行测十字交叉法(自己总结的)
- 格式:pdf
- 大小:211.46 KB
- 文档页数:3
⾏测资料分析技巧:⼗字交叉法 任何⼀场考试取得成功都离不开每⽇点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测资料分析技巧:⼗字交叉法”,持续关注本站将可以持续获取更多的考试资讯!⾏测资料分析技巧:⼗字交叉法 ⼗字交叉法主要解决的就是⽐值的混合问题,在公务员考试的过程中,资料分析部分解题经常⽤的⼀种解题⽅法。
它应⽤起来快速、准确、⽅便,为我们考试中秒杀题⺫提供了很⼤的助⼒。
那么接下来跟⼤家⼀起来学习⼗字交叉法。
⼀、⼗字交叉法概述 ⼗字交叉法是解决⽐值混合问题的⼀种⾮常简便的⽅法。
这⾥需要⼤家理解“⽐值”“混合”这两个概念。
⽐值:满⾜C/D的形式都可以看成是⽐值;混合:分⼦分⺟具有可加和性。
平均数问题、浓度问题、利润问题、增⻓率问题、⽐重等混合问题,都可以⽤⼗字交叉法来解决。
⼆、⼗字交叉法的模型 在该模型中,需要⼤家掌握以下⼏个知识点: 1、a和b为部分⽐值、r为整体⽐值、A和B为实际量 2、交叉作差时⼀定要⽤⼤数减去⼩数,保证差值是⼀个正数,避免出现错误。
这⾥假定a>b 3、实际量与部分⽐值的关系 实际量对应的是部分⽐值实际意义的分⺟。
如:平均分=总分/⼈数,实际量对应的就是相应的⼈数;浓度=溶质/溶液,实际量对应的就是相应的溶液质量;增⻓率=增⻓量/基期值,实际量对应的就是相应的基期值。
4、在这⾥边有三组计算关系 (1)第⼀列和第⼆列交叉作差等于第三列 (2)第三列、第四列、第五列的⽐值相等 (3)第1列的差等于第三列的和 三组计算关系是我们应⽤⼗字交叉法解题的关键,⼀定要记住并且灵活应⽤。
三、四种考查题型 1、求a,即已知总体⽐值、第⼆部分⽐值、实际量之⽐,求第⼀部分⽐值。
例某班有⼥⽣30⼈,男⽣20⼈。
期中的数学考试成绩如下,全班总的平均分为76,其中男⽣的平均分为70。
求全班⼥⽣的平均分为多少? 解析:平均分=总分/⼈数,是⽐值的形式。
此题中,男⽣的平均分和⼥⽣的平均分混合成了全班的平均分,是⽐值的混合问题,可以⽤⼗字交叉法来解题。
一、十字交叉法的原理〔这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改〕首先通过例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。
方法一:搞笑〔也是高效〕的方法。
男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。
月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。
方法二:假设男生有X,女生有Y。
有〔X×75+Y×85〕/〔X+Y〕=80,整理有X=Y,所以男生和女生的比例是1:1。
月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。
男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。
月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。
总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有〔1-X〕。
AX+B〔1-X〕=CX=〔C-B〕/〔A-B〕1-X=〔A-C〕/A-B因此:X:〔1-X〕=〔C-B〕:〔A-C〕上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。
有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=〔X+Y〕*r整理有X〔x-r〕=Y〔r-y〕;所以有X:Y=〔r-y〕:〔x-r〕上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。
公务员行政职业能力测验考试每道题目平均做题时间约为50秒,时间紧,出题范围广,是考生公认的难度较大的考试。
而行测考试中的数量关系模块由于计算较多,难度较大成为众多考生的梦魇,因此必须转化思维,利用一些解题技巧来简化计算,提高解题速度。
十字交叉法在处理数学运算中的“加权平均问题”时可以明显简化运算,提高运算速度,本文就详细介绍一下十字交叉法的应用。
一、十字交叉法简介当数学运算题最终可以通过下式解出解出,我们就称这类问题为“加权平均问题”。
Aa+Bb=(A+B)r 此式可变化为A/B=(r-b)/(a-r)对于上式这种式子我们可以采用十字交叉的方法来计算,如下所示:A:a r-b\ /r =>A/B=(r-b)/(a-r)/ \B:b a-r二、适用题型十字交叉法最初在浓度问题上应用广泛,但在实际计算过程中,十字交叉法并没有将浓度问题有所简化,而是在以下几种题型中有更广泛的应用,解题速度也有明显提高。
1、数量分别为A与B的人口,分别增长a与b,总体增长率为r。
2、A个男生平均分为a,B个女生平均分为b,总体平均分为r。
3、农作物种植问题,A亩新品种的产量为a,B亩原来品种的产量为b,平均产量为r。
当然还有其他类似的问题,这类问题本质上都是两个不同浓度的东西混合后形成了一个平均浓度,这类问题都可以运用十字交叉法快速解题。
三、真题解析例1、某市现有70万人,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()A、30万B、31.2万C、40万D、41.6万解析:城镇人口:4% 0.6% x\ /4.8%/ \农村人口:5.4% 0.8% 70-x所以0.6%/0.8%= x/(70-x),解得x=30,所以答案为A。
