液晶高分子
- 格式:doc
- 大小:71.00 KB
- 文档页数:9
液晶高分子材料
液晶高分子材料是一种具有特殊结构和性能的材料,它融合了液晶和高分子两种材料的特点,具有优异的光学、电学和力学性能,被广泛应用于液晶显示器、光学器件、电子材料等领域。
首先,液晶高分子材料具有优异的光学性能。
由于其分子结构的特殊性,液晶高分子材料能够表现出液晶态和高分子态的双重性质,使其在光学器件中具有重要的应用价值。
例如,在液晶显示器中,液晶高分子材料能够通过外加电场调节其分子排列,从而实现液晶分子的定向排列和光学性质的调控,使得显示器能够呈现出丰富的色彩和清晰的图像。
其次,液晶高分子材料还具有优异的电学性能。
由于其分子结构的特殊性,液晶高分子材料在外加电场作用下能够发生液晶相变,从而实现电光调制和电场调控等功能。
这使得液晶高分子材料在电子材料领域具有广泛的应用前景,例如在智能光电器件、电光调制器件和光电器件等方面都有着重要的应用价值。
此外,液晶高分子材料还具有优异的力学性能。
由于其分子结构的特殊性,液晶高分子材料在外力作用下能够发生形变和结构调控,使其在材料加工和力学性能方面具有独特的优势。
例如在材料加工领域,液晶高分子材料能够通过外力调控其分子排列和结构,从而实现材料的定向排列和力学性能的调控,使得材料具有更好的加工性能和应用性能。
总的来说,液晶高分子材料具有优异的光学、电学和力学性能,具有广泛的应用前景。
随着科学技术的不断发展和进步,相信液晶高分子材料将在液晶显示器、光学器件、电子材料等领域发挥越来越重要的作用,为人类社会的发展和进步做出更大的贡献。
液晶高分子课件1.引言液晶高分子(LiquidCrystalPolymer,简称LCP)是一类具有液晶相态的高分子材料,因其独特的物理和化学性质,在众多领域得到广泛应用。
本文将对液晶高分子的基本概念、性质、制备方法及应用进行详细介绍。
2.液晶高分子的基本概念(1)分子链在液晶相中具有一定的取向有序性;(2)液晶高分子具有各向异性,即在不同方向上具有不同的物理和化学性质;(3)液晶高分子具有热塑性,可通过加热熔融进行加工;(4)液晶高分子具有良好的热稳定性和力学性能。
3.液晶高分子的性质3.1热稳定性3.2力学性能液晶高分子的力学性能优异,具有高强度、高模量等特点。
这主要得益于分子链的取向有序性以及分子链间的紧密排列。
3.3各向异性液晶高分子的各向异性表现为在不同方向上具有不同的物理和化学性质。
这种各向异性使得液晶高分子在特定应用领域具有独特优势。
4.液晶高分子的制备方法4.1溶液聚合溶液聚合是将液晶单体溶解在特定溶剂中,通过引发剂引发聚合反应,制备液晶高分子。
该方法操作简便,但需选用适宜的溶剂和引发剂。
4.2悬浮聚合悬浮聚合是将液晶单体分散在非溶剂介质中,通过引发剂引发聚合反应,制备液晶高分子。
该方法可实现较高分子量液晶高分子的制备,但聚合过程较复杂。
4.3乳液聚合乳液聚合是将液晶单体分散在水相中,通过乳化剂和引发剂引发聚合反应,制备液晶高分子。
该方法适用于制备具有特定形态的液晶高分子。
5.液晶高分子的应用液晶高分子在众多领域具有广泛的应用,主要包括:5.1电子电器液晶高分子具有良好的绝缘性能和热稳定性,适用于制备高性能电子元器件,如电路板、连接器等。
5.2高性能纤维液晶高分子纤维具有高强度、高模量等特点,可应用于航空航天、军工等领域。
5.3生物医学液晶高分子具有良好的生物相容性和降解性能,可用于制备药物载体、生物支架等。
6.结论液晶高分子作为一种具有独特性质的高分子材料,在众多领域具有广泛的应用前景。
高分子液晶高分子液晶是一种新型高分子材料,具有强度高、模量大的特点。
液晶是某些小分子有机化合物或某些高分子在熔融态或在液体状态下,形成的有序流体,既具有晶体的各向异性,又具有液体的流动性,是一种过渡状态,这种中间态称为液晶态,处于这种状态下的物质称为液晶,高分子液晶材料即为一类新型的特种高分子材料,已经以纤维、复合材料和注模制件等应用于航空、航海和汽车工业等部门。
液晶就是液态和晶态之间的一种中间态,它既有液体的易流动特性,又具有晶体的某些特征。
各向同性的液体是透明的,而液晶却往往是浑浊的,这也是液晶区别于各向同性的液体的一个主要特征。
液晶之所以混浊是因为液晶分子取向的涨落而引起的光散射所致,液晶的光散射比各向同性液体要强达100万倍[3]。
总之,液晶科学获得了许多重要的发展,研究领域遍及物理、化学、电子学、生物学各个学科,发展成了液晶化学、分子物理学、生物液晶及液晶分子光谱等重要学科[5]。
