湖北省襄阳市保康县2019-2020年年级适应性考试数学试题
- 格式:doc
- 大小:2.41 MB
- 文档页数:14
湖北省襄阳市保康县2020年中考适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >2.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .253.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( )A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >>4.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10 B .10 C .﹣6 D .25.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13 6.下列各数中最小的是( )A .0B .1C .﹣3D .﹣π7.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16C .14D .128.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°9.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和310.已知一次函数y=ax ﹣x ﹣a+1(a 为常数),则其函数图象一定过象限( )A .一、二B .二、三C .三、四D .一、四 11.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 12.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD 是菱形,☉O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE ,若∠D=78°,则∠EAC=________°.14.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是_____.15.某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.16.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=▲ °.17.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.18.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得a bc c=;④由23a bc c=,得3a=2b;⑤由a2=b2,得a=b.其中正确的是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.20.(6分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?21.(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(8分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)23.(8分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?24.(10分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.25.(10分)已知:如图,在四边形ABCD 中,AB ∥CD ,对角线AC 、BD 交于点E ,点F 在边AB 上,连接CF 交线段BE 于点G ,CG 2=GE•GD .求证:∠ACF=∠ABD ;连接EF ,求证:EF•CG=EG•CB .26.(12分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.27.(12分)在平面直角坐标系xOy 中,函数ky x =(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C .求k 的值;横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 2.C【解析】在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF 为线段AB 的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD 的周长为AC+CD+AD=AC+AB=5+13=18.故选C.3.C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2b a-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>.故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.4.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.5.D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD 中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.6.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.7.B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.8.C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.9.A【解析】【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.10.D【解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:∵y=ax﹣x﹣a+1(a为常数),∴y=(a-1)x-(a-1)当a-1>0时,即a>1,此时函数的图像过一三四象限;当a-1<0时,即a<1,此时函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y 随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小. 11.B【解析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.12.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=12(180°-∠D)=51°,又∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案为:1°14.k>2【解析】【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k﹣2>1.【详解】因为抛物线y=(k﹣2)x2+k的开口向上,所以k﹣2>1,即k>2,故答案为k>2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.15.143549【解析】【分析】根据题中密码规律确定所求即可.【详解】5⊗3⊗2=5×3×10000+5×2×100+5×(2+3)=1510259⊗2⊗4=9×2×10000+9×4×100+9×(2+4)=183654,8⊗6⊗3=8×6×10000+8×3×100+8×(3+6)=482472,∴7⊗2⊗5=7×2×10000+7×5×100+7×(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.16.1. 【解析】试题分析:∵四边形OABC 为平行四边形,∴∠AOC=∠B ,∠OAB=∠OCB ,∠OAB+∠B=180°.∵四边形ABCD 是圆的内接四边形,∴∠D+∠B=180°.又∠D =12∠AOC ,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB )=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质. 17. 【解析】 【分析】根据概率的公式进行计算即可. 【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 18.①②④ 【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确, ③由a=b,得a bc c=,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为c 可能为0,所以本选项不正确, ④由23a bc c=,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确, ⑤因为互为相反数的平方也相等,由a 2=b 2,得a=b,或a=-b,所以本选项错误, 故答案为: ①②④.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.骑共享单车从家到单位上班花费的时间是1分钟. 【解析】试题分析:设骑共享单车从家到单位上班花费x 分钟,找出题目中的等量关系,列出方程,求解即可. 试题解析:设骑共享单车从家到单位上班花费x 分钟, 依题意得:881.5,20x x ⨯=- 解得x=1.经检验,x=1是原方程的解,且符合题意.答:骑共享单车从家到单位上班花费的时间是1分钟. 20.(1)12;(2)78【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求. 