移动通信的基本概念综述
- 格式:doc
- 大小:28.00 KB
- 文档页数:9
移动通信技术在物联网中的作用分析目录一、内容概要 (2)1.1 研究背景 (2)1.2 研究目的与意义 (3)1.3 文献综述 (4)1.4 研究方法与数据来源 (6)二、移动通信技术概述 (7)2.1 移动通信技术的发展历程 (8)2.2 当前主要的移动通信技术 (9)2.3 移动通信技术的特点 (10)2.4 移动通信技术的应用领域 (11)三、物联网技术简介 (12)3.1 物联网的基本概念 (14)3.2 物联网的关键技术 (14)3.3 物联网的应用场景 (15)3.4 物联网的发展趋势 (17)四、移动通信技术在物联网中的应用 (18)4.1 移动通信技术对物联网架构的影响 (20)4.2 移动通信技术在物联网连接性中的作用 (21)4.3 移动通信技术在物联网安全性中的作用 (22)4.4 移动通信技术促进物联网服务创新 (23)4.5 案例分析 (24)4.5.1 智能交通系统 (26)4.5.2 智慧城市 (27)4.5.3 农业物联网 (28)4.5.4 医疗健康监测 (30)五、挑战与对策 (31)5.1 技术挑战 (32)5.2 法规与标准挑战 (33)5.3 安全与隐私挑战 (35)5.4 对策与建议 (35)六、未来展望 (36)6.1 移动通信技术的未来发展趋势 (37)6.2 物联网与移动通信技术融合的新机遇 (38)6.3 对行业和社会的影响 (40)七、结论 (41)7.1 研究总结 (42)7.2 展望未来研究方向 (43)一、内容概要本文旨在深入探讨移动通信技术在物联网中的关键作用和影响。
首先,文章将对移动通信技术的基本概念进行简要介绍,并阐述其在现代通信领域中的地位和发展趋势。
接着,本文将重点分析移动通信技术在物联网中的应用场景,包括但不限于智能家居、智能制造、智慧城市等领域。
通过对移动通信技术与物联网融合所带来的优势进行分析,本文将揭示其在提高通信效率、优化资源配置、增强用户体验等方面的重要作用。
综述移动通信发展及其展望摘要本文简单概述了移动通信发展的经历,给大家分别介绍了GSM网络、WCDMA网络、LTE网络的一些基本情况,包括它们的发展历程、网络架构以及关键技术等,并在总结中比较了它们之间的区别,最后,结合当前的实际情况提出了对未来移动通信发展的一些展望。
关键词GSM网络;WCDMA网络;LTE网络1 GSM网络1.1 GSM网络概述第二代数字蜂窝移动通信系统的典型代表是美国的DAMPS系统、IS-95 和欧洲的GSM系统。
GSM系统主要由移动台(MS)、移动网子系统(NSS)、基站子系统(BSS)和操作支持子系统(OSS)四部分组成[1]。
1.2 GSM关键技术(1)工作频段我国陆地公用蜂窝数字移动通信网GSM通信系统采用900MHz频段。
(2)频道间隔相邻两频道间隔为200kHz。
(3)多址方案GSM通信系统采用多址技术,频分多址(FDMA)和时分多址(TDMA)结合,还加上跳频技术。
(4)无线接口管理2 WCDMA网络W-CDMA(宽带码分多址)是一个ITU(国际电信联盟)标准,它是从码分多址(CDMA)演变来的,能够支持移动/手提设备之间的语音、图像、数据以及视频通信。
2.1 WCDMA网络概述第三代移动通信系统在2000年开始商用,能提供多种类型、高质量的多媒体业务,能实现全球无缝覆盖,具有全球漫游能力,可与固定网络相兼容,并可以小型便携式终端在任何时候、任何地点进行任何种类的通信。
由于其诸多的优点,吸引了全世界各个运营商、生产厂家与广大用户。
2.2 WCDMA关键技术(1)CDMA技术FDDWCDMA系统采用了宽带的CDMA方式,吸纳了了很多CDMA的关键技术,如直接扩频,软切换(包括更软切换),功率控制等;(2)电路交换从R99版本标准来看,CS域采用的仍是基于64K电路交换的MSC架构,所有从UTRAN当中传出的分组话音,需经适当的编解码转换,变为电路方式通过核心网传送,反之则做相反的转换;(3)ATM技术及协议:在WCDMA系统标准,尤其是R99和R4的UTRAN中,大量采用了ATM 及其相关协议作为2层传送机制和服务质量保证机制;(4)IP承载及应用:IP作为目前数据业务事实上的底层承载标准,在WCDMA系统标准当中获得了广泛采用,从UTRAN当中传出的数据包,透过PS域,可承载于IP,通过SGSN传至GGSN至公共数据网;(5)分组语音技术:R4以后,电路域的话音采用了分组语音技术;(6)传统信令:WCDMA系统标准中由于考虑到对GSM核心网设备的向下兼容性,大量保留了传统的信令和协议如MAP,ISUP等,这些信令对WCDMA系统网络与GSM 网络的漫游切换和与PSTN系统的互联至关重要[2]。
