电力变压器冷却系统
- 格式:docx
- 大小:1.26 MB
- 文档页数:83
变压器冷却器工作原理
变压器冷却器是用于冷却变压器的一种装置,其工作原理可简单描述如下:
变压器冷却器一般采用风冷或油冷的方式进行冷却。
风冷变压器冷却器主要通过自然对流或强制风扇冷却来降低变压器温度。
油冷变压器冷却器则是通过循环冷却油来实现。
风冷变压器冷却器中,变压器的主体通常被设计成一个具有散热器翅片的金属箱体。
通过将凉爽的空气经过散热器翅片引导,在翅片上产生对流,从而将浸在翅片中的热量带走。
这种对流通常是由于热气体的密度低于冷气体,使得热空气上升,而冷空气下沉产生的。
油冷变压器冷却器中,变压器的主体被浸泡在绝缘油中。
绝缘油除了用于绝缘和冷却外,还起到了传输热量的作用。
冷却油被泵送到变压器内部进行循环,通过冷却油与变压器主体的接触面积较大,使得变压器内部产生的热量能够迅速地传递到冷却油中。
随后,冷却油被送回冷却器进行冷却,循环传输热量。
无论是风冷还是油冷变压器冷却器,其作用都是将变压器产生的热量散发出去,使得变压器能够保持正常的工作温度。
这样不仅可以延长变压器的使用寿命,还能够提高其工作效率。
因此,在变压器的正常运行过程中,冷却器的工作十分重要。
变压器冷却系统冷却方式的表示是什么电力变压器的冷却系统包括两电阻部分:内部冷却系统,它保证绕组、铁芯的热量散入到周围的介质中;外部冷却系统,保证外热传导中的热散到变压器外。
根据变压器容量的大小,介质和循环种类的不同,变压器装配不同的冷却方式。
一、冷却方式的表示变压器的冷却方式一般采用四个代号组合来表示,按照从左到右分别表示如下:例如:ONAN表示油浸自冷式,即内部油自然循环,外部空气自然循环二、变压器的冷却方式油浸式电力变压器的冷却方式,按其容量的大小,冷却系统可分为:油浸自冷式、油浸风冷式、强迫油循环风冷式、强迫木炭循环水冷式等几种。
1、油浸自冷式油浸液氢自冷式冷却系统没有特殊的空气冷却设备,油在电阻器内自然循环,传至和绕组所发出的热量依靠油的对流作用铁芯油箱壁或水箱。
按变压器容量的深浅,又可分为三种有所不同的结构:1.1、平滑式箱壁。
容量很小的变压器采用这种结构,箱壳是用钢板焊接而成,箱壁是事实上平滑的;1.2、散热筋式箱壁。
在平滑箱弯曲壁上焊接一些散热筋,扩大了与空气接触的面积,适合于容量稍大的变压器;1.3、散热管或散热器式冷却。
容量更大一点儿的变压器,为了增大油箱的冷却表面,则在油箱外加装若干散热器,散热器就是具有上、下联箱的一组散热管,水箱散热器通过法兰与油箱连接,是可拆部件。
图1所示为带有散热管的油浸自冷式变压器的油流路径。
变压器运行时,油箱内的油因铁芯和绕组发热而受热,热油会上升至油箱顶部,然后从散热管的上端入口进入散热管内,散热管的外表面与外界冷空气相接触,使油得到冷却。
冷油在散热管内下降,由管的下端再流入下端变压器油缸下部,自动进行油流循环,使变压器铁芯和绕组得到有效冷却。
油浸自冷式冷却系统结构非常简单、可靠性高,广泛用于容量10,000kVA以下的变压器。
2、油浸风冷式油浸风冷式冷却系统,也称油自然循环、强制风冷式冷却系统。
它是在电气设备油箱的风扇各个散热器旁安装一个至几个风扇,把氧气的自然对流作用改变为强制对流作用,以增强散热器的散热能力。
变压器冷却方式变压器是电力系统中必不可少的设备之一,它起着将电力转换为适合传输和分配的电压的作用。
在运行过程中,变压器会产生大量的热量,如果不进行有效的散热,会导致设备过热、损坏甚至起火。
因此,选择合适的冷却方式对于变压器的正常运行至关重要。
本文将针对常见的变压器冷却方式进行讨论。
1. 自然风冷却自然风冷却是最常见也是最简单的一种冷却方式。
变压器通常安装在通风良好的地方,通过自然对流的方式进行散热。
变压器外壳设计有许多散热片,利用空气流动在散热片间产生对流热交换,将变压器内部产生的热量散发到空气中。
这种方式适用于小型变压器或者运行负载较小的情况。
2. 强制风冷却强制风冷却是在自然风冷却的基础上增加了风扇系统,通过强制对流来加速热量的散发。
一般情况下,变压器内部设置有风扇,它们可以通过空气对流将热量迅速从变压器内部带走。
这种冷却方式适用于中小型变压器,特别是在环境温度较高或变压器运行负荷较大的情况下,可以提高冷却效果,防止设备过热。
3. 油冷却油冷却方式是将变压器内部的绕组和铁芯完全浸泡在冷却油中,通过油的循环流动来吸收和散发热量。
