【新版】新人教版六年级下册数学知识点
- 格式:docx
- 大小:54.62 KB
- 文档页数:11
人教版六年级下册数学知识点归纳一、负数1. 负数的认识比 0 小的数叫负数,负数前面通常有“-”号。
-5 就表示比 0 还小 5 的数。
2. 正数和负数的意义正数和负数可以表示两种相反意义的量。
像收入 5 元用+5 表示,支出 3 元就用-3 表示。
二、百分数(二)1. 折扣几折就是十分之几,也就是百分之几十。
比如打八折,就是按原价的 80%出售。
2. 成数表示一个数是另一个数的十分之几。
农业收成经常用成数,像“今年小麦增产二成”,就是说今年小麦产量比去年多 20%。
3. 税率应纳税额与各种收入的比率叫税率。
咱得依法纳税,为国家做贡献!4. 利率存入银行的钱叫本金,取款时银行多支付的钱叫利息。
利息与本金的比值叫利率。
三、圆柱与圆锥1. 圆柱圆柱有两个底面和一个侧面,底面是圆,侧面是曲面。
圆柱的表面积 = 侧面积 + 两个底面积。
圆柱的体积 = 底面积×高。
2. 圆锥圆锥只有一个底面,侧面是曲面,展开是个扇形。
圆锥的体积 = 1/3×底面积×高。
四、比例1. 比例的意义表示两个比相等的式子叫比例。
2. 比例的基本性质在比例里,两个内项的积等于两个外项的积。
3. 解比例根据比例的基本性质,求比例中的未知项,叫解比例。
4. 正比例和反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就成正比例关系。
如果这两种量中相对应的两个数的乘积一定,这两种量就成反比例关系。
五、数学广角——鸽巢问题把 n+1 个物体放进 n 个抽屉里,不管怎么放,总有一个抽屉里至少放进 2 个物体。
咋样,这些知识点是不是都还挺有趣的?好好学,数学可好玩啦!。
人教版小学六年级数学下册知识点_数学知识点人教版小学六年级数学下册知识点一:比例1.理解比例的意义和基本性质,会解比例。
2.理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3.认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4.了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5.认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6.渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
7.比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:8.组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9.比例的性质:在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1。
5=y×1。
2可知x:y=1.2:1.5。
10.解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
11.正比例和反比例:(1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④y=5x,y和x成正比例,因为:y÷x=5(一定)。
人教版新课标六年级数学下册重点知识归纳第一单元:负数1.(1)正、负数的读写方法:○1写正数时,加“+”号或省略“+”号两种形式都可以,但是读正数时,加“+”的,一定要读出“正”字;省略“+”号的,这个“正”字也要省略不读。
○2写负数时,一定要写出“一”号,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数,它是正数与负数的分界点。
2.正、负数不能凭正、负号进行区分,比如“+(一3)”是一个负数,而一(一3)却是一个正数。
3.能表示出正数、0、负数的直线,我们把它叫做数轴。
4.(1)数轴的概念:规定了原点、正方向和单位长度的直线叫做数轴。
(2)温度计也可以看作是一数轴。
5.(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)所有的负数都在0的左边,即负数都比0小;所有的正数都在0的右边,即正数都比0大。
因此,负数都比正数小。