例2、某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()。
A.84分B.85分C.86分D.87分解析:男生:x 1.2x-75 1.8\ /75/ \女生:1.2 x 75-x 1所以有(1.2x-75) /(75-x)=1.8,解得x=70,所以女生平均分为70×1.2=84,答案为A。
2014京考公务员行测备考数量关系之十字交叉法国考行测考试历来被认为是公务员考试中难度最大的一个模块,其中最难的模块之一是数量关系,在数量关系这个模块中,题型多,方法多,短时间内不易掌握,今天,华图教育李冲来带您一起回顾数量关系中的经典方法之十字交叉法:一、初始十字交叉法:“十字交叉法”本身是数学运算中经典的技巧之一,对于符合使用条件的试题几乎有“秒杀”的效果,“十字交叉法”实际上方程的一种简化形式,凡是符合下图方程形式,都可以使用“十字交叉法”的形式来简化:二、真题回顾【例1】某养鸡场计划购买甲、乙两种小鸡苗共2000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元。
相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%。
若要使这批小鸡苗的成活率不低于96%,且买小鸡苗的总费用最小,则应选购甲、乙两种小鸡苗各有( )。
A. 500只、1500只B. 800只、1200只C. 1100只、900只D. 1200只、800只【华图解析】:采用十字交叉法操作:甲乙两种小鸡的数量比为3:2,因此,本题答案为D选项。
【例2】某单位共有职工72人,年底考核平均分数为85分,根据考核分数,90分以上的职工评为优秀职工,已知优秀职工的平均分数为92分,其他职工的平均分数是80分,问优秀职工的人数是多少?( )A.12B.24C.30D.42【华图解析】:根据题意,假设优秀职工的人数为x,非优秀职工的人数为y,则依据十字交叉原理有:则优秀职工:非优秀职工=5:7,总的人数为72人,故优秀职工的人数为30,则答案选择C十字交叉法在特定的题型里面有很好的应用,因此要熟练掌握十字交叉法适用的前提及做法,希望各位考生能够在考场中轻松应对!行测推理类题目技巧解析分析推理类题目是直接考察人的分析能力和推理能力的一种题型,要想快速准确的得出答案,这就要求广大考生必须要有一个清晰的解题思路。
然而,对于该类题目,很多同学往往没有一个清晰的解题思路,以致于出现不知道如何寻找解题的突破口这种状况,面对考题胡乱推理,不仅做题速度慢,有时,甚至找不出正确答案。
r快速解题妙招——十字交叉法中公教育研究与辅导专家 郭巧梅大家好,给大家介绍一下,这是我的十字交叉法。
在所有类型的行测考试中,计算问题一直是困扰考生的一大瓶颈。
如果对于各种类型的题目不加以区分一味的用方程法来求解,必然会付出计算时间的代价。
为了帮助大家更好的分析题型,有针对性的进行求解,提高做题的效率和正确率,下面就题型特征的判断和解题过程以及需要注意的问题为大家一一介绍。
众里寻他千百度,如何在众多题目中快速判断哪些题目能用十字交叉法呢?那么大家就需要对题型特征有所了解了,十字交叉法解决的是混合比值问题,在这里大家需要注意三个问题。
1、“混合”指整体是由一个部分和另一个部分混合后得到的;2、“比值”指讨论的是平均分、浓度、比重等比值问题,可记为B A 的形式;3、“比值混合”指比值必须具有可加性,如平均分=人数总分,而对于混合的两个部分而言,男生总分+女生总分=全班总分,男生人数+女生人数=总人数,分子和分母都是具有可加性的。
掌握了如何分辨题目能否使用十字交叉法来求解,那么下面就来具体看看求解的方法吧。
十字交叉法的解题模型共分两行五列,设a>b ,则有部分比值 混合比值 交叉作差 最简比 实际量部分1 a r-b m A部分2 b a-r n B其中,存在如下的关系:①第一列和第2 列交叉作差等于第3 列②第3、4、5列的比值相等③第1列的差等于第3列的和不论已知左侧、中间和右侧中任意两个位置的量,都可以求出另一位置的对应数值,而且计算的速度要远快于方程法,不可不谓之高效。
大家可以通过一道例题来感受一下。
例1.有若干克4%的盐水,蒸发了一些水分后变成了10%的盐水,再加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少克?A.200B.300C.400D.500【答案】D 。
解析:利用十字交叉法进行求解,可得6.4%1-31%部分比值 混合比值 交叉作差 最简比 实际量10%盐水 10% 2.4% 2 2004%盐水4% 3.6% 3 300则最初的盐水质量为200×10%÷4%=500克【考点点拨】利用十字交叉法可以很大程度的减少计算量,快速得到正确答案。
国家公务员考试行测备考:十字交叉法
国家公务员考试行测备考:十字交叉法
十字交叉法主要解决公务员考试行测数量关系中的混合平均量问题,运用过程中往往涉及到五列数字:第一列:部分的平均量;第二列:总体的平均量;第三列:部分平均量与总体平均量交叉做差的差值;第四列:差值的最简比;第五列:求得部分平均量的分母所对应的实际量。
若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量,是解决数量关系问题中非常实用的一种方法,下面中公教育专家为大家进行详细讲解。
一、两者十字交叉
常见题型一:平均分问题
[模板] 已知一个班级,男生人数为x 人,平均分为A,女生人数为 y 人,平均分为 B,求这个班级的总体平均分。
(A>B)
[例题] 某学校对其120 名学生进行随机抽查体能测验,平均分是73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?