这种方式具有较高的冷却效果,可以适应大功率变压器的散热需求。
冷却油通常是绝缘的,除了具有冷却功能之外,还能提高绝缘性能,保护变压器的安全运行。
4. 水冷却水冷却方式是采用水作为冷却介质,通过水的流动来带走变压器产生的热量。
水冷却方式具有较高的散热能力,可以适应大功率和超高压变压器的需求。
相比于油冷却方式,水冷却方式更加环保,可以实现循环利用。
但是水冷却系统的设计和维护成本较高,需要考虑到水的供应和排放问题。
5. 油-水混合冷却油-水混合冷却是将油冷却和水冷却两种方式相结合的一种冷却方式。
它的原理是通过冷却油和冷却水的热交换来实现散热效果。
在设计中,通常将油和水分别流过变压器内部的不同部位,以达到最佳的冷却效果。
这种冷却方式相对于单独采用油冷却或水冷却,能够提供更高的散热能力。
1.变压器的冷却方式与油温规定的原因。
※
油浸变压器的通风冷却是为了提高油箱和散热器表面的冷却效率。
装了风扇后与自然冷却相比,油箱散热率可提高50%~60%。
一般,采用通风冷却的油浸电力变压器较自冷时可提高容量30%以上。
因此,如果在开启风扇情况下变压器允许带额定负荷,则停了风扇的情况下变压器只能带额定负荷的
70%(即降低30%)。
否则,因散热效率降低,会使变压器的温升超出允许值。
规程上规定,油浸风冷变压器上层油温不超过55℃时,可不开风扇在额定负荷下运行。
这是考虑到,在断开风扇的情况下,若上层油温不超过55℃,即使带额定负荷,由于额定负荷的温升是一定的,绕组的最热点温度不会超过95℃,这是允许的。
强迫油循环水冷和风冷的变压器一般是不允许不开启冷却装置就带负荷运行的。
即使是空载,也不允许不开启冷却装置运行。
这样限制的原因是因为这类变压器油箱是平滑的,冷却面积小,甚至不能将空载损耗所产生的热量散出去。
强迫油循环的变压器完全停止冷却系统运行是很危险的。
不过,考虑到事故情况下不中断供电的重要性,也考虑到变压器的发热有个时间常数,并不是带上满负荷瞬时就使变压器达到危险的温升,故规程又规定当冷却系统故障冷却器全停时,在额定负荷下允许运行时间为20min。
运行后,如油面温度(上层油温)尚未达到75℃,但切除冷却器后的最长运行时间不得超过1h。
变压器冷却方式标准代号变压器是电力系统中常见的电气设备,用于将高电压变换为低电压或低电压变换为高电压。
在变压器的运行过程中,会产生大量的热量,如果不及时散热,会导致变压器温度过高,影响其正常运行,甚至损坏设备。
因此,变压器的冷却方式非常重要。
变压器的冷却方式通常由国际电工委员会(IEC)制定的标准代号来表示。
这些标准代号是根据变压器的冷却介质和冷却方式来命名的。
下面是一些常见的变压器冷却方式标准代号:1. AN:自然冷却自然冷却是指变压器通过自然对流来散热。
变压器的外壳通常设计成散热片状,增加表面积以提高散热效果。
这种冷却方式适用于小型变压器或运行环境温度较低的情况。
2. AF:强制风冷强制风冷是指通过风扇强制对变压器进行冷却。
变压器内部设置有风道,风扇通过风道将冷却空气吹入变压器内部,加速热量的散发。
这种冷却方式适用于中小型变压器或运行环境温度较高的情况。
3. AA:强制风冷和自然冷却的组合强制风冷和自然冷却的组合方式是指变压器既可以通过自然对流散热,也可以通过风扇强制冷却。
这种冷却方式适用于大型变压器或运行环境温度变化较大的情况。
4. FA:强制水冷和自然冷却的组合强制水冷和自然冷却的组合方式是指变压器既可以通过自然对流散热,也可以通过水冷系统进行冷却。
水冷系统通过循环水来吸收变压器产生的热量,然后通过冷却设备将热量散发出去。
这种冷却方式适用于大型变压器或运行环境温度较高的情况。
5. FN:强制水冷强制水冷是指变压器通过水冷系统进行冷却。
水冷系统通过循环水来吸收变压器产生的热量,然后通过冷却设备将热量散发出去。
这种冷却方式适用于大型变压器或运行环境温度较高的情况。
除了上述几种常见的冷却方式标准代号外,还有一些其他的冷却方式,如强制油冷、自冷式干式变压器等。
不同的冷却方式适用于不同的变压器类型和运行环境,选择合适的冷却方式可以提高变压器的散热效果,延长设备的使用寿命。
总之,变压器的冷却方式标准代号是根据变压器的冷却介质和冷却方式来命名的。
主变压器冷却方式的要求主变压器是电力系统中重要的设备之一,它的正常运行对电力系统的稳定性和可靠性起着至关重要的作用。
主变压器在长期运行中会产生大量热量,需要进行有效的冷却以保持其正常运行温度。