高分子液晶具有独特的性能:(1)在电场和磁场中,高分子液晶排列取向所需的电场强度或磁场强度要比低分子液却大的多,热致性液品的热转变温度高,而粘度大。
(2)奇偶性,所胃奇偶性是指在介晶态的TM,TN,△S,△H随柔性间隔的不同存在着奇低偶高的现象。
不仅主链上有奇偶性效应,而侧链也有奇偶性效应。
(3)高分子液晶的流变行为高分子液晶的流变行为对聚合物材料的应用影响很大。
如粘度是温度的函数,而且在某一温度下,粘度变小。
粘度对剪层影响较大在低剪切速度下,偏离牛顿流体液品的有序性降低一粘度随分子准的增加,粘度下降。
(4)液品相的转变:在一定浓度,液晶转变温度随聚合度的增长而升高。
在各向同性挤剂中,聚合物浓度下降,则相转变温度也下降。
在一定温度下,聚合度越大,则介晶相出现的临界浓度越低。
(5)液品的电光效应.所谓电光效应是指液晶在电场的作用下产生光学的变化,具体如下:相畴的形成,电场可引起向列相,液晶产生威廉姆士相畴;动态散射,液晶中的离子,交变电场作用下对液晶分子施以作用下,随电压增大而增大,当超过弹性界限时就产生湍流;宾一主相互作用液晶中存在其它各向异性分子时施加电场,两者进行相互影响的运动排列[6]。
液晶高分子聚合物液晶高分子聚合物(Liquid Crystal Polymer,简称LCP)是一种具有特殊结构和性能的高分子材料。
它在常温下具有液晶的特性,同时又具备高分子材料的机械性能和热稳定性。
液晶高分子聚合物的发展为新型材料的研究和应用开辟了新的方向。
液晶高分子聚合物是一种具有无定形液晶结构的高分子材料,其分子链的构象在混合剂的作用下呈现出有序排列。
这种有序排列的形态使得液晶高分子聚合物具有一些特殊的性质。
首先,它具有高分子材料的机械性能,比如强度、韧性等;其次,液晶高分子聚合物的玻璃化转变温度较高,可达到200℃以上,具有较好的热稳定性;此外,液晶高分子聚合物还具有优异的电绝缘性能、低摩擦系数、低线膨胀系数等特性,使得它在电子器件、通信、汽车、航空航天等领域得到了广泛的应用。
1.合成方法:液晶高分子聚合物的合成通常采用高分子合成中的传统方法,如聚合、缩聚、交联等。
但是由于其特殊结构和性能,合成过程中需要控制反应条件和配方,以获得期望的液晶性能。
2.液晶性质:液晶高分子聚合物的液晶性质是其最重要的特征之一、研究人员通过控制分子结构、引入侧链等方法,制备具有不同液晶相的液晶高分子聚合物。
研究涉及到液晶相的形成、相变行为、热稳定性等方面。
3.应用领域:液晶高分子聚合物具有优异的性能,被广泛应用于电子器件、通信、汽车、航空航天等领域。
例如,在电子器件领域,液晶高分子聚合物可制备高分子液晶显示器、电子屏蔽材料等;在通信领域,液晶高分子聚合物可作为光纤材料的包覆剂;在汽车领域,液晶高分子聚合物可用于制备汽车零件等。
4.研究进展:液晶高分子聚合物的研究已取得了一系列的进展。
例如,研究人员通过改变分子结构、引入侧链等方法,制备出具有不同液晶相的液晶高分子聚合物。
此外,研究人员还开展了液晶高分子聚合物与其他材料的共混研究,以提高其性能和应用范围。
总结起来,液晶高分子聚合物是一种具有特殊结构和性能的高分子材料,具有机械性能好、热稳定性高、电绝缘性能优异等特点。
液晶高分子的性质及应用1.液晶相:液晶高分子在一定的温度范围内呈现出液晶相,即介于固体和液体之间的有序相。
液晶相可以分为各向同性和各向异性两种类型。
a.各向同性液晶相:分子的有序排列在空间中是无定向的,即没有特定的方向性。
液晶高分子在这种相态下表现出传统高分子的性质,如熔融流动性等。
b.各向异性液晶相:分子的有序排列在空间中是有定向的,即存在特定的方向性。
液晶高分子在这种相态下具有一些特殊的物理性质。
2.反射性质:液晶高分子的有序排列结构使其呈现出良好的光学性质。
其中最重要的性质是反射性质。
液晶高分子可以通过改变其结构和局部有序性来调节光的反射能力,从而实现可控反射。
这种性质可以应用于光学器件和显示技术中。
3.热学性质:液晶高分子具有较高的熔点和较低的熔体粘度。
这使得液晶高分子的加工过程相对容易,并且能够形成具有特殊形状和结构的产品。
1.液晶高分子在显示技术中的应用是最广泛的。
在液晶显示屏中,液晶高分子以液晶态存在,能够通过外加电场的调控来改变其透明度和形态。
这种特性使得液晶高分子被广泛应用于液晶电视、计算机显示器、手机屏幕等电子产品中。
2.液晶高分子还被用于光学器件的制备。
通过调节液晶高分子的结构和局部有序性,可以实现光的反射、折射、偏振等特性的可控调节,从而用于制造光学滤光片、偏振器、光学振荡器等光学器件。
3.液晶高分子还可以用于制备聚合物液晶材料。