A.70
B.80
C.60
D.85
常见题型二:溶液问题
【模板】已知A瓶溶液的浓度为 A%,B瓶的溶液浓度为 B%,分别取 x 和 y 份进行混合,求得到的溶液浓度为多少。
(A>B) 【例题】已知在浓度为90%的甲瓶中取40g 溶液,在浓度为60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少?
A.75%
B.80%
C.85%
D.90%。
一、十字交叉法的原理(这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改)首先通过例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。
方法一:搞笑(也是高效)的方法。
男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。
月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。
方法二:假设男生有X,女生有Y。
有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。
月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。
男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。
月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。
总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。
有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=(X+Y)*r整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。
2016四川公务员笔试行测解答技巧:十字交叉法运用技巧
四川公务员考试行政职业能力测验主要测查从事公务员职业必须具备的基本素质和潜在能力,通过测试选拔出能够胜任公共管理工作的优秀人才。
测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。
更具体的,我们来看看四川公务员考试课程是如何设置教学的。
点击这里可以>>>在线咨询。
十字交叉法是利用“交叉十字”来求两个部分混合后平均量的一种简便方法。
适用范围:十字交叉法一般只用于两个部分相关的平均值问题,且运用的前提已知总体平均值r。
使用原则:第一部分的平均值为a,第二部分的平均值为b(这里假设
a>b),混合后的平均值为r。
解题步骤:
1.找出各个部分平均值和总体平均值;
2.平均值间交叉作差,写出部分对应量或对应量的比;
3.利用比例关系解答。
例题:某市气象局观测发现,今年第一、二季度本市降水量分别比去年同期增加了11%和9%,而两个季度降水量的绝对增量刚好相同。
那么今年上半年该市降水量同比增长多少?
A.9.5%
B.10%
C.9.9%
D.10.5%
解析:利用十字交叉法,设该市上半年降水量总体增长为x%
因此,去年一二季度降水量之比为(x-9)∶(11-x)。
根据绝对增量相等可。
行测冲刺巧用十字交叉法在备战行测考试中,复习时间有限,如何更高效地掌握各个知识点成为考生们共同面临的问题。
而在此过程中,十字交叉法成为了一种行之有效的复习方法。
本文将介绍行测冲刺阶段,如何巧用十字交叉法来进行针对性的复习,从而提高备考效果。
一、什么是十字交叉法十字交叉法是一种系统性的复习方法,通过分析不同知识点之间的关联和交叉,帮助考生全面理解各个知识点,并且快速记忆,有助于形成知识网络。
其核心思想是将各个知识点画成一个个节点,然后通过交叉线连接,形成一个复习图谱,方便考生进行查漏补缺和联想记忆。
二、如何巧用十字交叉法进行行测冲刺1. 确定核心知识点在行测冲刺阶段,时间有限,需要将注意力集中在核心考点上。
根据往年真题和教材内容,确定你觉得重要的知识点,将其列为核心知识点。
例如,言语理解与表达、判断推理、数量关系、资料分析等是行测考试中常出现的题型和知识点。
2. 绘制十字交叉法图谱将核心知识点绘制成十字交叉法图谱。
首先,在纸上绘制一个大十字图,将行测考试的核心知识点写在四个方向上。
然后,在每个节点中,进一步细分相关的知识点,并通过交叉线连接。
例如,在言语理解与表达节点下,可以写入同义词、反义词、词义辨析、修辞手法等相关知识点。