主变压器冷却方式的选择和设计直接影响到主变压器的运行效率和寿命。
本文将详细介绍主变压器冷却方式的要求。
1.散热效果好主变压器在运行中会产生大量的热量,如果散热效果不好,就会导致主变压器过热,影响其正常运行。
因此,主变压器冷却系统必须具有良好的散热效果,能够有效地将主变压器内部产生的热量散发出去,保持主变压器的温度在安全范围内。
2.保持油温稳定主变压器常用的冷却介质是绝缘油,通过绝缘油来传导和散热。
因此,主变压器冷却系统必须能够保持绝缘油的温度稳定,避免因温度波动过大而影响主变压器的正常运行。
为了保持油温稳定,主变压器冷却系统需要根据主变压器的负荷变化及外界环境温度的变化自动调节冷却介质的流量和速度。
3.能够应对突发情况在主变压器长期运行中,可能会出现一些突发情况,如短暂过载、外部故障等,这些情况会导致主变压器热量急剧增加,需要快速有效地散热。
因此,主变压器冷却系统必须能够应对这些突发情况,能够在短时间内提供足够的冷却能力,避免主变压器过热。
4.能够节能减排随着环保意识的提高,要求主变压器冷却系统具有节能减排的特点,即在保证主变压器正常运行的前提下,尽量减少能源消耗和减少对环境的污染。
因此,主变压器冷却系统设计时应考虑采用高效节能的冷却设备,如风冷式散热器、蒸发式冷却器等,以减少能源消耗和减少二氧化碳排放。
5.耐高温性能好综上所述,主变压器冷却方式的要求包括散热效果好、保持油温稳定、能够应对突发情况、节能减排以及耐高温性能好。
只有满足这些要求,主变压器冷却系统才能更好地发挥其作用,保证主变压器的正常运行,提高电力系统的可靠性和稳定性。
内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:变压器冷却系统设计学生姓名:***学号:************专业:自动化班级:自05-3班指导教师:***变压器冷却系统设计摘要对于现在电厂中运行的电力变压器冷却控制系统中存在的自动化程度不高、电气控制中存在的可靠性低、故障率高、控制误差大等故障以及冷却中无法达到节能这一问题,本文提出并研制了一种新型的变压器强迫油循环风冷控制装置。
系统以西门子S7-200(CPU224)型PLC 作为控制器,并控制西门子MM430变频器拖动风机和油泵电机,以此构建了变压器冷却控制系统;系统以变压器顶层油温为被控量,提出了PLC检测变频控制风机的变频器的工频信号是否到达以控制是否投入其他风扇电动机,通过检测变频控制风机的变频器的0频信号是否到达以控制是否切出其他风扇电动机的控制策略;此外装置还具有故障定位,报警显示等功能。
此外,变频器的使用使冷却系统能够跟随温度的变化连续平滑调整,有利于变压器的安全运行。
………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………关键词:变压器;冷却控制系统;可编程序控制器;变频器;负反馈控制The design of Transformer cooling systemAbstractNowadays, the power transformer cooling system which is running in electric power plant exists numerous problems , for instance, the low degree of automation, the low reliability, high failure rate in electrical control, the large control errors, as well as energy-inefficient cooling control , all the thorny issues mentioned above can not meet the modern control requirements , this dissertation proposed and developed a new type of system called forcing transformer oil circulation and cooling by air system.This system used Siemens S7-200(CPU224)-based PLC as the controller, moreover, it also controlled