废水脱氮除磷工艺
- 格式:docx
- 大小:15.09 KB
- 文档页数:1
污水处理中的脱氮除磷工艺摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。
关键词:脱氮除磷;机理;工艺1 前言城市污水中的氮、磷主要来自生活污水和部分工业废水。
氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。
上述危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生活水体的提高和环境的恶化,对水质的要求也越来越高。
为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。
2 生物脱氮原理【1】一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。
在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。
第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。
为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。
第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。
反应方程式如下:( 1) 硝化反应:硝化反应总反应式为:( 2) 反硝化反应:另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。
即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。
反应式为:NH4+NO2→N2+2H2O3 生物除磷原理【1】所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。
而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。
污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。
常用的除磷方法有化学法和生物法。
A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。
化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。
整个处理过程分为厌氧放磷和好氧吸磷两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。
这就是“厌氧放磷”。
聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。
进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。
这就是“好氧吸磷”。
在此阶段,活性污泥不断增殖。
除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。
脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。
它们均来源于人们食物中的蛋白质。
脱氮的方法有化学法和生物法两大类。
A、化学法脱氮:包括氨吸收法和加氯法。
a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。
通过适当控制加氯量,可以完全除去水中的氨氮。
为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。
B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
污水处理系统中的脱氮除磷工艺流程摘要:在新时期,社会经济发展加速了城市化进程,良好的污水处理对于城市的正常运作至关重要,必须优先考虑。
生物化学装置通常由有氧盆地、厌氧盆地回收多种组成,结合相应系统,可提供良好的去污和去磷酸化。
关键词:污水处理系统;脱氮除磷;工艺流程;前言:随着污水处理效率的提高,污水设施的质量和节能要求很难根据污水设施的管理和维护经验来适应污水设施的快速发展。
城市污水系统技术发展的趋势之一是从经验评估转变为定量分析。
根据对污水处理的理解,设计和使用积极污水处理的概念肯定会从简单的使用和规格经验转变为使用数学模型来指导建筑和生产。
一、污水处理系统中的脱氮除磷现状根据近年来的环境质量报告,水中的主要污染物是含氮的有机物质,这些污染物加剧了与缺水有关的争议,并对可持续发展战略的实施产生了严重的负面影响。
由于化学和物理化学方法成本高,易受二次环境污染,在中国,积极围攻的数学模型的应用必然会提高建筑的设计、运营和管理水平。
废水的生物酸化和磷酸化是成本效益高的处理方法,它是由美国和南非的水处理专家在代根据化学、生物权利具有广泛应用、投资和使用成本低、稳定效果强、综合处理能力强等优点分析了城市废水中氮磷暴露增加的途径和方向。
废水溶解和磷酸化通过角色发展方向;随着废水总量的增加和广泛使用,合成洗涤剂和杀虫剂中的营养物质浓度继续增加,氮和磷是水的主要原因之一。
催化和生物研究提出的。
微生物脱氮和脱磷酸技术可根据系统中的微生物状态分为活性沉积物和生物膜技术。
硝化、反硝酸盐、磷释放和磷酸化是通过创造有氧物质来实现的。
在实际工程设计中,根据压力水和其他实际条件,生物柴油和脱磷酸过程可分为以下水平:首先旨在去除有机物、氨和氮的过程。
可以使用仿生工艺、仿生工艺和传统的活化工艺,但只能使用缓慢的活化工艺。
其次,是去除有机物和整个氮包括有机氮、氨和硝酸盐的工艺。
要去除整个氮必须使用仿生工艺。
需要在反应池前添加一个缺氧段,以便在良好氧段中含有硝酸盐的混合物返回缺氧段,硝酸盐在缺氧条件下转化为氮气。
A2-O除磷脱氮工艺设计计算(上)A2/O除磷脱氮工艺设计计算(上)一、引言随着城市化进程的加速以及水资源紧缺问题的愈发突出,废水处理技术的研究和应用变得日益重要。
磷和氮是废水中主要的污染物之一,对水环境和生态系统造成了严重的影响。
因此,除磷脱氮工艺的设计和计算成为了废水处理领域的重点研究。
A2/O工艺是一种常见的除磷脱氮工艺,其优点在于除磷效果好、占地面积小以及运行稳定等。
本文将重点介绍A2/O除磷脱氮工艺的设计和计算。
二、A2/O工艺简介A2/O工艺是Anoxic/Anaerobic/Oxic工艺的简称。
其处理流程主要包括缺氧池(Anoxic Tank)、厌氧池(Anaerobic Tank)和好氧池(Oxic Tank)三个单元。