(3)比较两个负数的大小,可以先比较与其对应的两个正数的大小,对应的正数大的那个负数反而小。
6.温馨提示:水结冰时的温度是0摄氏度,0在这里的意义不是表示“没有”,而是一个具体的数。
7.温馨提示:在用正负数表示具有相反意义的量时,要先规定哪个量为正(或负)。
如果上升用正数表示,那么下降一定用负数表示。
8.负数与正数相加,如果负数中负号后面的数比正数大,那么得数为负数,式中负号后面的数减去正数得几,结果就是负几。
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
小学六年级数学下册主要包括了数与代数、图形与空间、统计与概率三个部分。
以下是这些知识点的详细介绍:一、数与代数1.小数的认识:小数的定义、小数点的位置、小数和分数的关系、小数的大小比较、小数的运算。
2.分数的认识:分数的定义、分数的表示、分数相等的判断、分数的比较、分数的简化和扩展、分数的运算。
3.百分数的认识:百分数的定义、百分数的表示、百分数转换为小数和分数、小数和分数转换为百分数、百分数的运算。
4.等式与不等式:等式的概念、等式的性质、等式两边加减相等、等式两边乘除相等、等式的应用、不等式的概念、不等式的性质、不等式的解集。
5.算术的四则运算:加法、减法、乘法、除法的计算方法、运算法则、多位数的加减法、乘法口诀、倍数和约数。
二、图形与空间1.多边形的认识:图形的种类、多边形的定义和特点、几何图形的分类、平行四边形、三角形、圆等图形的性质。
2.直角和特殊角:直角的认识、直角和其他角度的比较、锐角和钝角、特殊角度的性质。
3.四面体和正方体:四面体和正方体的定义、四面体和正方体的特点、四面体和正方体的性质。
4.平面镜像和轴对称:平面镜像的概念、轴对称的概念、平面镜像和轴对称的性质、平面镜像和轴对称的应用。
三、统计与概率1.图表和统计:图表的含义和作用、直方图、折线图、饼图、柱状图等图表的绘制和分析、数据的统计和分析。
2.概率的认识:概率的定义、事件的概念、常见的概率问题、取球和掷骰子等概率实验。
3.常见的计数方法:组合计数法、排列计数法、计算方法的应用。
以上就是人教版小学六年级数学下册全册概念知识点的主要内容,每个知识点都需要学生进行理解和掌握,通过课堂学习、练习题以及实际应用等方式加深对知识点的理解和记忆。
人教版六年级下册数学总结知识点
1. 负数:了解负数的概念,知道负数在实际生活中的应用,如温度的表示。
理解负数的意义,掌握负数与正数的关系。
2. 圆柱与圆锥:掌握圆柱和圆锥的基本性质,包括它们的表面积和体积的计算方法。
理解圆柱和圆锥的侧面展开图,并能进行相关的计算。
3. 比例:理解比例的概念,掌握比例的基本性质。
能运用比例解决实际问题,如比例尺的应用。
4. 正比例与反比例:理解正比例和反比例的概念,知道它们在实际生活中的应用。
掌握正比例和反比例函数的图像特点。
5. 统计:了解统计的基本概念和方法,如数据的收集、整理和分析。
掌握绘制条形统计图和折线统计图的方法,并能根据统计图进行简单的数据分析。
6. 数学广角:了解鸽巢原理,知道它在解决实际问题中的应用。
通过具体的例子,理解鸽巢原理的基本思想。
7. 整理和复习:回顾和整理本学期所学的知识,形成知识网络。
通过练习和复习,巩固所学知识,提高解题能力。
以上是人教版六年级下册数学的主要知识点。
在学习过程中,要注重理解基本概念,掌握基本方法,并能运用所学知识解决实际问题。
同时,要注重培养自己的数学思维能力和创新能力。
六年级数学下册知识点归纳(人教版)下面是人教版六年级数学下册的主要知识点归纳:
1. 分数和有理数
- 分数的概念及表示方法
- 分数的比较与排序
- 分数的加减法
- 分数的乘除法
- 分数的化简与约分
- 分数的整数部分和小数部分
2. 数据的分析与统计
- 读取和解读统计图表(条形图、折线图等)
- 根据统计图表回答问题
- 数据的整理和分类
- 数据的计算和分析
- 概率的简单理解(可能性大小)
3. 平面图形的认识和计算
- 图形的种类及属性(三角形、四边形、多边形等)
- 图形的边数、顶点数和角数的关系
- 图形的画法和计算
- 图形的面积和计算
4. 空间与立体图形
- 立体图形的分类和特点(长方体、正方体、圆柱体、圆锥体、测量体等)
- 立体图形的展开图和表面积的计算
- 立体体积的计算
- 空间方位的认识和描述
5. 长度、质量和时间的计量
- 长度的换算(厘米、分米、米等)
- 质量的换算(克、千克等)
- 时间的读写和计算(小时、分钟、秒等)
- 带有两个计量单位的问题