毕业论文(设计)题目移动通信技术的现状与发展______________ 姓名__________________专业_____________年级班级___________________________学号____________________指导教师__________________________________完成日期____________内容摘要本文详细论述了现代移动通信技术的发展历程:个人通信网建立,2G的应用,第三代移动通信系统的普及。
分析了移动通信技术第四代移动通信(4G)和移动通信技术的未来趋势与在我国的移动通信技术发展状况。
关键词: 第三代移动通信系统,个人通信网,第四代移动通信(4G)第四章结束语........................................................................................ 17 第五章致谢17参考文献....................................................................................................... 18 引言 ................................................................. 4.第一章 移动通信技术的概念及相关知识 (5)1.1 移动通信的基本概念 (5)1.2 移动通信的发展 (5)1.3 移动通信的特征 (6)1.4 移动通信的国内国际形势 (6)第二章移动通信的现状及前景概述 .................... 7 2.1移动通信的现状 .......................... 7 2.2移动通信的前景 .......................... 7 2.3 移动通信的发展历程 .. (8)第三章 移动通信技术未来趋势 (8)3.1未来移动通信 (9)3.2 4G 移动通信简介 (9)3.3 4G 系统网络结构及其关键技术 (14)3.4第四代通信技术的主要优势 (14)引言随着社会的进步,移动通信技术的发展日新月异,层出不穷,令人眼花缭乱,人们对移动通信的要求也不断变化,而且越来越不满足现状。
移动通信网络
移动通信网络是指通过无线技术实现移动设备之间通信的网络。
它是一种基于移动终端的无线通信技术,使得用户可以在移动状态下进行语音通话、数据传输和网络连接。
移动通信网络的主要组成部分包括以下几个方面:
1.移动终端:移动终端是用户使用的设备,包括手机、平板电脑、移动数据终端等。
移动终端通过无线信号与基站进行通信,实现语音、短信、数据传输等功能。
2.基站:基站是移动通信网络中的关键设备,用于向移动终端提供信号覆盖和通信服务。
基站通常包括天线、无线传输设备和控制单元等组件,可以覆盖一定范围内的移动终端。
3.移动核心网:移动核心网是移动通信网络的核心部分,负责管理和控制移动终端的通信连接。
它包括移动交换中心(MSC)、位置注册中心(HLR)、移动管理实体(MM)等功能节点,用于实现移动终端的接入、漫游、位置跟踪等功能。
4.无线接入网络:无线接入网络是基站和移动核心网之间的连接网络,用于传输移动终端和核心网之间的通信数据。
无线接入网络通常采用无线局域网(WLAN)、CDMA、LTE等技术实现。
5.业务支撑系统:业务支撑系统包括计费系统、用户认证系统、业务管理系统等,用于支持移动通信网络的运营和管理。
移动通信网络根据技术标准和覆盖范围的不同,可以分为多种制式和网络类型,如GSM、CDMA、LTE、5G等。
