§4[1].2Gauss消元法 华中农业大学线性代数
- 格式:ppt
- 大小:1.26 MB
- 文档页数:19
高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。
一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。
当右端常数项b 1,b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。
由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。
显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。
用高斯消元法求解线性代数方程组12341115-413-2823113-21041513-21719x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 1111X *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。
为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。
⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-I I -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-I I -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。
下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。
⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i am a aij i ij ij,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。
Gauss消元法解解线性⽅程组摘要本⽂叙述了Gauss 顺序消元法解线性⽅程的算法思想以及其求解过程,同时简要叙述了Gauss 主元素消元法以及Gauss 全主元消元法。
紧接着给出了Gauss Seidel -迭代法的算法思想,本⽂给出了这三个消元⽅法以及⼀个迭代法的算法流程图,由于全主元消元法是前两个算法的基础上改进⽽来,故本⽂采⽤第三种⽅法进⾏编程计算,前两种⽅法不再重复编程,然后给出⼀个实例的计算结果,运⾏时间,在⽂章最后分析该实例的计算结果,针对同⼀实例,⼜采⽤Gauss Seidel -⽅法编程实现,然后对结果进⾏分析和对⽐。
最后给出了本⼈在编程时遇到的⼀些问题和解决办法。
关键词:Gauss 顺序消元法 Gauss 主元素消元法 Gauss 全主元消元法⼀、算法的简要描述1.1Gauss 顺序消元法Gauss 消元法在中学⾥已经学习过,其⽅法实质,就是运⽤初等变换,将线性⽅程组Ax b =转化为同解的上三⾓矩阵⽅程组1Ux L b -=(1.1.1)其中,U 为上三⾓矩阵,L 为下三⾓矩阵。
然后对式(1.1.1)进⾏回代求解,即得⽅程组的解。
⼿算的过程是⾮常清楚的,现在需回答的是计算机求解,如何实现上述计算过程。
设线性⽅程组为1111221331121122223322112233n n n n n n n nn n na x a x a x a xb a x a x a x a x b a x a x a x a x b ++++=??++++=??++++= 写成矩阵形式为1112111212222221222m m m n n a a a x b aa a xb a a a x b=???????(1.1.2)设线性⽅程组如上式所⽰,记(1)A A =,(1)b b =,与是增⼴矩阵具有形式(1)(1)[][]A b A b =,此时⽅程组为(1)(1)A x b =。
第⼀次消元。
高斯消元法线性方程组的解法高斯消元法是一种常用于解决线性方程组的方法,能够有效地求解方程组的解。
它利用矩阵的初等行变换将方程组转化为简化的阶梯型矩阵,进而求得方程组的解。
本文将介绍高斯消元法的原理和步骤,并通过一个具体的例子来演示如何使用高斯消元法求解线性方程组。
一、高斯消元法的原理高斯消元法基于以下原理:通过矩阵的初等行变换,可以将线性方程组转化为行简化阶梯型矩阵,从而得到方程组的解。
其基本思想是通过逐行消元,将矩阵的主对角线以下的元素全部变为0,最终得到行简化阶梯型矩阵。
二、高斯消元法的步骤1. 将线性方程组的系数矩阵和常数矩阵合并为增广矩阵;2. 选择一个元素作为主元,并将该列的其他元素消为0;3. 逐行进行行交换,使主元非零;4. 重复上述步骤,直到将增广矩阵转化为行简化阶梯型矩阵。
三、高斯消元法的具体操作为了更好地理解高斯消元法,我们将通过一个具体的例子来演示其求解过程。
考虑以下线性方程组:```2x + 3y - z = 13x - 2y + 5z = -2x + y - z = 0```首先将系数矩阵和常数矩阵合并为增广矩阵:```[2 3 -1 | 1][3 -2 5 | -2][1 1 -1 | 0]```选择第一行的第一个元素2作为主元,通过初等行变换将主元所在列的其他元素消为0:```[2 3 -1 | 1][0 -13 7 | -5][0 -1 1 | -1]```接下来选择第二行的第二个元素-13作为主元,通过初等行变换继续消元:```[2 3 -1 | 1][0 1 -7/13 | 5/13][0 0 -6/13 | -8/13]```最后一次消元选择第三行的第三个元素-6/13作为主元:```[2 3 -1 | 1][0 1 -7/13 | 5/13][0 0 1 | 4/3]```现在我们得到了行简化阶梯型矩阵,接下来可以使用回代法求解方程组。
从最后一行开始,依次代入上一行的解,最终求得方程组的解为:```x = 5/6y = 3/2z = 4/3```四、总结高斯消元法是一种常用的线性方程组解法,通过矩阵的初等行变换将方程组转化为行简化阶梯型矩阵,进而求得方程组的解。
高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。
一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。
当右端常数项b 1,b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。
由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。
显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。