3. 建立知识网络通过绘制十字交叉法图谱,不仅可以直观看到各个知识点之间的联系,还可以帮助建立知识网络。
在每个节点中,不仅可以写入具体的知识点,还可以附带相关例题、解题方法和技巧。
例如,在数量关系节点下,可以写入数列、概率、几何等具体的知识点,并在每个知识点旁边写入例题和解题思路。
4. 查漏补缺和联想记忆。
“十字交叉”法做为数学运算中常用的一种解题思想。
一般情况下,我们是在“溶液问题”中引入“十字交叉法”,我们简单把“十字交叉”法的原理重述一遍。
例:重量分别为 A 和 B 的溶液,浓度分别为 a 和b,混合后的浓度为 r。
例: A 个男生的平均分为 a, B 个女生的平均分为 b,总体平均分为 r 。
上述两个例子,我们均可以用如下的关系表示:(此处假设 a>b)上述“十字交叉”法的操作过程很简单,但是碰到类似的题目,学生很难把握 A 到底放哪个量,因此就很难将复杂的计算转化成简单的“十字交叉”法来操作。
如果学生能理解“十字交叉”法到底适合哪类题型,并且记住接下来讲的做题套路,就可以从“战略”层次提升“十字交叉”法的应用。
从上边的两个例子,我们可以看出,只要一个整体由两个部分构成,题目涉及到某个量在各部分中的比例,以及这个量在整体中的比例,即“混合”问题,均可思考用“十字交叉”法来操作。
而对于 A 到底放哪个量,我们可以观察:第 1 个例题, A 是一种溶液的质量,所以 A 是 a 的分母,同样 B 是 b 的分母。
对于第 2 个例题, A 是男生的总人数,同样 A 是a 的分母,同理 B 是 b 的分母。
综上,大家只要记住“十字交叉”法大家在操作时, A 就是 a 的分母, B 是 b 的分母,这样就很容易把“十字交叉”法的各个量放到操作模型中了。
【例题 1】现有含盐 20%的盐水 500g,要把它变成含盐 15%的盐水,应加入 5%的盐水多A.200B.250C.350D.500【答案】 B【解析】这是一道非常典型的溶液问题,溶液由两部分构成,我们可以用“十字交叉”法来操作,如下:【例题 2】一只松鼠采松子,晴天每天采 24 个,雨天每天采 16 个,它一连几天共采168 个松子,平均每天采 21 个,这几天当中晴天有几天?A.3B.4C.5D.6【答案】 C【解析】本题是典型的一个整体由两个部分组成。
一、十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。
(一)原理介绍通过一个例题来说明原理。
例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。
求该班男生和女生的比例。
方法一:男生一人,女生一人,总分160分,平均分80分。
男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。
方法三:男生:75 580女生:85 5男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:X A C-BC1-X B A-C这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5B.1:3C.1:4D.1:5答案:C分析:男教练:90%2%82%男运动员:80%8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1B.3∶2 C. 2∶3D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:58030600女职工工资:63020男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。
2018国考行测备考:解题有妙法,“十字交叉”轻松把分拿通过国家公务员考试资讯,了解到行测是国家公务员考试的公共科目之一,从2015年开始,行测实行分级分类考试,分为省级以上和副省及以下两套试卷,跟申论同步。
均为客观性真题,考试时限120分钟,满分100分。
从近两年国家公务员考试的行测考试内容来看,“省级以上”总题量为135道,“副省及以下”总题量130道。
主要差别在数量关系题和资料分析题。
中公教育专家认为,这种考查形式已经基本稳固下来,处于有章可循的状态。
下面,宁夏中公教育整理了公考资料大全供考生备考学习。
需要更多指导,请选择在线咨询一对一解答。
如何巧用“十字交叉法”去解题,关键在于彻底了解“十字交叉法”的模型。
“十字交叉法”模型主要由5列组成:部分比值总体比值交叉做差最简比值实际量(第一列分母之比)在这个模型中,考生需要牢记的就是十字交叉做差之后形成的最简比值,是第一列的分母之比。