这些网络技术不断发展和演进,为用户提供了更快速、更稳定的移动通信服务。
移动通信技术综述第一点:移动通信技术的发展历程移动通信技术自20世纪80年代以来,经历了多个阶段的发展。
从第一代模拟通信技术(1G)到当前的第五代移动通信技术(5G),每一次技术的更新换代都带来了通信速率和网络容量的显著提升。
1G时代,采用的是模拟通信技术,通信质量较差,且无法实现大规模的普及。
2G时代引入了数字通信技术,大大提高了通信的稳定性和安全性,同时也开启了短信服务的先河。
3G时代,通信速率进一步提升,数据传输变得普遍,为移动互联网的兴起奠定了基础。
4G时代,网络速度进一步加快,视频通话和流媒体服务变得流畅,移动互联网应用达到了一个新的高度。
而5G技术,则是在4G的基础上,通过更高的频率和更密的基站部署,实现了更快的数据传输速度和更低的延迟。
这使得5G能够支持更多设备的连接,为物联网和工业自动化提供了可能。
5G技术的广泛应用,预计将推动智慧城市、远程医疗、自动驾驶等多个领域的革命。
第二点:移动通信技术的未来趋势随着科技的不断进步,移动通信技术也在持续发展中。
未来的移动通信技术将更加注重网络的智能化、高效化和个性化。
首先,网络智能化是未来的一个重要趋势。
通过引入人工智能和机器学习技术,移动通信网络将能够实现自我优化和自我修复,提高网络的运行效率和可靠性。
例如,网络切片技术,就是利用软件定义网络(SDN)和网络功能虚拟化(NFV)技术,为不同的业务需求提供定制化的网络服务。
其次,移动通信技术将更加注重高效化。
随着5G技术的普及,网络的覆盖范围和容量都将得到进一步的提升。
未来的移动通信技术将通过更高效的信号处理技术和更先进的编码技术,提高网络的数据传输速率和能效比。
最后,个性化服务将是未来移动通信技术的一个重要方向。
随着用户对通信服务的需求日益多样化和个性化,移动通信技术需要能够提供更加定制化的服务。
例如,通过大数据分析用户的行为和偏好,提供个性化的内容推荐和服务定制。
总的来说,未来的移动通信技术将更加智能化、高效化和个性化,以适应日益增长的数据传输需求和多样化的应用场景。
第三代移动通信系统综述周夕良Ξ(三峡大学职业技术学院电气工程系,湖北宜昌 443000)摘 要:本文对第三代移动通信系统(3G )的起源、发展及三个主流标准W CD MA 、cdma2000、T D -SCD M A 的技术特点作了介绍。
并分析了第三代移动通信系统将面临2G 和W LAN 、W iMAX 的双重竞争。
关键词:第三代移动通信系统;WC DM A ;cd ma2000;T D -SC DM A ;W iMAX 1.3G 的起源第三代移动通信(3r d G eneration M obile Communications :3G )系统是为多媒体通信设计的,开发第三代移动通信系统的工作始于“国际电信联盟”(IT U :International T elecommunica 2tions Union)下的世界无线电管理大会1992年会议,在此次会议中,2G H z 附近的频率被指定给第三代移动通信系统使用。
在IT U 中,第三代移动通信系统被称为I MT -2000(Interna 2tional M ob ile T elephony 2000)。
2000年5月,国际电联(IT U )在土耳其召开全会,经对I MT -2000无线接口技术标准的10个候选方案(如表1所示)的频谱效率、网络接口、Q oS 、技术复杂性、覆盖率、灵活性和设备体积等诸多方面的全面评估,正式确认了五种标准,分别是MS -CD M A 、DS -C DM A 、T D -CD 2MA 、SC -T DM A 和MC -T D M A ,这是一个以CDM A 技术为主体,兼顾T D MA 技术,包含FD D 和T D D 两种双工方式的多元化体系标准。