聚合物液晶材料具有高分子的机械性能和液晶高分子的液晶性能的优点,可以在光电领域、能源储存领域等方面得到应用。
4.由于液晶高分子具有特殊的热学性质和可塑性,它们还被广泛应用于制造具有特殊形状和结构的产品。
例如,液晶高分子可以用于制造形状记忆聚合物,这些材料可以在受到外界刺激时恢复到其原始形状。
总结起来,液晶高分子具有独特的性质和广泛的应用领域。
通过调节液晶高分子的结构和局部有序性,可以实现对光学性质的控制和调节。
液晶高分子主要应用于液晶显示技术、光学器件制造、聚合物液晶材料制备以及制造形状记忆聚合物。
液晶高分子及其应用
1、液晶高分子的概述
液晶高分子(Liquid Crystal Polymer,简称LCP)是一类具有液晶特性和高分子特性的聚合物材料,它既有液晶的灵活性和可调性,也具有橡塑、纤维材料等优质的机械特性。
LCP的结构通常属于共轭(conjugated)类型,这种结构使它成为一种特殊的性质高分子材料,具有独特的抗热和抗化学力,以及优良的耐磨性,并且机械性能稳定。
2、液晶高分子的结构特点
液晶高分子的特点在于具有特殊的立体双环结构,其结构有长链烃聚类、短烷链烃聚类、三角形聚类,以及四环类似结构分子等,而且具有优越的可成膜性能,具有耐腐蚀耐热、抗拉伸性等特点。
液晶高分子具有高熔点、熔化时间短、能够用热机模压加工、易接着其它材料,能够变形容易使其成为一种极具广泛应用价值的材料。
3、液晶高分子的应用
液晶高分子因其具有优异的机械强度和耐热性、耐化学腐蚀性等特点,而成为电子化学器件的主要原材料之一,常用于制作电路板、高电压电缆、接近传感器等电子领域中的精密元件。
此外,液晶高分子还广泛应用于汽车工业、航空航天工业、滚动轴承行业等领域,可用于制造汽车发动机和变速箱部件、飞机和火箭结构件、滚动轴承箱体等。
4、结语
液晶高分子的发展改变了电子行业的面貌,它的出现为民用电子产品和航空航天产品的应用带来多项新的突破,为电子行业的发展注入更多的创新性原材料,增强了电子产品的结构强度和性能。
高分子液晶材料的研究现状及开发前景一摘要液晶高分子是指在熔融状态或溶液中具有液晶特性的高分子,即该类高分子在熔融状态或溶液中,一方面,在一定程度上分子呈类似于晶体的有序排列;另一方面,又具有各项同性液体的流动性。
能够形成液晶相的高分子通常由刚性部分和柔性部分组成,刚性部分多由芳香和脂肪环状结构构成,在生物高分子中,含有手性基团的螺旋结构也具有刚性体的功能,柔性部分则多由可以自由旋转的d键连接起来的饱和链构成。
液晶高分子的制备是将含有刚性结构和柔性结构的单体通过聚合反应连接起来。
由于液晶相的形成,使得高分子的性能发生变化,某些性能显著提高,并出现类似于小分子液晶的特殊性能,从而使其具有更为诱人的应用前景,成为一个研究热点。
高分子液晶是近十几年迅速兴起的一类新型高分子材料[ 1~5] , 它具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率、低密度、良好的介电性、阻燃性和耐化学腐蚀性等一系列优异的综合性能, 作为液晶自增强塑料、高性能纤维、板材、薄膜及光导纤维包覆层, 被广泛应用于电子电器、航天航空、国防军工、光通讯等高新技术领域以及汽车、机械、化工等国民经济各工业部门。
正是由于其优异的性能和广阔的应用前景, 使得高分子液晶成为当前高分子科学中颇有吸引力的一个研究领域。
二国外对液晶高分子材料的研究1. A series of main-chain liquid-crystalline polymers (LCPs) with pendant sulfonic acid groups have been synthesized by use of biphenyl-4,4-diol, 6,7-dihydroxynaphthalene-2-sulfonic acid, and bis(4-(chlorocarbonyl)phenyl) decanedioate in a one-step esterification reaction. Emeraldine base form of polyaniline (PAN) is doped by the synthesized sulfonic acid-containing LCPs to obtain PAN-LCP ionomers. A series of electrorheological (ER) fluids are prepared using the synthesized PAN-LCP ionomers and silicone