那接下来,我们就利用“十字交叉法”去解决一些四川省公务员考试真题。
一、数量关系中“十字交叉法”的运用例1)甲乙两队举行智力抢答比赛,两队平均得分为92分,其中甲队平均得分为88分,乙队平均得分为94分,则甲乙两队人数之和可能是( )。
A.20B.21C.23D.25【中公解析】根据“两队平均得分为92分,其中甲队平均得分为88分,乙队平均得分为94分”可知是一道比值混合问题,利用“十字交叉法”:最后得出的最简比1:2为甲乙两队的人数之比,因此甲乙两队的人数和能被3整除,选项中能被3整除数,只有B选项21人。
选B。
例2)某高校艺术学院分音乐系和美术系两个系别,已知学院男生人数占总人数的30%,且音乐系男女生人数之比为1:3,美术系男女生人数之比为2:3,问音乐系和美术系的总人数之比为多少()。
A.5:2B.5:1C.3:1D.2:1中公教育宁夏公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!国家公务员考试题库邀请您一同刷题!。
行测十字交叉法原理解析面向学生同学们,今天咱们来聊聊行测里特别有用的十字交叉法。
比如说,有两种不同浓度的盐水混合在一起,想知道混合后的浓度,这时候十字交叉法就派上用场啦!就像有一瓶 10%浓度的盐水 20 克,还有一瓶 20%浓度的盐水 30 克,把它们混在一起,浓度是多少呢?用十字交叉法,先算出两种盐水里盐的质量,10%浓度的盐水中盐有 2 克,20%浓度的盐水中盐有 6 克,总共 8 克盐,盐水一共 50 克,混合后的浓度就是 16%。
这样一用,是不是感觉特别简单?多做几道题练练,这种方法就能熟练掌握啦!面向上班族亲,咱们来说说行测里的十字交叉法。
这方法在好多题目里都能让咱们快速找到答案。
比如说,公司里销售部门有两组人,一组平均业绩是 8 万,另一组平均业绩是 12 万,现在知道两组人的人数比,就能很快算出整个部门的平均业绩。
假设第一组有 3 个人,第二组有 2 个人,用十字交叉法,很容易算出整个部门的平均业绩是 9.6 万。
是不是比一点点去算方便多啦?学会这招,行测做题能节省不少时间呢!面向公务员备考者兄弟姐妹们,行测里的十字交叉法可得好好掌握。
举个例子,一次招聘考试,男生的平均分数是 70 分,女生的平均分数是 80 分,知道男女生的人数比例,就能算出所有人的平均分。
假如男生人数是女生的 2 倍,用十字交叉法一算,所有人的平均分就是 73.3 分。
这方法能让咱们在行测考试里又快又准地答题,大大提高得分的机会。
加油练起来,争取考试取得好成绩!面向大众朋友们,今天给大家讲讲行测里的十字交叉法。
比如说买水果,一种苹果 5 元一斤,另一种 8 元一斤,如果两种各买一些混在一起,想知道平均一斤多少钱,用十字交叉法就能轻松搞定。
假设买 5 元一斤的苹果 3 斤,买 8 元一斤的苹果 2 斤,通过十字交叉法,很快能算出混合后平均一斤 6.2 元。
是不是很实用?学会这个方法,在很多类似的情况中都能派上用场呢!。
公务员⾏测资料分析技巧:⼗字交叉法 ⾏测资料分析技巧有哪些?正在备考⾏测考试的朋友可以来看看,下⾯由店铺⼩编为你准备了“公务员⾏测资料分析技巧:⼗字交叉法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯! 公务员⾏测资料分析技巧:⼗字交叉法 在⾏测资料分析中应⽤时,主要有三层结论,前两层结论主要⽤于定性判断,⽽第三层结论⽤于定量计算。
在前两篇⽂章中,我带着考⽣们分别探讨了⼗字交叉法在资料分析中的应⽤环境以及两层应⽤技巧,今天带⼤家⼀起来学习学习资料分析的最后⼀层应⽤,定量计算: 结论⼀:整体平均数处在部分平均数之间,即部分平均数有些⽐整体平均数⼤,有些⽐整体平均数⼩。
结论⼆:整体平均数靠近“分⺟”较⼤的那个分平均。
结论三:求部分量分⺟之⽐ 今天我们要讨论的结论三,关于它的内容表述⽅式和前两种有所不同,我们上⾯的⿊字是在说明它的作⽤,是⽤来求部分量的分⺟之⽐。
⽽具体怎么求,因为不太好⽤⼀句话的⽂字表述。
所有并没有表述在上⾯的⿊体字中。
具体内容展开详解: 1.解决问题:求部分量分⺟之⽐ 我们知道,⼗字交叉法是⽤来解决研究整体平均数和部分平均数之间的关系的题⺫的。
⽐如进出⼝总额的增⻓率和进⼝与出⼝的增⻓率,就分别是整体平均数和部分平均数。
由于任何⼀个平均数都是除法计算得来,⽐如出⼝的增⻓率=出⼝的增⻓率/出⼝的基期量、进⼝的增⻓率=进⼝的增⻓率/进⼝的基期量,则每⼀个平均数在求解时都有其分⺟。