表1 正式向IT U 提交的候选RTT 方案序号提交者候选RTT 方案1日本ARIB W -C DM A2欧洲ES ASW-CD MA&SW-CT D M A3ICOICO RT T 4中国CATT T D -SCD MA5韩国TT A G l obal CD MA Ⅰ&Ⅱ,Satellite RT T6欧洲ET SI -DECT EP -DECT 7欧洲E TSI -UTRAUT RA8美国T LA UW C -136,cdma2000,WIMS W -CD MA 9美国T IP1-ATISW CD MA ΠNA 10IN M ARS ATH oriz ons2.3G 的三个主流标准IT U 制定IMT -2000的最初目标是建立一个能够提供高速数据接入的单一的、通用的和全球性的标准。
移动通信技术发展综述摘要:移动通信技术经过近百年的发展,已经逐渐成熟。
本文将对移动通信技术的发展历史进行简单的介绍,并对第三代移动通信商用化进程进行一下讨论。
一、移动通信技术发展简介蜂窝前:–1921年,底特律警察局开始试验使用“移动”无线通信。
单工,用于通知。
–30年代,警察局用的双向系统开通,40年代,以行业应用为主的双向系统在各个行业兴起。
但是没有同固定电话网互联。
双工,用于专业网–40年代末,AT&T开始真正的商用公用移动通信系统。
公众系统60年代中期到70年代中期,美国推出改进的移动电话系统(IMTS), 使用450 MHz,大区制,中小容量,实现了自动选频并能够自动接续到公用电话网。
比较成熟的公众系统.蜂窝后(小区制):70年代末80年代初有商用系统,在20年内经历了两代目前正在向第三代系统迅速演进。
第一代蜂窝移动通信系统–模拟蜂窝移动通信系统(语音)–典型系统:TACS、AMPS第二代蜂窝移动通信系统(语音和数据)–数字蜂窝移动通信系统–典型系统:GSM、IS-95 CDMA第三代蜂窝移动通信系统(3G,多媒体)–正在发展的蜂窝移动通信系统–典型系统:WCDMA、CDMA-2000、UWC136第一代蜂窝移动通信系统特点:–模拟移动通信系统(语音信号是模拟信号)–采用小区制、蜂窝组网–多址接入技术:频分多址(FDMA)发展简况:–美国AMPS(Advanced Mobile Phone System),第一个蜂窝系统,1983年投入商用。
–英国TACS(Total Access Communication System),1985年投入商业。
我国采用这种制式。
–北欧NMT(Nordi Mobile Telephone),丹麦、芬兰、挪威瑞典使用,1981年投入使用,是世界上第一个具有漫游功能的蜂窝电话。
–日本HCMTS(High Capacity Telephone System),1980年开通。
摘要:随着信息技术的飞速发展,5G通信技术已成为通信领域的研究热点。
本文对5G通信技术的基本原理、关键技术及其在物联网中的应用进行了综述,旨在为相关领域的研究提供参考。
一、5G通信技术的基本原理5G通信技术是第五代移动通信技术,其峰值理论传输速度可达20Gbps,比4G网络的传输速度快数百倍。
5G通信技术基于OFDM(正交频分复用)技术,采用更宽的频谱带宽、更高的数据传输速率、更低的延迟、更高的连接密度和更广泛的覆盖范围等特点。
二、5G通信技术的关键技术1. 新的频谱资源:5G通信技术采用更高频率的频谱资源,如毫米波频段,以满足更大带宽的需求。
2. 增强型多输入多输出(MIMO):通过增加天线数量,提高信号传输的稳定性和抗干扰能力。
3. 波束赋形:根据用户的位置和需求,动态调整天线波束的方向,提高频谱利用率和覆盖范围。
4. 全双工通信:实现双向通信,提高频谱利用率。
5. 网络切片:将网络资源划分为多个虚拟网络,满足不同应用场景的需求。
6. 边缘计算:将数据处理任务从云端转移到边缘节点,降低延迟,提高响应速度。
三、5G通信技术在物联网中的应用1. 智能家居:5G通信技术为智能家居提供了高速、低延迟的网络环境,实现家庭设备的互联互通,提高居住舒适度。
2. 智能交通:5G通信技术可应用于智能交通系统,实现车联网、自动驾驶等功能,提高道路通行效率和安全性。
3. 智能医疗:5G通信技术可应用于远程医疗、医疗影像传输等领域,实现医疗资源的优化配置和高效利用。
4. 工业互联网:5G通信技术可应用于工业生产、设备维护等领域,实现工业设备的智能化、网络化,提高生产效率和产品质量。
5. 农业物联网:5G通信技术可应用于农业自动化、精准农业等领域,提高农业生产效率和资源利用率。
