一类差分方程的解法及其在经济领域中的应用
- 格式:pdf
- 大小:733.20 KB
- 文档页数:4
一类差分方程的解法及其在经济领域中的应用
周小玲
【期刊名称】《阜阳师范学院学报(自然科学版)》
【年(卷),期】2011(028)001
【摘要】差分方程模型是一种重要的确定性离散模型,其中较常用的有N阶常系数线性非齐次差分方程模型,用待定系数法解此类方程,研究此类方程在市场经济分析中的应用,给出蛛网模型的三阶差分模型.
【总页数】4页(P24-27)
【作者】周小玲
【作者单位】广州铁路职业技术学院基础课部,广东,广州,510430
【正文语种】中文
【中图分类】O29
【相关文献】
1.线性常系数差分方程的解法及其在信号处理中的应用 [J], 周小玲
2.二阶偏微分方程的有限差分解法及其在气动力计算中的应用 [J], 张育英;张维全
3.一类微分方程组的解法及其在圆板热弯曲问题求解中的应用 [J], 尹益辉;陈裕泽
4.随机差分方程在一类经济模型中的应用 [J], 陈会利; 廖新元; 鲁银霞; 李佳季
5.一类微分方程组的积分解法及其在厚板热力弯曲中的应用 [J], 尹益辉;陈刚;陈裕泽
因版权原因,仅展示原文概要,查看原文内容请购买。
差分方程的求解方法及其应用差分方程是数学中一个比较重要的分支,用于描述离散化的动态系统和过程,广泛应用于物理、工程、生态、经济、金融等领域。
通过离散化,可以将连续的问题转化为离散的数值计算问题,从而可以用计算机进行求解。
本文将介绍差分方程的求解方法及其应用,希望能够对读者有所帮助。
一、差分方程的定义差分方程是指包含有未知函数的离散变量的函数方程。
通俗的说,就是说差分方程用来描述离散的数学模型。
一般的差分方程可以写成如下形式:$$y_{n+1} = f(y_n, y_{n-1}, \cdots, y_{n-k+1}, n)$$其中,$y_n$ 是未知函数在 $n$ 时刻的值,$f$ 是一个给定的函数,$k$ 是差分方程中自变量的个数。
当 $k=1$ 时,常常称为一阶差分方程,如下所示:$$y_{n+1} = f(y_n, n)$$此外还有二阶、三阶等高阶差分方程。
差分方程与微分方程相似,都是用来描述某种动态系统的变化规律,只是微分方程是描述连续变化的模型,而差分方程是描述离散变化的模型。
二、差分方程的求解方法差分方程的求解方法可以分为两类,一类是解析解法,即用数学公式直接求解;另一类是数值解法,即用计算机进行数值计算求解。
1. 解析解法对于一些特殊的差分方程,可以用解析解法求出解析解。
解析解法就是通过数学公式直接求解,得到函数在论域上的解析表达式,从而可以对解析表达式进行分析求得有关该函数的很多重要信息。
以一阶线性差分方程为例,即:$$y_{n+1} = ay_n + b, \ \ (n=0,1,2,\cdots)$$其中 $y_0$ 是已知值, $a$ 和 $b$ 是常数。
可以通过数学公式得到该差分方程的解析解:$$y_n = a^ny_0 + b\frac{a^n-1}{a-1}, \ \ (n=0,1,2,\cdots)$$其它的高阶差分方程可以运用代数学、矩阵论、微积分等方法求解。
2. 数值解法数值解法是一种通过数值计算来求解差分方程的方法。
高等数学教学中差分方程的经济学拓展随着经济学的发展,越来越多的经济现象需要通过数学方法进行分析和研究。
差分方程作为数学方法之一,可以描述经济系统中的动态变化和规律。
在高等数学教学中,差分方程也成为了重要的内容之一。
本文将从差分方程在经济学中的应用、差分方程在高等数学教学中的地位等方面进行探讨,并结合具体的例子进行说明。
一、差分方程在经济学中的应用差分方程是描述数列中相邻两项之间的关系的方程。
在经济学中,许多经济现象都可以用数列来描述,例如经济增长、通货膨胀、利率等。
差分方程可以用来描述这些现象的变化趋势和规律。
1. 经济增长经济增长是经济学中的一个重要概念,它描述的是一个国家或地区在一定时间内生产总值的增长情况。
经济增长可以用差分方程来描述。