oil. The chemical structure, liquid-crystalline behavior, dielectric property of LCPs, and PAN-LCP ionomers, and ER effect of the ER fluids are characterized by use of various experimental techniques. The synthesized sulfonic acid-containing LCPs and PAN-LCP ionomers display nematic mesophase. The PAN-LCP ionomers show a slight elevation of glass transition temperatures and decrease of enthalpy changes of nematic-isotropic phase transition compared with corresponding sulfonic acid-containing LCPs. The relative permittivity of the PAN-LCP ionomers is much higher than that of the corresponding sulfonic acid-containing LCPs. The ER effect of the PAN-LCP ionomer dispersions is better than PAN dispersions, suggesting a synergistic reaction should be occurred among liquid crystalline component, and PAN part under electric fields.已经合成了一系列的主链液晶聚合物(LCP )与磺酸侧基通过使用二苯基-4,4 - 二醇,6,7 - 二羟基萘-2 - 磺酸,和双(4 - (氯羰基)苯基)decanedioate 在一个单步酯化反应。
翠绿亚胺碱形式的聚苯胺(PAN )由合成的含磺酸的LCP材料取得的PAN LCP的离子交联聚合物中掺杂。
使用合成的PAN - LCP 离子和硅油电流变流体一系列的准备。
的化学结构,液晶行为,LCPs的介电性能,PAN- LCP离聚物,与ER ER流体效果的特点是使用了各种实验技术。
合成含磺酸的LCP的和PAN- LCP离聚物显示向列型中间相。
的PAN LCP离聚物显示出轻微升高比相应的含磺酸的LCP材料的玻璃化转变温度和降低向列相- 各向同性相转变焓变。
PAN - LCP的离子交联聚合物的相对介电常数是远远高于相应的含磺酸的LCP材料。
的电流变效应的PAN - LCP的离聚物分散体的优于PAN分散体的,这表明有协同反应应发生在液晶组件,和PAN根据电场的一部分。
这个团队主要对主链液晶材料进行了研究。
由于这种奇妙的特性,电流变液可以作为一个电动机械接口,并可以应用在各个领域,如离合器,减震器,发动机架,阀门,阻尼器等。
2.Electrospinning was used to generate polymer nanofibres from blends of poly-vinyl cinnamate (PVCN) and a cholesteric silicone polymer. Only blends that contained at least 40 % of PVCN produced fibres. Both differential scanning calorimetry and electron dispersion spectroscopy data indicate that the samples are miscible over a wide temperature interval. The variation of fibre diameter with concentration is nonlinear with a well-defined minimum corresponding to an 80 % PVCN blend. The fibres are birefringent with Kerr constants similar to that of cholesteric liquid crystals. Although not significant, the Kerr constant increases with increasing silicone polymer concentration.静电是用来产生从聚肉桂酸乙烯酯(PVCN)和胆甾醇型有机硅聚合物的共混物的聚合物纳米纤维。