四、总结5G通信技术作为新一代移动通信技术,具有广泛的应用前景。
本文对5G通信技术的基本原理、关键技术及其在物联网中的应用进行了综述,为相关领域的研究提供了有益的参考。
移动通信的发展综述(梁嘉诚电子101 1011002006)摘要:移动通信从产生到后来的第一代(1G)、第二代(3G)、第三代(4G)的发展,发展已经逐渐成熟。
从维普网站上150篇中选了25篇总结后,本文将对移动通信的发展、种类进行简单的介绍,和现在正在使用的3G的通信的介绍。
关键词:移动通信、通信发展、3G引言:目前移动通信是发展最快、技术更新最快、市场容量最大的产业,是世界通信的主流产业。
移动通信从各个方面渗透我们的生活,引领着我们向前。
移动通信是一方或多方在移动的情况之下进行信息的交流。
一、移动通信的发展阶段1、移动通信的发展可以分为五个阶段:(1)20世纪20年代到40年代,是现代移动通信的发展的早期。
由于技术的局限主要用短波和电子管技术,工作频率低,范围小,不适合大众使用,多适合于军方和船只。
(2)20世纪50年代至60年代末,由于半导体技术的使用,移动通信开始于公用。
(3)70年代到80年代初由于使用频率的大幅度增加,美国公众蜂窝通信系统得到应用。
(4)80年代初到90年代中期通信频率再次提高至900MHZ---1.9GHZ,无线寻呼系统、无绳电话系统等移动通信系统的产生,使得可以个人使用化,但由于设备等费用贵,难以完全大众化。
(5)20世纪90年代末至今,第三代通信兴起,移动数据,移动计算机等发展起来,使移动通信真正的大众化了。
2、移动通信的种类移动通信是固定体与移动体之间的通信,或者是移动物理之间的通信。
移动体可以是人、收音机、火车、汽车、轮船等移动物体。
移动通信的种类有多种。
集群移动通信,也叫大区制移动通信。
它可以和基站通信,也可经过基站和其他移动台还有市话用户之间进行通信。
蜂窝移动通信,也叫做小区制移动通信。
由于超短电波传播距离有限,为了使频率资源能充分利用,从而有一定的距离的小区能重复利用频率。
卫星移动通信。
运用卫星转发信号的移动通信,对于手持终端,可运用中低轨道的多颗卫星,对于车载移动通信则运用赤道同步卫星能保证同通信的质量。
移动通信的基本概念1.移动通信:是指通信双方或至少一方可以在运动中进行信息交换的通信方式。
2.自由空间:是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收,也不发生反射、折射、绕射和散射等现象。
3.单工通信:指通信双方设备交替地进行收信和发信。
根据通信双方是否使用相同频率,单工制又分为同频单工和双频单工。
双工通信:也叫全双工通信,指通信双方收发信机均同时工作。
即一方讲话的同时也可以听到对方的讲话,双工制一般使用一对频道。
半双工通信:通信双方有一方使用双工方式,而另一方则采用双频单工方式。
4.小区制:是把整个服务区域划分为若干个小区,每个小区分别设置一个基站,负责本区移动通信的联络和控制。
同时,又在移动业务交换中心的统一控制下,实现小区之间移动通信的转接以及移动用户与市话用户的联系。
5.小区:指基站使用不同的电磁波覆盖不同的区域,即分为不同的小区,通常一个基站分为三个小区。
6.相邻小区(邻区):两个覆盖有重叠并设置有切换关系的小区,一个小区可以有多个相邻小区。
7.频率复用:相同的频率可以用于覆盖不同的小区,只要这些小区两两相隔的距离足够远,相互间的干扰就可在接受的范围之内,这一为整个系统中所有基站选择和分配频率的设计过程叫做频率复用或频率规划。
8.切换(Handover):当移动用户处于通话状态时,如果出现用户从一个小区移动到另一个小区的情况,为了保证通话的连续,系统要将对移动台的连接控制也从一个小区转移至另一个小区。
这种将正在处于通话状态的移动台转移到新的业务信道上(新的小区)的过程称为切换。
9.漫游:指移动用户离开了其归属的局而到其它交换局管辖范围内登记成为移动用户。
10.切换发生的原因:信号的强度或质量,下降到由系统规定的一定参数以下,此时移动台被切换到信号强度较强的相邻小区,这种切换一般由移动台发起。
