各种排序算法总结(C语言版)
- 格式:ppt
- 大小:480.00 KB
- 文档页数:35
C语⾔数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插⼊法排序、折半法排序⽂章⽬录1、选择法排序选择法排序是指每次选择索要排序的数组中的最⼩值(这⾥是由⼩到⼤排序,如果是由⼤到⼩排序则需要选择最⼤值)的数组元素,将这些数组元素的值与前⾯没有进⾏排序的数组元素值进⾏互换代码实现需要注意的是:声明⼀个数组和两个整形变量,数组⽤于存储输⼊的数字,⽽整形变量⽤于存储最⼩的数组元素的数值与该元素的位置,在我的代码中实现为a[] temp position。
代码具体如下#include<stdio.h>int main(){int m,n,k;printf("please input the length of the array:");scanf("%d",&k);int a[k];int temp;int position;printf("please input the number of the array:\n");for(m=0;m<k;m++){printf("a[%d]=",m+1);scanf("%d",&a[m]);}/*从⼩到⼤排序*/for(m=0;m<k-1;m++){temp=a[m]; //设置当前的值为最⼩值position=m; //记录当前的位置for(n=m+1;n<k;n++){if(a[n]<temp){temp=a[n]; //如果找到⽐当前的还要⼩的数值,则更换最⼩的数值与位置position=n;}}a[position]=a[m];a[m]=temp;}for(m=0;m<k;m++){printf("%d\t",a[m]);}return 0;}结果如下2、冒泡法排序冒泡法排序就是值在排序时,每次⽐较数组中相邻的两个数组元素的值,将⽐较⼩的(从⼩到⼤排序算法,如果是从⼤到⼩排序算法就是将较⼤的数排在较⼩的数前⾯)排在⽐较⼤的前⾯在代码实现的过程中:声明⼀个数组与⼀个整型变量,数组⽤于存放数据元素,整型变量⽤于交换时作为中间变量。
C语言经典算法大全1.冒泡排序算法冒泡排序是一种简单但低效的排序算法,它通过多次遍历列表,比较相邻元素并交换位置,直到整个列表有序。
冒泡排序的时间复杂度为O(n^2)。
```void bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])//交换元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```2.选择排序算法选择排序是一种简单但高效的排序算法,它通过多次遍历列表,找到最小元素并将其放置在正确的位置上。
选择排序的时间复杂度也为O(n^2)。
```void selectionSort(int arr[], int n)int minIndex, temp;for (int i = 0; i < n-1; i++)minIndex = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[minIndex])minIndex = j;}}//交换元素temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}```3.插入排序算法插入排序是一种简单但高效的排序算法,它通过将未排序的元素插入到已排序的列表中,逐步构建排序好的列表。
插入排序的时间复杂度为O(n^2)。
```void insertionSort(int arr[], int n)int i, key, j;for (i = 1; i < n; i++)key = arr[i];j=i-1;while (j >= 0 && arr[j] > key)arr[j + 1] = arr[j];j=j-1;}arr[j + 1] = key;}```4.快速排序算法快速排序是一种高效的排序算法,它通过选择一个主元,将列表分割为两个子列表,其中一个子列表的所有元素都小于主元,另一个子列表的所有元素都大于主元。
c语言中排序的各种方法解析一、引言在计算机编程中,排序是一个重要的操作,它按照一定的顺序排列数据元素,使得数据元素按照从小到大的顺序排列。
在C语言中,有多种方法可以实现排序,包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些排序算法都有各自的优缺点,适合不同的应用场景。
二、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
算法步骤:1. 比较相邻的元素。
如果第一个比第二个大(升序),就交换它们两个。
2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。
这步做完后,最后的元素会是最大的数。
3. 针对所有的元素重复以上的步骤,除了最后一个。
4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
三、选择排序选择排序是一种简单直观的排序算法。
它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。
算法步骤:1. 在未排序序列中找到最小元素,存放到排序序列的起始位置。
2. 再从剩余未排序元素中继续寻找最小元素,然后放到已排序序列的末尾。
3. 以此类推,直到所有元素均排序完毕。
四、插入排序插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
五、快速排序快速排序使用了分治的原则,它在每一层划分都比前面方法有所改进和精进,当切分到两边的子序列长度都大于某个值时,或者一个大于一个小于这个值时再进行交换的操作来结束此层的递归过程。
这层的结果又成为下一层的两个子数组来处理,最后就得到递归式的最终结果。
各种排序算法代码(C语⾔版)选择排序#include <stdio.h>/** 选择排序* 稳定性:不稳定* 时间复杂度:O(N^2)**/void select_sort(int a[], int l, int r){for (int m_v, m_idx, t, i = l; i < r; ++i) {m_v = a[i]; m_idx = i;for (int j = i + 1; j < r; ++j) {if (m_v > a[j]) {m_v = a[j];m_idx = j;}}t = a[i]; a[i] = a[m_idx]; a[m_idx] = t;}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]);select_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);return0;}冒泡排序#include <stdio.h>/** 冒泡排序* 稳定性:稳定void bubble_sort(int a[], int l, int r){for (int i = l; i < r; ++i) {for (int j = l; j < r - i - 1; ++j) {if (a[j] > a[j + 1]) {int tmp = a[j];a[j] = a[j + 1];a[j + 1] = tmp;}}}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]); bubble_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);return0;}插⼊排序#include <stdio.h>/** 插⼊排序* 稳定性:稳定* 时间复杂度: O(N^2)**/void insert_sort(int a[], int l, int r){for (int tmp, j, i = l + 1; i < r; ++i) {tmp = a[i], j = i - 1;while (j >= l && tmp < a[j]) a[j+1] = a[j--]; a[j+1] = tmp;}}int main(void){for (int i = 0; i < n; ++i) scanf("%d", &a[i]); insert_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);return0;}希尔排序#include <stdio.h>/** 希尔排序* 稳定性:不稳定* 时间复杂度:O(N*logN)**/void shell_insert_sort(int a[], int l, int r, int d) {for (int tmp, j, i = l + d; i < r; ++i) {tmp = a[i], j = i - d;while (j >= l && tmp < a[j]) {a[j + d] = a[j];j -= d;}a[j + d] = tmp;}}void shell_sort(int a[], int l, int r){int d = (r - l) / 2;while (d >= 1) {shell_insert_sort(a, l, r, d);d /= 2;}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]); shell_sort(a, 0, n);for (int i = 0; i < n; ++i) printf("%d ", a[i]);归并排序/** 归并排序* 稳定性:稳定* 时间复杂度:O(N*logN)**/void merge(int a[], int n, int b[], int m, int t[]) {int i, j, k;i = j = k = 0;while (i < n && j < m) {if (a[i] < b[j]) t[k++] = a[i++];else t[k++] = b[j++];}while (i < n) t[k++] = a[i++];while (j < m) t[k++] = b[j++];}void my_merge_sort(int a[], int l, int r, int t[]) {int mid = (l + r) >> 1;int n = r - l;int i;if (l + 1 < r) {my_merge_sort(a, l, mid, t);my_merge_sort(a, mid, r, t);merge(a+l, mid-l, a+mid, r-mid, t);for (i = 0; i < n; ++i) a[i + l] = t[i];}}void merge_sort(int a[], int l, int r){int *t = (int *)malloc((r-l) * sizeof (int));my_merge_sort(a, l, r, t);free(t);}堆排序* 堆排序* 稳定性:不稳定* 时间复杂度:O(N*logN)**/// big top pilevoid heap_adjust(int a[], int fa, int n){int cd = fa * 2 + 1;while (cd < n) {if (cd + 1 < n && a[cd] < a[cd + 1]) cd++;if (a[fa] >= a[cd]) break;int tmp = a[fa];a[fa] = a[cd];fa = cd;cd = fa * 2 + 1;a[fa] = tmp;}}void build_heap(int a[], int n){// ignore leap nodefor (int i = (n - 1) / 2; i >= 0; --i) {heap_adjust(a, i, n);}}void heap_sort(int a[], int l, int r){build_heap(a + l, r - l);for (int tmp, i = r - 1; i > l; --i) {tmp = a[i]; a[i] = a[0]; a[0] = tmp;heap_adjust(a + l, 0, i);}}int main(void){int a[100];int n; scanf("%d", &n);for (int i = 0; i < n; ++i) scanf("%d", &a[i]); heap_sort(a, 0, n);return0;}快速排序/** 快速排序* 稳定性:不稳定* 时间复杂度:O(N*logN)**/void quick_sort(int a[], int l, int r){if (l + 1 >= r) return ;int low = l, high = r;int key = a[l];while (low < high) {while (low < high && a[--high] >= key); a[low] = a[high];while (low < high && a[++low] < key); a[high] = a[low];}a[low] = key;quick_sort(a, l, low);quick_sort(a, low+1, r);}基数排序/** 基数排序* 稳定性:稳定* 时间复杂度:O(d(n+radix)) [d个关键码,关键码的取值范围为radix] **/int tmp[100000000];void radix_sort(int arr[], int beg, int ed){static int a[9] = {1, 10, 100, 1000, 10000, 100000, 1000000};int cnt[10]; // 0~9⼗个数字int digit = 0; // 最⼤位数for (int i = beg; i < ed; ++i)while (arr[i] / a[digit + 1] > 0) digit++;for (int idx = 0; idx <= digit; ++idx) {for (int i = 0; i < 10; ++i) cnt[i] = 0; // 桶计数清零for (int i = beg; i < ed; ++i) cnt[ arr[i]/a[idx]%10 ]++; // 统计每个数字出现的次数// 前缀和统计每个数字前⾯的数字个数这样就可以知道每个数字应该排在第⼏位了for (int i = 1; i < 10; ++i) cnt[i] += cnt[i - 1];for (int i = ed - 1; i >= beg; --i) tmp[ --cnt[arr[i]/a[idx]%10] ] = arr[i];for (int i = beg, j = 0; i < ed; ++i, ++j) arr[i] = tmp[j];}}测试性能int a[100000000];double test(void(*fun)(int*, int, int), int