当⼀个整体只分成两个部分,如果题⺫让我们求这两个部分的平均数,分⺟的量的⽐,即为求部分量分⺟之⽐,也就是我们结论三的应⽤环境。
如下题: 例题:2018年某市中学⽣有13.2万⼈,增⻓率1.2%,其中⼥⽣⼈数增⻓了0.8%,男⽣⼈数增⻓了1.5%。
问:2017年该市中学⽣男⽣⼈数与⼥⽣⼈数的⽐例是?A.4:3B.3:4C.5:5D.5:6 解析:题⺫中的“平均数”概念是增⻓率,全体中学⽣⼈数和⼥⽣⼈数男⽣⼈数构成了整体和部分间的关系。
2018年河南公务员行测--数量关系备考之十字交叉法在2018年河南公务员备考中,数量关系一直以来都是考生比较头疼的题型,不乏有考生直接对其放弃。
然而,在这里,我要说的是,数量关系并不难,只要找对了方法和技巧是完全可以实现快速解答的。
下面,小编给大家介绍一种贯穿于数量关系中的比较经典的技巧—十字交叉法,对于符合条件的试题有近乎“秒杀”的效果。
十字交叉法是什么?十字交叉法实际上是一种方程计算过程中的简化形式,凡是题目中的量满足下图左边方程式的形式,均可采用右边的“十字交叉法”。
十字交叉法怎么用?一般来说,十字交叉法主要应用在类似于两个不同的数值混合在一起形成新的“平均值”的问题,题干中往往会出现溶液混合、平均数混合或增长率混合等。
例1:车间共有40人,某次技术操作考核的平均成绩为80分,其中男工的平均成绩为86分,女工的平均成绩为78分,该车间有女工多少人?( )A.16B.24C.25D.30【解析:】由题可知:男工人数X男工平均分+女工人数X女工平均分=总人数X平均分满足Aa + Bb=(A+B)r的形式,故可以采用十字交叉法:即男工:女工=1:3,相当于把总人数分成了四份,女工人数占了3份,故女工人数=40*3/4=30,故答案选择D。
例2:某高校艺术学院分音乐系和美术系两个系别,已知学院男生人数占人数的30%,且音乐系男女生人数之比为1:3,美术系男女生人数之比为2:3,问音乐系和美术系的总人数之比为多少?A.5:2B.5:1C.3:1D.2:1【解析:】由题可知,题目中的量满足:音乐系人数X音乐系男生比例+美术系人数X 美术系男生比例=学院总人数X学院男生比例即Aa + Bb=(A+B)r的形式,故可以采用十字交叉法,由于音乐系男女生人数之比为1:3,美术系男女生人数之比为2:3,故相当于音乐系男生占音乐系总人数的1/4=25%,美术系男生占美术系总人数的2/5=40%,利用十字交叉求解如下:因此音乐系人数:美术系人数=2:1,故答案选择D。
2019国考行测答题技巧之资料分析解题技巧的十字交叉法2019国考行测答题技巧之资料分析解题技巧的十字交叉法。
在行测备考中我们既要巩固旧知识,又要学习一些新的快速解题技巧,方便在考试中能快速解题,而在资料分析中就有这么一类题型可以通过学习快速秒杀,这就是十字交叉法求混合增长率或者部分增长率问题。
一、含义:十字交叉法是资料分析中常用的一种判断增速的解题技巧,简单估算,或者无需计算即可确定答案。
二、题型展示:例1.2013年3月末,主要金融机构及小型农村金融机构、外资银行人民币房地产贷款余额12.98万亿元,同比增长16.4%。
地产开发贷款余额1.04万亿元,同比增长21.4%。
房产开发贷款余额3.2万亿元,同比增长12.3%。
个人购房贷款余额8.57万亿元,同比增长17.4%。
保障性住房开发贷款余额6140亿元,同比增长42.4%。
问题:2013年3月末,房地产开发贷款余额同比增速约为:A.12.3%B.14.4%C.19.3%D.21.4%【答案】B。
解析:由于题目所求统计项目的相关数据在材料中都没有直接给出,所以不能通过计算得到,而题目给出了地产开发贷款余额及其增长率和房产开发贷款余额及其增长率,房地产开发贷款余额=房产开发贷款余额+地产开发贷款余额。
这是一道已知部分增长率,求混合增长率的题目,则可以判断房地产开发贷款余额同比增速介于房产和地产同比增速之间,即12.3%~21.4%。
排除A、D两项。
问题:2014年6~9月江苏粗钢产量同比增长率最低的月份是:A.6月B.7月C.8月D.9月【答案】C。
解析:由折线图结合十字交叉可知,6月粗钢产量的同比增长率大于9.3%,7月的大于9.5%,8月的小于9.3%,9月的增长率为9.3%,则增长率最小的是8月。
以上就是关于2019国考行测答题技巧之资料分析解题技巧的十字交叉法的讲解,通过上面的几个例子我们可以发现,在资料分析中往往会遇到求部分量或者混合量的增长率,但是题目却没有给出相关数据去计算,就可以直接利用十字交叉法,既快速又准确的求出正确答案。
十字交叉法求解经济利润问题在近几年的公务员行测考试中,经济利润问题频频受到命题专家的青睐,可以说是国考和联考必考题型之一。