Siemens MM430 frequency converter to drag fan and pump motor, which could be regarded as building a transformer cooling control system. This system considered the top-level temperature of transformer oil as controlled variable, the dissertation simultaneously put forward the control strategy that letting PLC detect industrial frequency access signal coming from the frequency converter which drag fan motor in order to control whether or not putting into operation of other fan motors; next, letting PLC detect zero frequency access signal coming from the frequency converter which drag fan motor in order to control whether or not ceasing other fan motors; in addition , the system comprised the function of fault location and alarm display. Last, the utilization of frequency convertor can make the cooling system always keep pace with changes of temperature for a smooth adjustment, which is conducive to the safe operation of the transformer.Key words:Transformer; Cooling control system; PLC; Frequency converter;Negative feedback control目录摘要 (I)Abstract (II)目录.............................................................................................................................. I II 第一章引言.. (1)1.1电厂变压器冷却系统设计背景 (1)1.2系统的工艺流程及冷却装置简介 (2)1.2.1变压器散热方式 (2)1.2.2变压器冷却原理 (3)1.2.3.冷却系统简介 (3)1.3 冷却系统的技术目标 (5)1.4 本章小节 (5)第二章系统的控制方法和方案设计 (7)2.1 电力变压器运行规程中关于冷却控制的规定 (7)2.1.1 对变压器的冷却装置的要求 (7)2.1.2 变压器温度限值 (7)2.1.3 强迫油循环冷却变压器的运行条件 (7)2.2变压器油温自动控制的控制方法 (8)2.2.1综合投、切控制策略 (8)2.2.2 PLC变频控制的基本原理 (9)2.2.3 PLC变频控制的PID参数整定 (9)2.2.4 变压器冷却自动控制系统框图 (12)2.3 系统组成 (13)2.4本章小结 (15)第三章冷却控制装置的硬件设计 (16)3.1 开关器件的选择 (16)3.1.1 继电器的选择 (16)3.1.2 接触器的选择 (16)3.1.3 热继电器的选择 (17)3.1.4 熔断器的选择 (18)3.2 电动机的选择 (19)3.3 PLC的介绍及选型 (20)3.3.1 PLC的简介 (20)3.3.2可编程序控制器的输入输出 (22)3.3.3 可编程序控制器的选择 (24)3.3.4可编程控制器电源的设计 (26)3.4变频器的介绍及选型 (28)3.4.1变频器的介绍 (28)3.4.2变频器的分类 (28)3.4.3变频器的控制方式 (31)3.4.4变频器的选择 (32)3.4.5变频器参数的设置 (34)3.5 检测装置的选择 (38)3.6装置电气连接 (39)3.6.1 油泵电机电路图 (39)3.6.2 2-6号风扇电动机电路图 (40)3.6.3 一号风机电路图 (41)3.6.4 手自动控制选择和控制电路 (42)3.6.5 PLC引脚接线图 (43)3.6.6 系统总电路图 (44)3.7本章小节 (45)第四章软件设计 (46)4.1 程序流程 (46)4.2 本系统子程序介绍 (47)4.2.1 系统状态及PID初始化子程序 (47)4.2.2 油泵电机控制程序 (47)4.2.3 1号风机变频启动程序 (47)4.2.4 2-6号风机投入控制程序 (47)4.2.5 2-6号风机切出控制程序 (47)4.2.6 故障诊断与报警程序 (47)4.3 本章小节 (48)结束语 (49)参考文献 (50)附录 (52)致谢 (65)第一章引言1.1电厂变压器冷却系统设计背景在电厂输变电系统当中,变压器是实现电能转换的最基本、最重要的设备,对供电可靠性有着重大的影响。
变压器的四种冷却方式变压器是电力系统中常用的电力设备,它的工作原理是利用电磁感应原理,将输入电压变换为输出电压。
在变压器运行时,会产生一定的热量,如果不能及时散热,就会影响变压器的使用寿命。
因此,变压器需要进行冷却,常见的变压器冷却方式有四种,分别是自然冷却、强制风冷却、强制油冷却和强制水冷却。
自然冷却是指变压器在运行时,通过自然对流和辐射的方式散热。
这种方式适用于小型变压器,通常不需要专门的冷却设备,只需要将变压器放置在通风良好的环境中即可。
自然冷却的优点是结构简单、维护成本低,但是由于散热效率相对较低,所以适用于小型变压器。
强制风冷却是指通过风扇将空气强制循环冷却变压器。
这种方式适用于中小型变压器,通常在变压器外部安装风扇,通过风扇将空气吹到变压器表面,加速热量的散发。
强制风冷却的优点是散热效率高、使用寿命长,但是需要专门的风冷装置,增加了成本和维护难度。
强制油冷却是指通过油泵将变压器内部的冷却油强制循环冷却。
这种方式适用于大型变压器,通常在变压器内部安装散热器和油泵,通过油泵将冷却油循环流动,以达到高效散热的目的。
强制油冷却的优点是散热效率高、使用寿命长,但是需要专门的油冷装置,增加了成本和维护难度。
强制水冷却是指通过水泵将水强制循环冷却变压器。
这种方式适用于大型变压器,通常在变压器内部安装散热器和水泵,通过水泵将水循环流动,以达到高效散热的目的。
强制水冷却的优点是散热效率高、使用寿命长,但是需要专门的水冷装置,增加了成本和维护难度。
变压器冷却方式的选择应根据变压器的规模和使用环境来确定。
不同的冷却方式各有优缺点,在选择时需要综合考虑。
只有选择了合适的冷却方式,才能确保变压器的正常运行和长寿命。
摘要本设计针对电力变压器冷却系统中使用常规控制系统时存在的控制回路复杂、可靠性低、风机保护方式简单、油温测量精度低、控制误差大、无法进行远程通讯等问题,设计了一套智能化变压器温度监控系统。
本系统以PIC16F877单片机为核心,实现了对变压器油温的实时采集、LED显示、数据无线传输,并参考油温变化对风机的运行状况进行实时控制。
风机侧完善的保护装置为CPU提供准确的风机故障信号,提高了系统运行的稳定性。
关键词:单片机、变压器冷却系统、风机故障、油温采集ABSTRACTThe paper introduces a new smart of transformer temperature monitoring system. It’s a great change for the power transformer cooling system. Such as the existence of complex, low reliability, a simple blower protection, low temperature measurement accuracy, control errors, and not achieving long-distance communications, ect. The control system uses the PIC16F877 to achieve the real-time acquisition, LED display, data wireless transmission, and taking into account air temperature change on the operation of the state of real-time control. The CPU fan could provide accurate fault signal, so that it improves the stability of the system.