6. 两位数和三位数的整数计算
- 两位数和三位数的加减法
- 两位数和三位数的乘法
- 两位数和三位数的除法
- 四则运算的综合应用
这些知识点是六年级数学下册的主要内容,掌握了这些知识点,就能够进行相应的数学运算和问题解决。
六年级人教版数学下知识点一、四则运算1. 加法:加法是指将两个数值进行相加的运算。
例如:2 + 3 = 5。
2. 减法:减法是指从一个数值中减去另一个数值的运算。
例如:5 - 3 = 2。
3. 乘法:乘法是指将两个数值进行相乘的运算。
例如:2 × 3 = 6。
4. 除法:除法是指将一个数值分成若干等份的运算。
例如:6 ÷2 = 3。
二、整数和小数1. 整数:整数是指没有小数部分的数字,可以是正数、负数或零。
例如:-3、0、5等。
2. 小数:小数是指有小数点的数字,可以是正数或负数。
例如:0.5、-1.25等。
三、分数1. 分子和分母:分数由分子和分母两部分组成,分子表示被分的份数,分母表示分成的总份数。
例如:1/2,其中1为分子,2为分母。
2. 真分数和带分数:当分子小于分母时,分数称为真分数;当分子大于或等于分母时,分数称为带分数。
例如:2/3为真分数,3/2为带分数。
四、百分数1. 百分数与百分数的转化:百分数是指以百分号(%)表示的分数,表示百分数时,分子表示部分,分母表示整体。
例如:75%表示75/100,0.5表示50%。
2. 百分数与小数的转化:将百分数转化为小数时,将百分数去掉百分号,并除以100;将小数转化为百分数时,将小数乘以100并加上百分号。
例如:75% = 0.75,0.5 = 50%。
五、单位换算1. 长度单位换算:常用的长度单位有米(m)、分米(dm)、厘米(cm)和毫米(mm)等。
例如:1米 = 100厘米,1分米 =10厘米。
2. 容量单位换算:常用的容量单位有升(L)、毫升(mL)等。
例如:1升 = 1000毫升。
3. 时间单位换算:常用的时间单位有秒(s)、分钟(min)和小时(h)等。
例如:1小时 = 60分钟,1分钟 = 60秒。
六、图形的认识1. 四边形:四边形是指有四条边的图形,常见的四边形有正方形、长方形、菱形和梯形等。
2. 三角形:三角形是指有三条边的图形,根据边长和角度的不同,三角形又可以分为等边三角形、等腰三角形和普通三角形等。
六年级数学下册(人教版)全册笔记超详细第一章有理数
1.1 正数与负数
- 正数:大于0的数,例如1、2、3等
- 负数:小于0的数,例如-1、-2、-3等
- 零:等于0的数
1.2 有理数的比较
- 有理数可以通过大小进行比较,大小两者关系如下:
- 正数 > 零 > 负数
- 绝对值大的数较小
- 绝对值相等时,正数较大
1.3 有理数的四则运算
- 加法:
- 同号相加:保留符号,绝对值相加
- 异号相加:符号取绝对值大的数,绝对值相减
- 减法:
- 减去一个数等于加上这个数的相反数
- 乘法:
- 同号相乘为正,异号相乘为负
- 除法:
- 除以一个非零数等于乘以这个数的倒数
1.4 有理数的应用
- 有理数在日常生活中的应用很广泛,例如温度的正负、海拔的正负等。
第二章几何图形
2.1 直角三角形
- 直角三角形有一个角度为90度的直角,其他两个角度之和为90度。
- 直角三角形的两条直角边可以通过勾股定理计算斜边的长度。
2.2 平行四边形
- 平行四边形的对边是平行线段,对角线相等且平分。
2.3 等边三角形
- 等边三角形三条边的边长相等。
第三章数据的整理与描述
3.1 表格的制作和填写
- 制作表格时,要保证表格清晰易读,标题明确。
3.2 概率与统计
- 概率是指某个事件在相同条件下重复进行多次试验时发生的
次数的频率。
- 统计是对收集到的数据进行整理和描述,包括频数、频率、中位数等。
以上是六年级数学下册(人教版)全册的超详细笔记,希望对您有帮助!。
完整版)人教版六年级数学下册知识点归纳人教版六年级数学下册知识点归纳第一部分:数与代数一、数的认识1.整数【正数、零、负数】自然数是整数的一部分,用来表示物体的数量,包括0、1、2、3……。
整数可以是正数、零或负数。
2.小数【有限小数、无限小数】小数是分数的一种表示形式,分母是10、100、1000……的分数都可以用小数表示。
小数的大小可以通过比较整数部分和小数部分的大小来确定。
二、分数的认识1.分数是将单位“1”平均分成若干份,表示其中一份或几份的数。
分数可以表示两个数相除的商。
2.分数可以分为真分数和假分数。