只有共混物包含至少40%的PVCN生产纤维。
这两个差示扫描量热法(DSC)和热电子色散谱数据表明,样品在很宽的温度区间是可混溶的。
具有良好定义的相应的最低到的80%PVCN的共混物与浓度的纤维直径的变化是非线性的。
该纤维是克尔常数类似的胆甾醇型液晶的双折射。
虽然不显着,克尔常数的增加而增加有机硅聚合物浓度。
这个团队主要研究的是胆甾醇型液晶。
三国内对液晶高分子材料的研究1.在二氯乙酸(DCA)中呈现典型的液晶织构.但酰胺酸含量很高的壳聚糖却观察不到其液晶织构.在20%以内,溶液均匀,无双折射出现;而当浓度更高时,溶液呈现未溶解均匀的状态. 因而如果有液晶相,也是出现在比最大溶解度更高的浓度上,从而无法观察到. 这一现象也出现在其它天然高分子羧酸中,如羧甲基纤维素,羧甲基甲壳素,羧甲基壳聚糖,羧丁基壳聚糖等. 设想可能是由于大分子羧酸之间发生二缔作用,这种强的分子间相互作用妨碍了分子的取向运动,并增加了分子间距离而不利于分子的紧密堆砌,且无规分布的羧基相互作用使分子间难以对齐,因而临界浓度大为提高.这个团队主要研究的是甲壳素类液晶。
2.捏合机中制备纤维素在磷酸,多聚磷酸复合溶剂中的液晶溶液。
利用显微镜观察边界层移动,测定凝固速度。
研究凝固剂性质、凝固浴温度、溶液中纤维素含量对凝固速度的影响。
实验结果表明:凝固剂的分子体积和结构对凝固速度有重要的影响,对于乙醇、正丙醇、异丙醇这3种一元醇其凝固速度随分子体积的增大而减小;温度与凝固速度之问存在Arrhenius式的关系,凝固速度随凝固浴温度的升高而增大,凝固活化能的排序为乙醇<正丙醇<异丙醇;凝固速度随溶液中纤维素含量的增大而减小。
在此基础上分析凝固变量对凝固过程的影响。
Liquid crystalline solutions of cellulose in phosphoric acid/poly-phosphoric acid compound solventwere prepared in a kneader.The coagulation rate was measured based on microscopic observation of the moving boundary associated with coagulation.The effect of the nature of the coagulant,temperature of coagulation bath,and cellulose concentration on the coagulation rate Was studied.The results show that the molecular size and molecular structure of the coagulant play an important role in determining the rate of coagulation, coagulation rate decreases with increasing molecular volume for the three monohydric alcohols,ethanol,1一propanol and 2-propanol;an Arrhenius-type relationship exist between the coagulation rate and temperature,coagulation rate increases with increasing the temperature of coagulation bath,the activation energy for coagulation increases in the order ethanol<l—propanol<2-propanol:coagulation rate decreases with increasing cellulose concentration in the solution.Based on these studies,the effect of coagulation variables on coagulation process Was depicted.这个团队主要研究的方向是纤维素类液晶。