由于某小区业务信道容量全被占用或几乎全被占用,这里移动台被切换到业务信道较空闲的相邻小区,这种一般由上级实体发起。
切换与漫游的目的是实现蜂窝移动通信的“无缝隙覆盖”。
11.载波:基站用于传送信息的电磁波的频率。
12.信道(Channel):移动通信中移动台与基站之间的信息通道,分物理信道和逻辑信道。
13.信道号:移动通信使用载频所对应的信道编号。
14.物理信道:是指一个时隙(约577us,156.25个比特)。
在GSM900频段的上行(890~915MHz)或下行(935~960MHz) 频率范围内分配了124个载波频率,简称载频。
各个载频间的间隔为200KHz,上行与下行载频是成对的,每对载频的间隔为45 MHz。
TDMA中每个载频上按时间分为8个时间段,每一个时间段称为一个时隙(Slot),这样的一个时隙称为物理信道,GSM的一个载频可提供8个物理信道,一个载频上连续的8个时隙组成一个TDMA帧。
15.逻辑信道:在物理信道所传输的内容就是逻辑信道。
逻辑信道有分为两大类,业务信道(TCH)和控制信道(CCH)。
TCH用于传送编码后的话音或数据业务,控制信道用于传输信令或同步数据. 16.BCCH--Broadcast Control Channel 广播控制信道;此信道用来向移动台发送小区的通用信息,如本小区和相邻小区的信息以及同步信息,移动台则周期性地监听BCCH,以获取BCCH上的如下信息,它决定了蜂窝接入的规则.17.SDCCH--独立专用控制信道:用于传送基站和移动台间的指令与信道指配信息,如鉴权、登记信息消息等,此信道在呼叫建立期间支持双向数据传输以及短消息业务的传送。
18.TCH--业务信道,用于传送用户语音和数据业务的信道;19.BSIC--Base Station Indentify Code 基站识别码;20.LAC--Location Area Code 定位区编码(小区位置码);21.CID--Cell Identity 小区身份;22.多址:蜂窝系统中是以信道来区分通信对象的,一个信道只容纳一个用户进行通话,许多同时通话的用户相互以信道来区分,这就是多址。
23.干扰:是蜂窝系统性能的主要限制因素,干扰来源包括同小区中的另一个移动台、相邻小区中正在进行的通话、使用相同或相邻频率的其它基站、或者无意中渗入蜂窝系统频带范围的任何非蜂窝系统。
语音信道上的干扰会导致串话,使用户听到了背景的干扰,信令信道上的干扰则会导致数字信号发送上的错误,而造成呼叫遗漏或阻塞。
24.互调干扰:指两个或多个信号作用在通信设备的非线性器件上,产生同有用信号频率相近的组合频率,从而对通信系统构成干扰的现象。
25.同频干扰:同频小区之间的干扰叫做同频干扰,为了减少同频干扰,同频小区必须在物理上隔开一个最小的距离,为传播提供充分的隔离。
26.邻频干扰:来自所使用信号频率的相邻频率的信号干扰叫作邻频干扰,邻频干扰是因为接收滤波器不理想,使得相邻频率的信号泄漏到了传输带宽内而引起的。
27.直放站:(中继器,repeater)属于同频放大设备,是指在无线通信传输过程中起到信号增强的一种无线电发射中转设备。
直放站位于基站与移动台之间,中继传输两者间的双向射频信号,用来填补基站覆盖盲区或延伸覆盖区。
28.室内覆盖系统:由宏蜂窝或微蜂窝提供信号源,通过天馈系统,直接将射频信号引到需要的区域,我们称为室内覆盖系统。
29.孤岛效应:当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
当基站位置过高时,其覆盖的范围就会增大,由于遮挡物少,以及不同密度空气层的折射,信号可以传到较远的地方。
此时手机可能会收到该基站信号。
但由于手机信号较弱,上行信号却无法到达该基站,形成“孤岛效应”。
应采用合理规划基站位置的方法解决。
30.乒乓效应:GSM系统中,所有的切换都是硬切换.当切换发生时,手机总是先释放原基站的信道,然后才能获得新基站分配的信道,是一个“释放-建立”的过程,切换过程发生在两个基站过度区域或扇区之间,两个基站或扇区是一种竞争的关系.如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