而且,经济利润题目,贴近生活,题目难度适中,是容易拿分的题目。
所以,考生要注重对经济利润问题的学习。
本文主要是介绍十字交叉法求解经济利润问题,希望能给广大小伙伴们有所启发,在考试遇到此类题目时,将这关键的一分拿下。
首先,给大家简单回顾一下十字交叉法的内容:“十字交叉”法例:重量分别为A 和B 的溶液,浓度分别为a 和b ,混合后浓度为r 。
例:数量分别为A 和B 的人口,分别增长a 与b ,总体增长为r 。
例:A 个男生的平均分为a ,B 个女生的平均分为b ,总体平均分为r 。
类似于上面的问题,可以列出下列公式:()A r b Aa Bb A B r B a r -+=+⇒=-以上问题称之为“加权平均问题”,可以采用十字相乘法.通过上面对于十字交叉法的介绍,我们可以得出:十字交叉法主要适用于溶液混合问题、人口增长问题以及平均数问题。
其实,在我们经济利润问题中的部分打折问题也可以使用十字交叉法。
我们先来看一道题目:【例1】某家具店购进100套桌椅,每套进价200元,按期望获利50%定价出售,卖掉60套桌椅以后,店主为了提前收回资金,打折出售余下的桌椅,售完全部桌椅以后,实际利润比期望利润低了18%,问余下的桌椅是打几折销售的?A.七五折B.八二折C.八五折D.九五折很明显这是一道经济利润中的部分打折问题,根据题目已知我们知道100套桌椅,60套按定价出售,利润率为50%;此外,100套桌椅总的利润率我们可以计算出来。
这样,就可以利用十字交叉法将另外打折的40套的利润率算出来,进而求出其具体的折扣,具体解答如下:根据题目已知,算得桌椅全部售出实现的利润率为50%×(1-18%)=41%。
设余下的40套桌椅打折后实现的利润率为x%,由十字交叉法,60 50% (41-x)%41% 6040=(41)%9%x,由此可以得到,x=27.5%40 x% (50-41)%注意:用十字交叉法算出的是余下40套桌椅的利润率。
行测技巧:十字交叉法解决比值混合问题十字交叉法是行测考试中最常用的方法之一,其解决的问题主要是“比值”的混合问题。
“比值”可以是平均数、浓度、利润率、增长率、折扣、比重等。
可见,十字交叉法的应用相当广泛,是考生必须掌握的方法之一。
中公教育专家认为,掌握十字交叉法的应用环境、本质、组成部分是快速解题的关键,另外部分题目需要注意十字交叉法的比例本质。
1、应用环境:多个“比值”的混合问题。
“比值”可以是平均数、浓度、利润率、增长率、折扣、比重等。
2、十字交叉法的本质:与平均数比较,多的总量与少的总量保持平衡。
3、十字交叉法的五个部分:①部分比值②总体比值③交叉得差④最简比⑤实际比。
4、左边的“比值”交叉得到的比例为“比值”的分母之比。
例1、某公司男员工平均年龄32岁,女员工平均年龄26岁,所有员工平均年龄30岁,问男女员工比例?A、2∶1B、1∶2C、3∶2D、2∶3答案:A。
【中公解析】:一个男员工平均年龄比所有员工平均年龄多2,一个女员工平均年龄比所有员工平均年龄少4,所以每4个男员工多8,每2个女员工少8,盈余的总量和亏损的总量保持平衡,所以男女比例为4∶2=2∶1。
用十字交叉法表示成:例2、有浓度为4%的盐水若干克,蒸发一些水分后浓度变成10%,再加入300克4%的盐水后,浓度变为6.4%,问最初的盐水有多少克?A、200B、300C、400D、500答案:D。
【中公解析】:将浓度看成比值,用十字交叉法求出10%溶液的用量。
所以10%溶液有200克,蒸发前后溶质相等,10%×200克÷4%=500克。
例3、学校体育部采购一批足球和篮球,足球和篮球的定价分别为每个80元和100元,由于购买数量较多,商店分别给予优惠足球25%、篮球20%的折扣,结果共少付了22%。
问购买的足球和篮球的数量之比是多少?A、4∶5B、5∶6C、6∶5D、5∶4答案:B。
【中公解析】:将折扣看成比值,折扣=售价/定价,则十字交叉法得到的比例为定价之比,而定价=单价×数量,设足球和篮球的数量分别为x和y。
行测什么时候用十字交叉法
公务员行测考试数学运算这部分, 经常要用到十字交叉法. 虽然很多里书和网页上写了很多关于十字交叉法, 但是目前还很少有人对什么情况下可以用十字交叉法来快速解题作出具体的叙述. 大多数只是针对某些问题给出解题方法. 对于十字交叉法具体的原理还没有做进一步详细的说明, 即使作了描述, 也比较抽象, 比如什么加权平均等. 为了使得对能否用十字交叉法作出迅速的判断, 我们将在本文里面就其中的原理作出简单明了的阐述以及给出判断的表达式, 然后给出具体的例子来说明它的应用以及相关的练习.希望大家看过本文之后不再对十字交叉法感到束手无策!!