真分数的分子小于分母,表示的数值小于1.以上是数学下册中数与代数部分的知识点归纳。
在数的认识方面,自然数是整数的一部分,而小数是分数的一种表示形式。
在分数的认识方面,分数可以表示两个数相除的商,真分数的分子小于分母,表示的数值小于1.六、当分子大于或等于分母时,我们称其为假分数。
假分数的值大于或等于1.七、如果分数的分子和分母没有公因数,那么我们称其为最简分数。
八、分数有一个基本性质:如果我们同时乘或除分数的分子和分母,那么分数的值不会改变,除非我们乘或除以0.九、小数和分数有相同的基本性质。
我们可以使用分数的基本性质来通分和约分。
1、百分数【税率、利息、折扣、成数】一、当一个数表示为另一个数的百分之几时,我们称其为百分数。
百分数也可以叫做百分率或百分比,通常用符号“%”表示。
二、分数和百分数有以下不同和相同之处:不同点:分数可以表示具体的数量并且可以有单位名称。
百分数不能表示具体的数量,也不能有单位名称。
相同点:分数和百分数都可以表示两个数之间的关系。
三、分数、小数和百分数之间可以互相转化。
1.将分数转化为小数,我们可以将分数的分子除以分母。
2.将小数转化为分数,我们可以将小数的分母改为10、100、1000等,然后约分。
3.将小数转化为百分数,我们可以将小数点向右移动两位,然后加上百分号。
新人教版六年级数学下册单元知识点归纳整理第一单元负数1.负数:在数轴线上;负数都在0的(左侧);所有的负数都比自然数小。
负数用负号“-”标记;如-2;-5.33;-45;-0.6等。
2.正数:大于0的数叫正数(不包括0);数轴上0(右边)的数叫做正数若一个数大于零(>0);则称它是一个正数。
正数的前面可以加上正号“+”来表示。
正数有(无数个);其中有(正整数;正分数和正小数)。
3. (0)既不是正数;也不是负数;它是正、负数的界限。
所有的负数都在0的(左边);负数都小于0;正数都大于0;负数都比正数(小)。
第二单元圆柱和圆锥1、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高。
2、圆柱的高:两个底面之间的距离叫做高。
3、圆柱的侧面展开图:当沿高展开时展开图是(长方形);这个长方形的长等于(圆柱的底面周长);长方形的宽等于(圆柱的高)。
这个长方形的面积等于(圆柱的侧面积);因为长方形面积=长×宽;所以圆柱的侧面积=底面周长×高当底面周长和高相等时;沿高展开图是(正方形);当不沿高展开时展开图是(平行四边形)。
4、圆柱的侧面积:圆柱的侧面积=底面的周长×高;用字母表示为:S侧=Ch。
h=S侧÷C C= S侧÷hS侧=∏dh=2∏rh5、圆柱的表面积:圆柱的表面积=侧面积+底面积×2。
即S表= S侧+ S底×2=Ch+∏(C÷∏÷2)²×2=∏dh+∏(d÷2) ²×2=2∏rh+∏r²×2(计算时最好分步使用公式;以免出现计算错误。
)6、圆柱表面积在实际中的应用:无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类7、圆柱的体积:V=Sh h=V÷S S=V÷hV=∏r²h (已知r)V=∏(d÷2) ²h (已知d)V=∏(C÷∏÷2)²h (已知C)8、把一个圆柱体切分成若干份拼成一个近似的长方体;在这个过程中;形状发生了变化;体积没有发生变化。
六年级下册数学复习知识要点一 负数1、负数的由来:为了表示两种相反意义的量,如零上温度和零下温度、收入支出等,需要两种数。
一种是我们以前学过的数,如3、500、4.7、3/8,这些数是正数;另一种是在这些数的前面添上“负号”,如—3、—500、—4.7、—3/8等,这些数是负数。
一般以盈利为正、亏损为负;以收入为正、支出为负2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。
若一个数小于0,则称它是一个负数。
负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“-”号, “-”号 不可以省略 例如:-2,-5.33,-45,-253、正数:大于0的数叫正数(不包括0),数轴上0右边的数叫做正数若一个数大于0,则称它是一个正数。
正数有无数个,其中有(正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。