•Keywords: SCM (Single Chip Micyoco), transformer cooling system, Fan Failure, Oil temperature`s collection目录摘要 (1)ABSTRACT (2)绪论 (5)第一章设计任务及要求 (6)第一节毕业设计的任务 (6)第二节毕业设计的要求 (6)第二章系统的设计方案 (8)第一节系统工作的一般原理 (8)第二节智能温度监控系统的设计方案 (8)2.1 方案一 (9)2.2 方案二 (10)2.3 方案三 (12)第三节设计方案的确定 (13)第三章硬件电路设计 (16)第一节单片机的选型 (16)第二节振荡器配置选择 (18)2.1 晶体振荡器/陶瓷谐振器方式 (18)2.2 RC振荡器 (20)第三节温度采集电路模块设计 (22)3.1 温度检测电路 (22)3.2 光电耦合隔离放大电路 (24)第四节按键输入和显示电路部分设计 (29)4.1 按键输入电路模块设计 (29)4.2 显示电路部分设计 (29)第五节无线通信系统的设计 (33)第六节主回路部分设计 (38)6.1 风冷机的保护简要介绍 (38)6.2 输出驱动电路设计 (38)第七节直流电源的设计 (46)第四章软件部分设计 (50)第一节软件需求分析 (50)第二节各模块的流程图 (52)第五章设计总结 (60)致谢 (62)参考文献 (63)H:\毕业设计\毕业设计.doc附录一程序清单 (64)附录二元器件明细表 (78)绪论近年来,随着我国电力事业的飞速发展,电力变压器是发、输、变、配电系统中的重要设备之一,它的性能、质量直接关系到电力系统运行的可靠性和运营效益。
电力变压器是电力系统运行的核心设备之一,因此,电力变压器安全可靠的运行是电力系统正常运行的根本保障。
随着变压器容量的增大,变压器的损耗同样会增大,单靠箱壁和散热器已不能满足散热要求,需采用子循环风冷或强迫油循环风(水)冷,使热油经过强风(水)冷却器,冷却后再用油泵送回变压器。
大容量的变压器已经采用导向冷却,在绕组和铁心内部,设有一定的油路,使进入油箱内的冷油全部通过绕组和铁芯内部流出,这样带走了大量的热量,可以提高散热效率。
变压器冷却系统决定了变压器的正常使用寿命及能否正常运行,因此变压器的冷却系统对变压器的安全经济运行又极其重要的意义。
在发电厂或变电所,风冷式变压器采用多组风机降温,控制变压器的油温在额定范围之内,保证变压器正常工作。
为了提高电力系统运行的可靠性和延长变压器的使用寿命,应该对变压器的油温进行实时监控。
目前,还有许多变压器采用由电接点式温度计采集、显示变压器油温,控制风机的启动和停止,实现变压器的温度控制,在实际运行中,由于风机启动时全部投入,同时全部停止,冲击电流较大,严重影响了电机的使用寿命。
且由于无法和控制室联系,所以无法实现变压器的无人控制,增加了运行成本。
变压器温控器总存在一些问题,如测温误差大、抗干扰能力差等,这些都是在工程界非常棘手的问题。
而早期的温度控制器,由于体积大、操作复杂、抗干扰能力差,给工程现场的使用也带来了很大不便。
随着单片机技术的不断发展,温度控制器正向单片集成化、智能化的方向迅速发展。
针对电力变压器在运行过程中存在的问题,可以采用的智能温度控制系统,实现温度的自动采集、显示、风机的顺序起停。
根据现场运行要求,本设计选用了PIC16F877单片机构成变压器温度控制系统,设备操作简单,用户可通过面板按键轻松设定控制风机起停、报警及跳闸阀值,所有设定参数掉电后均不会丢失。
温度采集精度很高,并且采取了很多措施来保护电机,如过载、缺相保护等。
由于工业现场的环境较恶劣,会对系统产生很大的干扰,设计采取了抗干扰措施,在集成电路的电源入口处加了滤波电容,且送入单片机的信号都经过了光耦隔离。
最后通过无线通信实现远程监控,控制室通过无线通信及时掌握现场的运行情况,可任意对各种事故做出及时地反映,实现了变压器的无人控制。
系统整体具有测温误差小、分辨力高、抗干扰能力强的特点,所有器件的选择均满足工业级标准,并适合高温环境。