详解:(1)甲队最终获胜的概率是12; (2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7, 所以甲队最终获胜的概率=78. 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.21.(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚. 【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得; (3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入,则1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ ,∴10300y x =-+,∵蜜柚销售不会亏本,∴x 8≥,又0y >,∴103000x -+≥ ,∴30x ≤, ∴ 830x ≤≤ ; (2) 设利润为w 元, 则 ()()810300w x x =--+ =2103802400x x -+- =2210(19)1210x x --+,∴ 当19x = 时, w 最大为1210,∴ 定价为19元时,利润最大,最大利润是1210元; (3) 当19x = 时,110y =, 110×40=4400<4800, ∴不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.22. (1)AB≈1395 米;(2)没有超速. 【解析】 【分析】(1)先根据tan ∠ADC =2求出AC ,再根据∠ABC =35°结合正弦值求解即可(2)根据速度的计算公式求解即可. 【详解】解:(1)∵AC ⊥BC , ∴∠C =90°, ∵tan ∠ADC =ACCD=2, ∵CD =400, ∴AC =800,在Rt △ABC 中,∵∠ABC =35°,AC =800, ∴AB =sin 35AC ︒=8000.57358≈1395 米; (2)∵AB =1395, ∴该车的速度=139590=55.8km/h <60千米/时,故没有超速. 【点睛】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键. 23.(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程. 【解析】 【分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可. 【详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天). 设乙队单独施工需要x 天完成该项工程,则301515190x++=, 去分母,得x+1=2x . 解得x=1.经检验x=1是原方程的解. 答:乙队单独施工需要1天完成. (2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.24.(1)3;(2)1312n +-;(3)1218,95N N ==【解析】 【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可. ()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值 【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++=()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n---⋯-, 每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,nn S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可, 则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10,②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=,满足:10100N <<,③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=,满足:10100N <<,④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=,不满足100N <,∴1218,95N N == 【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键. 25.(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)先根据CG 2=GE•GD 得出CG GDGE CG=,再由∠CGD=∠EGC 可知△GCD ∽△GEC ,∠GDC=∠GCE .根据AB ∥CD 得出∠ABD=∠BDC ,故可得出结论; (2)先根据∠ABD=∠ACF ,∠BGF=∠CGE 得出△BGF ∽△CGE ,故FG EGBG CG=.再由∠FGE=∠BGC 得出△FGE ∽△BGC ,进而可得出结论. 试题解析:(1)∵CG 2=GE•GD ,∴CG GDGE CG=. 又∵∠CGD=∠EGC ,∴△GCD ∽△GEC ,∴∠GDC=∠GCE . ∵AB ∥CD ,∴∠ABD=∠BDC ,∴∠ACF=∠ABD .(2)∵∠ABD=∠ACF ,∠BGF=∠CGE ,∴△BGF ∽△CGE ,∴FG EGBG CG=. 又∵∠FGE=∠BGC ,∴△FGE ∽△BGC ,∴FE EGBC CG=,∴FE•CG=EG•CB . 考点:相似三角形的判定与性质. 26.(1)13;(2)这个游戏不公平,理由见解析. 【解析】 【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平. 【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中, 故从袋中随机摸出一球,标号是1的概率为:13; (2)这个游戏不公平. 画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况, ∴P (甲胜)=59,P (乙胜)=49. ∴P (甲胜)≠P (乙胜), 故这个游戏不公平. 【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.27.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤. 【解析】分析:(1)根据点A (4,1)在ky x=(0x >)的图象上,即可求出k 的值; (2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可. 详解:(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0). ② a .当直线过(4,0)时:1404b ⨯+=,解得1b =- b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b-≤<-或71144b<≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.中考模拟数学试卷一.选择题(共12小题,满分36分)1.的算术平方根为()A.9 B.±9 C.3 D.±32.从,0,π,,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.3.长春市奥林匹克公园即将于2018年年底建成,它的总投资额约为0000元,0000这个数用科学记数法表示为()A.0.25×1010B.2.5×1010C.2.5×109D.25×1084.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a105.如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.846.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是47.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是()A.∠ACB=90°B.OE=BE C.BD=BC D.=9.若分式方程=a无解,则a的值为()A.0 B.﹣1 C.0或﹣1 D.1或﹣110.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28 B.26 C.25 D.2211.下列命题是真命题的是()A.如果a+b=0,那么a=b=0B.的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm 总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分24分,每小题3分)13.化简:÷(﹣1)=.14.若不等式组的解集是x<4,则m的取值范围是15.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是.16.有一组数据:3,a,4,6,7,它们的平均数是5,则a=,这组数据的方差是.17.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为cm18.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.19.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.20.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF2=BE2+DF2;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=2S△AEF⑦S正方形ABCD:S△AMN=2AB:MN⑧设AB=a,MN=b,则≥2﹣2.三.解答题(共6小题,满分38分)21.(8分)观察与思考:阅读下列材料,并解决后面的问题在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,所以.即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=;AC=;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,)22.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.23.(10分)“扬州漆器”名扬天下,某店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.25.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,。