假设一个国家的经济增长率为g,初始时刻的生产总值为y0,那么在下一个时刻,生产总值为y1=y0(1+g)。
同样,下一个时刻的生产总值为y2=y1(1+g)=y0(1+g)2。
以此类推,可以得到一个差分方程:y(t+1)=y(t)(1+g)其中,t表示时刻,y(t)表示时刻t的生产总值。
这个差分方程描述了在每个时刻,生产总值都会增加一个比例g。
2. 通货膨胀通货膨胀是指物价水平的持续上涨。
在经济学中,通货膨胀可以用价格指数来描述。
价格指数是一个数列,它表示某一商品或服务的价格在不同时期的变化情况。
假设某一商品的价格指数为p,初始时刻的价格为p0,那么在下一个时刻,价格为p1=p0(1+r),其中r表示通货膨胀率。
同样,下一个时刻的价格为p2=p1(1+r)=p0(1+r)2。
以此类推,可以得到一个差分方程:p(t+1)=p(t)(1+r)其中,t表示时刻,p(t)表示时刻t的价格指数。
这个差分方程描述了在每个时刻,价格指数都会增加一个比例r。
3. 利率利率是指银行贷款或存款的利息率。
在经济学中,利率可以用复利公式来描述。
假设某一银行的利率为r,初始时刻的本金为P0,那么在下一个时刻,本金为P1=P0(1+r)。
差分方程在经济学中的几个应用
差分方程在经济学中有多个应用。
以下是其中几个例子:
1. 消费模型:差分方程可以用于建立消费者行为模型,例如动态消费模型。
这种模型可以用来解释消费者如何根据他们的财务状况和收入水平来做出消费决策。
2. 物价模型:差分方程可以用于建立物价动态变化的模型,例如通货膨胀模型。
这种模型可以用来解释通货膨胀的根本原因,并预测未来物价的变化。
3. 投资模型:差分方程可以用于建立投资决策的动态模型,例如资本品替换模型。
这种模型可以用来解释企业如何根据他们的制造成本、利润率等因素做出生产决策。
4. 就业模型:差分方程可以用于建立就业模型,例如菲利普斯曲线。
这种模型可以用于解释失业率和通胀率之间的关系。
总之,差分方程在经济学中有多个应用,这些应用可以帮助经济学家理解和预测经济现象。
差分方程的求解方法与应用差分方程是一类描述离散系统动态演化的数学模型。
与微分方程相比,差分方程更适用于描述离散时间下的系统变化规律。
在物理、经济、生物等各个领域中,差分方程都有广泛的应用。
本文将介绍差分方程的求解方法以及其在实际问题中的应用。
一、差分方程的求解方法差分方程的求解方法主要有直接求解法和递推求解法两种。
直接求解法是通过将差分方程转化为代数方程组,然后求解方程组得到方程的解。
这种方法适用于一些简单的差分方程,例如线性差分方程。
例如,对于一阶线性差分方程y(n+1) = a*y(n) + b,我们可以通过代入法得到y(n) = (a^n)*y(0) +b*(a^n-1)/(a-1)。
递推求解法是通过递推关系式求解差分方程。
这种方法适用于一些递推性质较强的差分方程,例如递推差分方程。
例如,对于递推差分方程y(n+2) = y(n+1) +y(n),我们可以通过给定初始条件y(0)和y(1),然后利用递推关系式y(n+2) = y(n+1) + y(n)逐步求解出y(2)、y(3)、y(4)等。
二、差分方程的应用差分方程在实际问题中有着广泛的应用。
下面将介绍差分方程在物理、经济和生物领域中的一些应用。
1. 物理领域差分方程在物理领域中的应用非常广泛。
例如,对于自由落体运动,可以通过差分方程描述物体在不同时间点的位置和速度变化。
另外,差分方程还可以用于描述电路中电流和电压的变化规律,从而帮助工程师设计和优化电路。
2. 经济领域经济学中的一些经济模型可以通过差分方程进行建模和求解。
例如,经济增长模型可以用差分方程描述经济发展过程中的变化规律。
此外,差分方程还可以用于描述金融市场中的股票价格变化、货币供给和需求等问题。
3. 生物领域生物学中的一些生态模型和遗传模型可以通过差分方程进行建模。
例如,种群动力学模型可以用差分方程描述不同物种之间的相互作用和数量变化规律。
另外,差分方程还可以用于描述基因传递和突变的过程,从而帮助科学家研究生物遗传学问题。