由于采取了以上措施,可以保证控制系统稳定工作,设计具有很好的扩展性,能满足各种型号变压器的要求。
第一章设计任务及要求第一节设计任务在我们的生活中,电力安全是至关重要的,而电力变压器又是电力系统的重要组成部分。
电力系统中常用的油浸风冷式电力变压器多采用多组风机降温,控制变压器的油温在工艺要求的范围之内。
目前现场还有相当数量的油浸风冷电力变压器由电接点式温度计采集、显示变压器油温,控制风机的启动和停止,实现变压器的温度控制,即在变压器油温大于上限温度时启动全部风机,当油温降至下限温度时停止全部风机。
而实际运行中这种控制方式有不少的缺点,如风机启动时全部投入,冲击电流太大,不利于系统的稳定安全运行。
针对以上种种问题,要求本设计选用一款集成度较高的单片机,并采用无线通信技术,设计一个电力变压器温度监控系统,对现有落后的温度控制系统进行改造,满足自动化要求。
设计主要完成的工作。
本设计须完成风冷式电力变压器温度监控系统的主机部分的设计,主要包括以下工作:(1)收集电力变压器温度控制系统的控制原理的实际资料,确定要保证变压器风冷系统正常运行及实现无人值班所需的远程通讯功能,必须采用以单片机为核心的控制系统来完成;为保证风机能可靠安全运行,必须收集一既能被单片机驱动又能保证风机可靠运行的元件。
(2)方案设计。
(3)确定系统配置及功能,并根据系统功能要求完成系统硬件设计。
(4)根据设计原则完成控制系统的软件设计。
(5)撰写设计说明书,绘制系统电路原理图。
(6)完成指定内容的外文资料翻译。
第二节设计要求2.1 毕业设计的主要内容(1)完成系统设计;(2)选择合适的单片机,作为主机CPU;(3)独自完成主机硬件、软件设计,其中硬件部分主要包括温度采集、LED显示、主控电路、无线通讯、电源电路等,软件部分主要包括流程图设计、程序设计及调试;(4)完成相关的设计图纸绘制和设计说明书撰写,通过毕业设计答辩。
2.2 设计实现的主要功能(1)将采集到的油温在就地和远端(控制室)用LED实时显示油温,主机和从机之间的通讯采用无线通信方式;(2)系统设置自动、手动、停止三种运行方式,正常时采用自动方式运行,主控板检修时采用手动方式运行,并且能够灵活选择运行方式。
(3)在自动方式运行下,当变压器油温超过上限时,风机全部投入;当温度低于工艺下限时,风机全部停止;当温度由高下降到上限和下限的中间值时,只投入3组风机;在投入3组风机的状态,先运行的3组风机运行1小时后(这三组风机在变压器周围间隔安装),自动切换到另外3组(这三组风机也在变压器周围间隔安装),1小时后又切换到原来的3组,如此交替运行,既延长风机的使用寿命,又能使变压器均匀降温。
温度上限值和下限值可以通过硬件灵活设置,以适应不同类型和不同环境使用的变压器;变压器油温超过上限值时,风机群全部投入运行时,采用顺序启动方式依次启动,防止启动电流过大情况发生造成设备损坏;(4)系统具有故障自诊断功能,当某一风机工作异常时如过压、缺相、过载时,系统能够在现场和控制室发出报警信号,显示故障类型和故障发生的位置,便于工作人员及时进行设备检修;(5)系统设置正常运行、故障运行、油温超过75℃三项远传开关信号;(6)本设计中油温的上限缺省值为55℃,下限缺省值为45℃,要求上限值和下限缺省值能够方便的通过按键调节;(7)系统要采用必要的抗干扰措施(包括硬件和软件)。
2.3 主要技术指标控制系统的工作电源为220V/50HZ的工频交流电,容量为31500KVA;风机有6组,每组2个风机,均匀排列在变压器四周,每个风机功率为0.375KW;温度测量范围为0-100℃,温度采集精度为±2℃,温度控制精度为±5℃。
第二章系统的设计方案第一节系统工作的一般原理传统的电力变压器由人工控制风机,每台变压器有6组风冷式电动机需要控制,每组风机的保护通过热继电器实现,控制风机电源回路通过接触器,而风机启停的逻辑判断通过测量变压器的油温和变压器的过负荷实现,工作原理如图2-1所示。
主电路控制元件采用了接触器,靠机械触点来实现对风机的驱动。
这种方式对风机的控制只能由人工完成,风机同时全部投入,同时全部停止,启动时冲击电流很大,会对器件造成损伤。
当温度在45℃-55℃时,通常采用全部投入的方式,不利于节能,也不利于设备的维护。
控制器系统采用继电器、热继电器、接触器逻辑电路控制,控制逻辑显得很复杂,在运行过程中会出现接触器的触点长时间接触及多次开断造成触点烧毁问题。