31.话务量:是度量通信系统通话业务量或繁忙程度的指标。
所指呼叫话务量,是指单位时间(1小时)内进行的平均电话交换量,表达式如下:A=c·t。
c---每小时平均呼叫次数(包括呼叫成功和呼叫失败的次数) t。
---每次呼叫平均占用信道的时间(包括接续时间和通信时间) ,如果t。
以小时为单位,则话务量A的单位是爱尔兰(Erl)。
32.误码率:通话质量的网络评价指标。
通话质量分为8个等级,分别用0~7表示,0=0% 1=0.2% 2=0.4% 3=0.8% 4=1.6% 5=3.2% 6=6.4% 7=12.8%33.掉话率:单位时间内通话过程中断话的次数与总通话次数的比值。
34.呼损率:单位时间呼叫不成功的次数与申请次数之比。
35.接通率:单位时间呼叫(主叫与被叫)被接通的次数与申请次数之比。
36.驻波比:信号的传输过程中,因各部件的连接阻抗不匹配,导致有反射波的存在,入射波与反射波叠加形成驻波,驻波电压的最大值与最小值之比称为驻波比。
37.带宽:工作频率的宽度;直放站带宽:直放站的系统增益比峰值下降3dB时所对应的频率范围;38.增益:信号的放大量;39.带内平坦度:工作频带内不同频率上最大和最小信号的差值(峰峰值),要求此差值﹤3dB。
40.带外抑制:工作频带之外信号的衰减量;表现为直放站对在工作带宽外所获得的信号增益的抑制程度。
41.噪声系数:输入端信噪比与输出端信噪比的比值,噪声系数表示放大器输出端信噪比与输入端信噪比相比的恶化程度。
42.三阶互调:由于放大器的非线性作用,使两个传送信号彼此混频而产生的三阶新的频率成份。
计算公式:IM3=2ƒ1±ƒ2或IM3=2ƒ2±ƒ143.隔离度:两个通信端口之间的损耗或衰减量。
44.杂散:除了有用信号之外的发射成份。
45.时延:信号传输时间的延迟量。
46.dB :两个量的比值对数,是一个相对值;计算公式为:电压G(dB)=20Lg(V2/V1);功率G(dB)=10Lg(p2/p 1);47.dBm :功率的计量单位,规定0dBm=1mv;计算公式为:P(dBm)=10Lg[P(W)/1mW];48.dBi :天线增益值(相对于各向同性点源天线的增益相值)。
49.最大输出功率:保证直放站正常工作下所能得到的最大有效输出功率,一般是指直放站1dB压缩点的输出功率。
1dB压缩点输出功率即指当输出功率达到进入饱和状态的临界点时,回退1dB所对应的输出功率,是直放站工作在线性工作区内的最大输出功率。
50.隔离度计算:收发隔离度即信源信号从直放站前向输出端口至前向输入端口(或者从反向输出端口至反向输入端口)的空中路径衰减值,其大小直接影响着直放站的增益配置,在确定天线位置后,一定要测量隔离度。
直放站前向输出功率比反向输出功率大,主要考虑前向链路的收发隔离度。
收发隔离度分为水平隔离度和垂直隔离度。
直放站收发信隔离度的要求如下:隔离度I≥直放站实际工作增益G + 10dB 水平隔离度Lh用分贝表示公式如下:Lh=22.0+20log10(d/λ)-(Gt+Gr)+(Xt+Xr) d为收发天线水平间隔(单位:米),λ为天线工作波长(单位:米),Gt、Gr分别为发射和接收天线的增益(单位:dB),Xt、Xr分别为发射和接收天线的前后比(单位:dB)垂直隔离度Lv用分贝表示公式如下:Lv=28.0+40log10(d/λ) d 为收发天线水平间隔(单位:米),λ为天线工作波长(单位:米)51.设计技术指标:移动用户的忙时话务量为0.025Erl。
无线信道的呼损率取定:话音信道(TCH)呼损为2%;控制信道(SDCCH)呼损为0.1%。
干扰保护比:同频干扰保护比:C/I ≥12dB(不开跳频)C/I ≥9dB(开跳频)。
邻频干扰保护比:200KHz邻频干扰保护比:C/I ≥-6dB;400KHz邻频干扰保护比:C/I ≥-38dB 无线覆盖区内可接通率:要求在无线覆盖区内的95%位置,99%的时间移动台可接入网络。
无线覆盖边缘场强:室内≥-85dBm,电梯≥-90dBm,室外≥-93dBm。
在基站接收端位置的收到的上行噪声电平小于-120dBm;室内天线的发射功率宜在10~15dBm/每载波之间,电梯井内天线发射功率可到20dBm/每载波。