整个工艺流程分为两个阶段进行:第一阶段为除磷阶段,即缺氧池和厌氧池对废水进行预处理,使磷酸盐转化为可沉淀的磷酸钙;第二阶段为脱氮阶段,即好氧池中利用硝化反应将废水中的氨氮转化为硝酸盐,并通过反硝化反应将硝酸盐转化为氮气释放到大气中。
三、设计和计算方法1. 初始数据收集在进行A2/O工艺设计和计算之前,需要收集一些初始数据。
包括废水的流量、COD(化学需氧量)浓度、总氮浓度和总磷浓度等参数。
这些数据将用于后续的工艺设计和计算。
2. 缺氧池尺寸计算缺氧池的设计是为了提供合适的环境,使得磷酸钙形成并沉淀。
缺氧池的尺寸可以通过以下公式进行计算:V_anoxic = Q * t_anoxic其中,V_anoxic是缺氧池的体积,Q是废水的流量,t_anoxic是废水在缺氧池内停留的时间。
3. 厌氧池尺寸计算厌氧池主要用于实施碳源回流,提供反硝化所需的有机碳。
厌氧池的尺寸计算可以通过以下公式进行:V_anaerobic = Q * t_anaerobic其中,V_anaerobic是厌氧池的体积,t_anaerobic是废水在厌氧池内停留的时间。
4. 好氧池尺寸计算好氧池是氨氮通过硝化反应转化为硝酸盐的地方。
脱氮除磷的工艺选择1、生物脱氮技术(1)传统脱氮工艺(巴茨三级活性污泥法)活性污泥法脱氮的传统工艺是由巴茨开创的三级活性污泥法流程,它是以氨化、硝化和反硝化3项反应过程为基础建立的。
工艺流程如下:第一级曝气池为一般的二级处理曝气池,主要去除BOD、COD,使有机氮转化形成氨氮,即完成氨化过程。
经过沉淀后,污水进入硝化池。
第二级硝化曝气池使氨氮转化为硝态氮,需要投碱,以防pH值下降。
第三级为反硝化反应器,缺氧条件下,硝态氮转化为N2,这一级采取厌氧—缺氧交替的运行方式。
碳源即可投加CH3OH,亦可引原污水作为碳源。
这种系统的优点是有机物降解菌、硝化菌、反硝化菌,分别在各自反应器内生长增殖,环境条件适宜,反应速度快且彻底。
但处理设备多,造价高,管理不够方便。
因此在实践中还使用两级脱氮系统,将BOD去除和硝化两道反应过程放在统一的反应器内进行。
(2)缺氧—好氧活性污泥法脱氮系统(A/O法)这套系统是将反硝化反应器放在系统之首,故又称前置反硝化生物脱氮系统,是目前采用比较广泛的工艺。
设内循环系统,向前置的反硝化池回流硝化液是本工艺的一项特征。
反硝化反应产生的碱度可补偿硝化反应消耗的碱度的一半左右。
因此,对含氮浓度不高的废水可不必另行投碱以调节pH值。
此外,硝化曝气池在后,使反硝化残留的有机物得以进一步去除,提高了处理水水质,而且无需增建后曝气池。
由于流程比较简单,装置少,无需外加碳源,因此,本工艺建设费和运行费均较低。
本工艺主要不足之处是该流程的处理水是来自硝化反应器,因此在处理水中含有一定浓度的硝酸盐,如果沉淀池运行不当,在沉淀池中也会发生反硝化作用,使污泥上浮,水质恶化。
另外,内循环液来自硝化池,含有一定的溶解氧,使反硝化段难于保持理想的缺氧状态,影响反硝化进程,一般脱氮率很难达到90%。
2、生物除磷技术(1)弗斯特里普除磷工艺这项工艺将生物除磷与化学除磷相结合,具有很高的除磷效率。
工艺流程如图:工艺特点:①本法是生物除磷与化学除磷的结合,效果良好,处理水中含磷量一般都低于1mg/L。
污水处理脱氮除磷工艺介绍及对比分析2020年9月6日星期日目录一、生物脱氮 (3)1、硝化过程 (3)2、反硝化过程 (4)3、生物脱氮的基本条件 (5)4、废水生物脱氮处理方法 (6)二、化学脱氮 (7)1、吹脱法 (7)2、化学沉淀法(磷酸铵镁沉淀法) (8)3、低浓度氨氮工业废水处理技术 (9)4、不同浓度工业含氨氮废水的处理方法比较 (11)三、化学法除磷 (11)1、石灰除磷 (12)2、铝盐除磷 (12)3、铁盐除磷 (13)四、生物除磷 (13)1、生物除磷的原理 (13)2、生物除磷的影响因素: (14)3、废水生物除磷的方法有哪些 (15)4、除磷设施运行管理的注意事项 (15)一、生物脱氮脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。
污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。
含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。
硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”;反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。
含氮有机化合物最终转化为氮气,从污水中去除。
1、硝化过程硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。
这两类细菌统称为硝化菌,这些细菌所利用的碳源是CO32-、HCO3-和CO2等无机碳。
第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。
这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。
氧化1g氨氮大约需要消耗4.3gO2和8.64gHCO3-(相当于7.14gCaCO3碱度)。
硝化过程的影响因素:1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。
废水脱氮除磷工艺
废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。
以下是常见的废水脱氮除磷工艺:
1.生物脱氮除磷工艺:
生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。
这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。
生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。
2.化学脱氮除磷工艺:
化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。
这一过程通常被称为磷酸盐的化学沉淀。
硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。
3.物理化学脱氮除磷工艺:
生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。
膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。
4.湿地处理:
人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。
自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。