件,如汽车的悬挂零件、飞机的机身零件和发动机部分等。
此外,由于它的可编程性,可以制造出精度更高的零件,用于生产电子和机械设备。
粉末冶金工艺目前已发展成为一种重要的金属加工技术,可以制造出一些高性能的零件和结构件,可以应用到汽车、航空航天、电子电气等众多行业中。
因此,粉末冶金技术受到了越来越多的关注,将在未来发挥更大的作用。
综上所述,粉末冶金工艺是一种重要的金属加工技术,它可以制造出精度更高的零件,用于制造一些高端的零件和部件,是未来金属加工技术的重要方向。
粉末冶金技术的发展有着重要的意义,有助于推动制造业的发展和提高产品的质量,因此,未来粉末冶金技术还将发挥着更大的作用。
先进金属复合材料成形技术
先进金属复合材料成形技术是指利用先进的工艺和设备对金属复合材料进行成形加工的技术。
金属复合材料是由金属基体和增强材料(如纤维增强材料)组成的复合材料。
相比于传统的单一金属材料,金属复合材料具有更高的强度、刚度和耐热性能。
然而,由于其复杂的结构和成分,金属复合材料的成形加工相对困难。
先进金属复合材料成形技术主要包括以下几个方面:
1. 粉末冶金成形技术:通过将金属粉末与增强材料混合,然后经过高温和高压的成形过程,使其熔合并固化成型。
这种成形技术适用于复杂形状和大尺寸的金属复合材料制品。
2. 金属复合材料锻造技术:利用锻机对金属复合材料进行锻造成型。
锻造可以改变材料的内部组织结构和形状,从而提高其力学性能和耐热性能。
3. 金属复合材料挤压技术:通过在金属复合材料中施加高压,使其通过模具的通道流动并成形。
挤压成形技术适用于长条形的金属复合材料制品。
4. 金属复合材料注射成型技术:利用注射机将金属复合材料融化后注入模具中进行成型。
注射成型技术可以制造出高精度和复杂形状的金属复合材料制品。
以上是几种常见的先进金属复合材料成形技术,通过这些技术的应用,可以制造出更高性能、更复杂的金属复合材料制品,满足不同领域对于材料强度和耐热性能的要求。
粉末冶金成形技术总则✶粉末成形技术就是将预混合好的粉末填入设计好的模腔中,通过压机施加一定的压力使之形成所设计的形状的产品,然后由压机将产品脱出模腔的过程。
✶与之相关的有以下几个方面1.粉末制造及粉末混合2.模具3.成形压机4.模架5.模具的组立粉末方面与模具方面 这里不作具体介绍成形压机✶成形压机中模面分两种形式:1.中模面浮动2.中模面固定✶成形压机中模面浮动形式分两种类型:1.脱模位置固定,成形位置可以调整2.成形位置固定,脱模位置可以调整一般,压力吨位较小的采用中模面固定类型,压力吨位较大的采用中模面浮动。
成形过程中压机运转的几个阶段✶1.充填阶段:从脱模结束后开始至中模面上升到最高点结束,压机运行的角度从270度开始至360度左右结束;✶2.加压阶段:是粉末在模腔中受压成形阶段。
一般有上模加压和中模面下降(即下压)加压,有时还有最终加压,即在下压结束后上冲再次加压,压机的运行角度从120度左右开始至180度结束;✶3.脱模阶段:此过程是产品由模腔被顶出的过程。
压机的运行角度由180度开始至270度结束中模面浮动的两种类型的区别:1.脱模位置固定,成形位置可以调整的形式以脱模下死点作为成形压机的基准点,基准点位置的角度270度。
充填的变化只能改变脱模的行程量和加压的行程量,对最终的脱模位置点不可改变,下压的变化不改变充填量;2.脱模位置浮动,成形位置固定的形式以压制过程结束时作为成形压机的基准点,基准点的位置在180度。
充填的变化不光改变脱模行程量和加压行程量,还将改变脱模位置点,下压的变化会改变充填量。
模架✶模架是模具的执行者,在成形过程中模具通过模架的动作从而产生各个冲子之间的相对运动,挤压模腔中的粉末,使之成形成所设定的形状。
✶从模架结构方面来分:有上一下一直至上二下三机构,主要有上模板、中模板、第一浮动板、第二浮动板、固定板和芯棒板组成。
上模板与机台的上加压部连接,芯棒板与机台的主轴连接,芯棒板通过四根导柱与中模板连成一个整体。
粉末冶金成型技术
Ⅰ、粉末冶金成型技术
1、粉末冶金成型技术(Powder Metallurgy)是一种较新的金属制造工艺,它通过将金属粉末或粉体团结成模具内所需形状,从而生产出广
泛应用的金属零件。
其原理是金属粉末经高压热压成型而形成零件。
2、粉末冶金成型技术能够制造出具有较高精度、更小体积的零件,是
传统金属制造技术无法达到的高精度和大精度的紧凑零件。
同时,由
于具有良好的耐磨性,它还可以制造可耐高速摩擦的零件。
3、粉末冶金成型技术使用金属粉末来制造零件,因此可以制造出大规
模和复杂零件。
它制造出的产品可以达到更高的均匀度、更高的精度
和更强的密度,这些特点比其他技术都有优势。
II、工艺流程
1、把金属粉末混合成易流动的糊状物:在粉末冶金成型过程中,首先
将金属粉末混合成易流动的糊状物,然后将其成型成所需的各类结构。
2、金属流成型:将调制好的金属流放入到模具中,然后将其投射成型,采用精确的高压成型,以形成模具内期望的形状。
3、表面处理:一些金属零件可能需要再进行表面处理,比如镀铬、电镀和热处理,以满足零件性能的需求,增强其耐蚀性、耐磨性等。
4、热处理:热处理是利用复杂的热处理技术,通过改变零件的温度来改变其组织和性能,以获得期望的性能和表面光洁度。
III、优点
1、体积小:由于采用精密模具来进行流体压力成型,可以制造出具有较小体积和精确尺寸的部件;
2、准确精度:粉末冶金成型可以根据模具进行长宽比、曲率与折弯处理,以达到较高的精度,组装时也相对容易;
3、节能降耗:比传统金属加工手段更加节省能源耗费,而且粉末冶金可以减少冶炼及清理成本,从而降低成本;
4、结构复杂:粉末冶金制造的零件可以根据设计形状进行复杂的结构设计,可在一个工件上制造气隙空间及护套,从而更加省时。
IV、缺点
1、成本高:粉末冶金技术的设备耗费较高,使得生产成本比其他工艺高很多;
2、尺寸大小限制:模具的设计尺寸受生产设备的尺寸限制,影响着大小尺寸和深度尺寸的生产;
3、生产周期长:由于加工方法比其他工艺复杂,因此所需的生产周期也变得更长;
4、表面光洁度差:因为运用压力成型,而非切削加工,因此物件的表面光洁度不是非常理想。