range){for (int i = 0; i < range; ++i) a[i] = rand();clock_t start = clock();fun(a, 0, range);clock_t finish = clock();//for (int i = 0; i < range; ++i) printf("%d\n", a[i]);return ((double)finish - start) / CLOCKS_PER_SEC;}int main(){srand((unsigned)time(NULL));printf(" 数据范围堆排序归并排序希尔排序快速排序插⼊排序冒泡排序选择排序基数排序\n");for (int range = 100; range <= 100000; range *= 10) {printf("%9d %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n", range, test(heap_sort, range), test(merge_sort, range), test(shell_sort, range), test(quick_sort, range), test(insert_sort, range), test(bubble_sort, range), test(select_sort, range), test(radix_sort, range));}for (int range = 1000000; range <= 10000000; range *= 10) {printf("%9d %8.3f %8.3f %8.3f %8.3f %8.3f\n", range, test(heap_sort, range), test(merge_sort, range), test(shell_sort, range),test(quick_sort, range), test(radix_sort, range));}return0;。
C语言常用算法总结1、冒泡排序算法:冒泡排序是一种简单的排序算法,它重复地遍历要排序的序列,一次比较两个相邻的元素如果他们的顺序错误就把他们交换过来。
时间复杂度为O(n^2)。
2、快速排序算法:快速排序是一种基于分治的排序算法,通过递归的方式将数组划分为两个子数组,然后对子数组进行排序最后将排好序的子数组合并起来。
时间复杂度为O(nlogn)。
3、插入排序算法:插入排序是一种简单直观的排序算法,通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描找到相应位置并插入。
时间复杂度为O(n^2)。
4、选择排序算法:选择排序是一种简单的排序算法,每次循环选择未排序部分的最小元素,并放置在已排序部分的末尾。
时间复杂度为O(n^2)。
5、归并排序算法:归并排序是一种稳定的排序算法,基于分治思想,将数组递归地分为两个子数组,将子数组排序后再进行合并最终得到有序的数组。
时间复杂度为O(nlogn)。
6、堆排序算法:堆排序是一种基于完全二叉堆的排序算法,通过构建最大堆或最小堆,然后依次将堆顶元素与末尾元素交换再调整堆,得到有序的数组。
时间复杂度为O(nlogn)。
7、二分查找算法:二分查找是一种在有序数组中查找目标元素的算法,每次将待查找范围缩小一半,直到找到目标元素或范围为空。
时间复杂度为O(logn)。
8、KMP算法:KMP算法是一种字符串匹配算法,通过利用模式字符串的自重复性,避免不必要的比较提高匹配效率。
时间复杂度为O(m+n),其中m为文本串长度,n为模式串长度。
9、动态规划算法:动态规划是一种通过将问题分解为子问题,并通过组合子问题的解来求解原问题的方法。
动态规划算法通常使用内存空间来存储中间结果,从而避免重复计算。
时间复杂度取决于问题规模。
10、贪心算法:贪心算法是一种通过选择局部最优解来构建全局最优解的算法并以此构建最终解。
时间复杂度取决于问题规模。
11、最短路径算法:最短路径算法用于求解图中两个节点之间的最短路径,常见的算法包括Dijkstra算法和Floyd-Warshall算法。
C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。
想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。
⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。
1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。
排序分为内部排序和外部排序。
若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。
反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。
2、排序分类⼋⼤排序算法均属于内部排序。
如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。
如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。
元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。
3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。
C语言常用排序算法/************************************************************************************** ******平方阶(O(n2))排序一般称为简单排序,例如直接插入、直接选择和冒泡排序*************************************************************************************** *****//*插入排序*/extern int InsertSort(int source[], int array_size){int index = 1; //插入排序int i, j;for (i = 1; i < array_size; i++){index = source[i];j = i;while ((j > 0) && (source[j - 1] > index)){source[j] = source[j - 1];j--;}source[j] = index;}return 1;}/*冒泡排序*/extern int BubbleSort(int source[], int array_size){int i, j;int temp;for (i = 0; i < array_size; i++){for (j = 0; j < array_size - i - 1; j++)if (source[j] > source[j + 1]){temp = source[j];source[j] = source[j + 1];source[j + 1] = temp;}}return 1;}/*选择排序*/extern int SelectSort(int source[], int array_size){int temp, min;int i, j;for (i = 0; i < array_size; i++){min = i;//先假设最小下标为ifor (j = i + 1; j < array_size; j++)if (source[j] < source[min])min = j;//把i之后的最小值附给minif (min != i){temp = source[i];source[i] = source[min];source[min] = temp;}//判断min与i是否相等,若相等则说明原假设正确,反之:交换数值}return 1;}/************************************************************************************** *******线性对数阶(O(nlgn))排序如快速、堆和归并排序*************************************************************************************** *****//*快速排序接口*/static int Partition(int source[], int left, int right)int x = source[left];while (left < right){while (left < right && x <= source[right])right--;source[left] = source[right];while (left < right && x >= source[left])left++;source[right] = source[left];}source[left] = x;return left;}extern int QuickSort(int source[], int left, int right){int iPos;if (left >= right)return 1;iPos = Partition(source, left, right);QuickSort(source, left, iPos - 1); // 左边划分QuickSort(source, iPos + 1, right); // 右边划分return 1;}/*堆排序*/static void HeapAdjust(int source[], int root, int node)/*root根节点, node节点总数*/ {//已知source[root..node]中除source[root]之外均满足堆的定义,本函数调整source[root] //使source[root..node]成为一个大顶堆int j, rc;rc = source[root];for (j = 2 * root; j <= node; j *= 2) //沿关键字叫大的结点向下筛选{if (j < node && source[j] < source[j + 1])++j; //j为关键字较大的记录的下标if (rc >= source[j])break; //rc应插入在位置root上source[root] = source[j];root = j;}source[root] = rc; //插入extern int HeapSort(int source[], int array_size){int i, t;for (i = array_size / 2; i > 0; --i)//把a[1..L.length]建成大顶堆HeapAdjust(source, i, array_size);for (i = array_size; i > 1; --i){t = source[1]; //将堆顶记录和当前未经排序子序列a[1..i]source[1] = source[i]; //中的最后一个记录相互交换source[i] = t;HeapAdjust(source, 1, i - 1); //将r[1..i-1]重新调整为大顶堆}return 1;}/************************************************************************************** ********O(n1+£)阶排序£是介于0和1之间的常数,即0<£<1,如希尔排序*************************************************************************************** *****//*希儿排序*/extern int ShellSort(int source[], int array_size){int increament;int e, i, j;/*初始步长设为n/2*/for (increament = array_size / 2; increament > 0; increament = increament / 2) for (j = increament; j < array_size; j++){if (source[j] < source[j - increament]){e = source[j];for (i = j - increament; i >= 0 && source[i] > e; i = i - increament) source[i + increament] = source[i];source[i + increament] = e;}}return 1;。
C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。
C语言超算法大全1.快速排序算法:快速排序是一种高效的排序算法,基于分治法的思想。
它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素小于基准元素,另一个子数组的所有元素大于基准元素。
然后递归地对两个子数组进行快速排序,最终得到排序后的数组。
2.归并排序算法:归并排序也是一种高效的排序算法,基于分治法的思想。
它将数组分为两个子数组,然后递归地对每个子数组进行归并排序,最后将两个有序的子数组合并成一个有序的数组。
3.堆排序算法:堆排序是一种树形选择排序算法,利用堆数据结构来实现。
它通过构建一个最大堆,将堆顶元素与最后一个元素交换,然后重新调整堆,重复这个过程,最终得到排序后的数组。
4.二分查找算法:二分查找算法是一种在有序数组中查找特定元素的算法。
它通过将待查找区间的中间元素与目标元素进行比较,根据比较结果调整区间范围,直到找到目标元素或区间为空。
5.图的深度优先算法:图的深度优先算法是一种用于遍历图的算法。
它从一个顶点开始,递归地访问所有与该顶点相连的未访问过的顶点,直到所有顶点都被访问过为止。
6.图的广度优先算法:图的广度优先算法也是一种用于遍历图的算法。
它从一个顶点开始,依次访问与该顶点相邻的顶点,并将这些相邻顶点加入到一个队列中,然后继续对队列中的顶点进行同样的操作,直到队列为空为止。
7.迪杰斯特拉算法:迪杰斯特拉算法是一种用于求解单源最短路径问题的算法。
它通过动态规划的方式,逐步更新起始顶点到其他顶点的最短路径长度。
8.动态规划算法:动态规划算法是一种用于解决多阶段决策问题的算法。
它通过将原问题划分为若干个子问题,并记忆已经解决的子问题的结果,从而避免重复计算,提高计算效率。
9.最小生成树算法:最小生成树算法是一种用于求解连通图的最小成本生成树的算法。
它通过选择具有最小权值的边来构建最小生成树,直到所有顶点都被包含在生成树中。
10.拓扑排序算法:拓扑排序算法是一种用于对有向无环图进行排序的算法。