例如:+2,5.33,+45,254、 0 既不是正数,也不是负数,0是正、负数的分界点负数都小于0,正数都大于0,负数都比正数小,正数都比负数大5、数轴:左边 < 右边6、比较两数的大小:①利用数轴: 负数<0<正数 或 左边<右边②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。
负数之间比较大小,数字大的反而小,数字小的反而大比如: 13 >16 -13 <-167、0摄氏度的意义:淡水开始结冰的温度是0摄氏度。
8、零上温度和零下温度是以0摄氏度为基准的两种相反意义的量。
9、在各城市的气温预报中都有两个温度,中间用“~”隔开。
左边的温度表示当地的最低气温。
右边的温度表示当地的最高气温。
10、正负数在生活中的应用(1)做生意盈利记作 + ,亏损就记作 — ;(2)上车人数记作+,下车人数就记作—;(3)水位升高记作 + ,水位下降就记作 — ;(4)商店进货记作 + ,售出货物就记作 — 。
11、表示出正数、0和负数,并标有正方向的直线,我们把它称为数轴。
原点、正方向和单位长度称为数轴的三要素。
12、在直线上,0左边的数从右向左数,分别是0、负零点几、—1、负一点几、—2、负二点几.....;从左向右数,分别是0、零点几、1、一点几......13、增长率=增长的数量除以单位一的数量乘100%14、数轴上大数在右,小数在左。
二 百分数(二)(一)、折扣和成数1、商店有时降价出售商品,叫做打折扣销售,俗称“打折”。
折扣:用于商品,现价是原价的百分之几,叫做折扣。
几折就表示十分之几,也就是百分之几十。
例如八折=810 =80﹪,六折五=6.510 =65100=65﹪ 2、解决打折的问题,关键是先将打的折数转化为百分数或分数3、商品现在打八折 :现在的售价是原价的80﹪商品现在打六折五:现在的售价是原价的65﹪4、原价乘折扣=现价5、已知原价和折扣,求便宜的钱数方法(1)原价—原价乘折扣=便宜的钱数;(2)原价乘(1—折扣)=便宜的钱数6、成数:农业收成,经常用“成数”来表示。
成数表示一个数是另一个数的十分之几,通称“几成”。
7、几成就是十分之几,也就是百分之几十。
例如一成=110 =10﹪,八成五=8.510 =85100=85﹪ 8、解决成数的问题,关键是先将成数转化为百分数或分数,9、这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加10﹪今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪10、已知折扣和节省的钱数求原价:原价=节省的钱数除以节省的钱数占原价的百分数。
11、商品打折都是以商品原定价格为单位“1”.(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
因此,每个公民都有依法纳税的义务。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法: 应纳税额=总收入×税率 总收入额=应纳税额÷税率 税率=应纳税额÷总收入额×100%2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
(3)本金:存入银行的钱叫做本金。
(4)利息:取款时银行多支付的钱叫做利息。
(5)利率:利息与本金的比值叫做利率。
(6)利息的计算公式:利息=本金×利率×时间 利率=利息÷时间÷本金×100% 取回的钱数=本金+利息(7)利率与存期的单位要相对统一,年利率与年对应,月利率与月对应。
(8)满100元减40元与打六折是不同的。
(9)判断是赚了还是亏了要比较成本价和与售价和。
(10)本金不变,利率上调,所得利息不一定增加。
(还与时间有关系。
)三圆柱和圆锥一、圆柱(我们研究的是直圆柱,即上下一样粗,有两个平的面,是圆形)1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱由三个面组成,即两个完全相同的圆形底面和一个侧面。
圆柱的上、下两个面叫做底面;圆柱周围的面(上下底面除外),叫做侧面;3、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,所有的高都相等。