我们先给出十字交叉法的原理, 就是什么情况下我们就可以用十字交叉法.
如果题目中给出两个平行的情况A, B, 满足条件a, b ; 然后A 和B 按照某种条件混合在一起形成的情况C, 满足条件c. 而且可以表示成如下的表达式. 那么这个时候就可以用十字交叉法. 判断式: A*a+B*b=(A+B)*c=C*c
用十字交叉法表示
:
A a c-b
c A/B=(c-b)/(a-c).
B b a-c
我们常见利用十字交叉法的情形有: 溶液混合问题, 增长率问题, 收益率问题, 平均数问题等.
【例1】一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐( )克。
A.14.5
B.10 C .12.5 D.15
20% , 200/x= (100%-20%)/(20%-15%)=80/5
x 100% 20%-15%
解出x=12.5克.
【例2】一块试验田,以前这块地所种植的是普通水稻。
现在将该试验田的1/3种上超级水稻,收割时发现该试验田水稻总产量是以前总产量的1.5倍。
如果普通水稻的产量不变,则超级水稻的平均产量与普通水稻的平均产量之比是()。
A. 5∶2
B. 4∶3
C. 3∶1
D. 2∶1
【解析】假设超级水稻的产量是x, 普通水稻的产量是1; 超级水稻是1/3, 普通水稻是2/3; 产量分别是x, 1; 那么混合就是1,产量是1.5,满足1/3*x+2/3*1=(1/3+2/3)*1.5, 所以可以利用十字交叉法.
1/3 x 1.5-1
1.5 , (1/3)/ (2/3)=(1.5-1)/(x-1.5). 解出x=
2.5, 比是2.5:1=5:2.
2/3 1 x-1.5
【例3】在一次法律知识竞赛中,甲机关20人参加,平均80分,乙机关30人参加,平均70分,问两个机关参加竞赛的人总平均分是多少?
A.76 B.75 C.74 D.73
【解析】假设总平均成绩是x, 满足20*80+30*70=(20+30)*x,所以可以用十字交叉法做.
20 80 x-70
x , 20/ 30=( x-70)/ 80-x). 解出x=74分.
30 70 80-x
【例4】某市现有人口70万, 如果5年后城镇人口增加4%, 农村人口增加5.4%, 则全市人口将增加
4.8%, 那么这个市现有城镇人口多少万?
A.30万
B.31.2万
C.40万
D.41.6万
【解析】假设现有城镇人口x万, 农村人口70-x万,满足: 4%*x+5.4%*(70-x)=(x+70-x)*4.8%
所以可以用十字交叉法.
x 4% 5.4% -4.8%
4.8% , x/ (70-x)=(
5.4% -4.8%)/ (4.8%-4%). 解出x=30.
70-x 5.4% 4.8%-4%
练习
1.一批商品,按期望获得50%的利润来定价,结果只销掉70%的商品,为了尽快把剩下的商品全部卖出,商店决定按定价打折扣出售,这样所获得的全部利润是原来期望利润的82%,则打了多少折出售?( )
A. 八折
B. 八五折
C. 九折
D. 九五折
2. 把浓度为20%、30%和50%的某溶液混合在一起,得到浓度为36%的溶液50升。
已知浓度为30%的溶液用量是浓度为20%的溶液用量的2倍,浓度为30%的溶液的用量是多少升?( )
A.18
B.8
C.10
D.20
3.某车间进行季度考核,整个车间平均分是85分,其中2/3的人得80分以上(含80分),他们的平均分是90分,则低于80分的人的平均分是多少? ( )
A.68 B.70 C.75 D.78
4.某工厂有A,B两个车间,A车间男占90%,B车间男占80%, A和B车间男占82%, 问A,B车间人数之比( )
A.2:5 B.1:3 C.1:4 D.1:5
希望大家平时对十字交叉方法要加强联系, 要熟练这种方法. 而且经过做一定量的练习题之后要能够达到看到题目就能想到能否用十字交叉法来快速解决, 而不再需要借助判断式A*a+B*b=(A+B)*c 来判断,这样才能达到公务员考试的要求。