4、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高5、圆柱的切割:①平行于底面横切:切面是大小相同的两个圆,表面积增加2倍底面积,即S 增=2πr²②沿高纵切(过直径):切面是大小相同的两个长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高剪开,展开图形是长方形(或正方形),(如果h=2πr,展开图形为正方形),这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形7、圆柱的表面积是指侧面积和两个底面面积之和。
8、圆柱的侧面沿高剪开后得到长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,长方形的面积等于圆柱的侧面积。
即圆柱的侧面积=底面的周长×高,S侧=Ch(注:c为πd)所以圆柱表面积:S表=2S底+S侧=2πr²+2πrh9、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh= C(h+r)体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积 =侧面积+一个底面积油桶的表面积 =侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类10一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是1:π11、圆柱的底面半直径扩大侧面积扩大,高扩大,侧面积也扩大,反之亦缩小。
12、圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
13、把圆柱的底面分成许多相等的扇形,沿扇形把圆柱切开,再像拼圆的面积一样拼起来,得到一个近似的长方体。
圆柱的体积=长方体的体积,圆柱的底面积=长方体的底面积,圆柱的高=长方体的高。
所以圆柱的体积=底面积×高V=Sh 或V=πr²h;14、容积的计算方法和体积的计算方法相同,只是所需数据应从容器的里面测量。
15、瓶子里有水时,正放和倒置时空余部分的容积是相等的。
16、圆柱的体积与圆柱的底面半径和高有关。
同扩大同缩小。
当底面半径不变时。
高扩大(缩小)几倍,体积也扩大(缩小)几倍;当高不变时,底面半径扩大(缩小)几倍,体积就扩大(缩小)它的平方倍。
17、长方形的长和宽与旋转成的圆柱的关系:以长为轴旋转一周得到的圆柱的底面半径是宽,高是长;以宽为轴旋转一周得到的圆柱的底面半径是长,高是宽。
18、体积和表面积不能比较大小。
19、等底等高的正方体、长方体和圆柱,他们的体积都相等。
20、体积相等的两个圆柱不一定等底等高。
21、高不变,圆柱的底面积越大,它的体积就越大。
二、圆锥是由一个底面和一个侧面两部分组成的。
1、圆椎的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
直角三角形贴在木棒上的直角边是旋转而成圆锥的高,另一直角边是圆锥的底面半径。
圆锥也可以由扇形卷曲而得到。
连接圆锥顶点和它底面圆周上的一点,沿这条线段展开,圆锥的侧面是一个扇形。
2、圆锥的高是圆锥顶点到底面圆心的距离,与圆柱不同,圆锥只有一条高。
3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
(2)侧面的特征:圆锥的侧面是一个曲面。
(3)高的特征:圆锥有一条高。
(4)测量圆锥的高时,先把圆锥的底面水平放置,把一块平板水平放在圆锥的顶点上面,竖直测量出平板和底面之间的距离。
4、一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的31。
圆锥体积公式:圆锥的体积=底面积×高×31 即V=31Sh S 是圆锥的底面积,h 是圆锥的高,r 是圆锥的底面半径5、已知圆锥的底面直径和高,可直接利用V=31π(d ÷2)2h 来求体积。
5、圆柱的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是两个完全相同的等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S 增=2rh6、圆锥的相关计算公式:底面积 :S 底=πr²底面周长:C 底=πd=2πr体积 :V 锥=13πr²h 7、考试常见题型:①已知圆锥的底面积和高,求体积,底面周长②已知圆锥的底面周长和高,求圆锥的体积,底面积③已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算三、圆柱和圆锥的关系必须有前提等底等高。