保康县中考适应性考试考试数学试题(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试卷和答题卡上,并将考试号条型码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效.作图一律用2B铅笔或0.5毫米黑色签字笔. 4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共12小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.1.-1.5的倒数是( D )A .0B .-1.5C .1.5 D.-232.下图中不是中心对称图形的是( A )A B C D 3.下列计算正确的是( A )A .(x 3)3=x 9B .(-2x )3=-6x 3C .2x 2-x =xD .x 2÷x 3=x 24.空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.000 002 5米.用科学记数法表示0.000 002 5为( C )A .2.5×10-5B .2.5×105C .2.5×10-6D .2.5×1065.如图M22是由八个相同的小正方体组合而成的几何体,其左视图是( B )6.如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE ⊥b 于点E ,已知∠1=25°,则∠2的度数为( A )A .115°B .125°C .155°D .165°7.某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:每人销售件数/件1800510250210150120人数/人11353 2 那么这15位销售人员该月销售量的平均数、众数、中位数分别是( B )A.320,210,230 B.320,210,210 C.206,210,210 D.206,210,2308.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( B )A. B.1 C. D.29、用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为( D )A.20 B.40 C.100 D.12010.如图,直线AB与半径为2的⊙O相切于点C D,是⊙O上一点,且30EDC∠=o,弦EF AB∥,则EF的长度为( B )A.2 B.23C.3D.2211、一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶路程随时间变化的图象如图,下列结论错误的是( B )A.轮船的速度为20 km/h B.快艇的速度为803km/hC.轮船比快艇先出发2 h D.快艇比轮船早到2 h12、如图,将边长为3的等边ABC∆沿着BA方向平移,则'BC的长为( C )A.3; B.23;C.33; D.43.二、填空题:本大题共6道小题,每小题3分,共18分.把答案填在题中横线上.13.把多项式3m2-6mn+3n2分解因式的结果是▲3(m-n)2.14.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.O(第10题DFEA C B15.如图,直线MN与⊙O相切于点M,ME=EF,且EF∥MN,则cos E=▲.16.水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.17.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图8所示的直角梯形,则原直角三角形纸片的斜边长是 6或2.三、解答题:本大题有9道小题,共69分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本题满分5分)化简:221212222-++++--xxxxxxx19.(本题满分6分)在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50元,求他一次就能猜中的概率.655320.(本题满分5分)某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84, sin400=0.64, cos400=34) 21.(本小题满分6分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本ADC BE进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分7分)如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.23.(本题满分7分)已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.24.(本题满分10分)商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高?并说明理由.25.(本题满分12分)如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径).(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.26.(本题 满分11分)如图,二次函数y=12x ²+bx -32的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E .(1)请直接写出点D 的坐标;(2)当点P 在线段AO (点P 不与A ,O 重合)上运动至何处时,线段OE 的长有最大值,求出这个最大值;(3)是否存在这样的点P 使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,共36分)1-6、7-12小题的答案依次为:DDACBA 、BBDBBC二、填空题(本大题共5个小题,每小题3分,共15分)13.3(m-n )2; 14.; 15. ; 16.0.2; 17.或三、解答题(本大题共9个小题,共69分) 18.解:原式= )1)(2()2()1()1)(1(2-+++-+-x x x x x x x (3分) =111-+-+x x x x (4分)=112-+x x .(5分)19.解:6553从如 图的五张卡片中任意拿走三张的所有可能情况有(3 5 5), (3 5 6), (3 5 0), ( 3 5 6), ( 3 5 0), (3 6 0) ,(5 5 6), (5 5 0), ( 5 6 0), (5 6 0)十种(5分),符合题意的情况有两种,因此概率P=2/10=1/5 (6分)20.解:(1)在R t △BCD 中,(1分), ∴CD==≈6.7,(2分)(2)在R t △BCD 中, BC =5, ∴ BD =5 tan400=4.2. (3分)过E 作AB 的垂线,垂足为F ,在R t △AFE 中,AE =1.6,∠EAF =180°-120°=60°,AF =AE=0.8(4分) ∴FB =AF +AD +BD =0.8+2+4.20=7米(5分)答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.21.解∵(1)扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2分)(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天;表示优的圆心角度数是360°=57.6°,(3分)如图所示:;(4分)(3)∵样本中优和良的天数分别为:8,32,(5分)∴一年(365天)达到优和良的总天数为:×365=292(天)(6分).∴估计该市一年达到优和良的总天数为292天.22.(1)证明:∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC(1分)精品资料∵点E、F分别为AC、BC的中点∴EF=AB,EC=AC,FC=BC∴EF=EC=FC(2分)∴EF=FC=ED=DC,∴四边形EFCD是菱形.(3分)(2)解:连接DF,与EC相交于点G,(4分)∵四边形EFCD是菱形∴DF⊥EC,垂足为G (5分)∵EF=AB=4,EF∥AB∴∠FEG=∠A=60°(6分)在Rt△EFG中,∠EGF=90°∴DF=2FG=2×4sin∠FEC=8sin60°=4.(7分)23.解:(1)∵y=图象过点A(-1,6),∴∴m=2(2分)(2)分别过点A、B作x轴的垂线,垂足分别为点E、D由题意得,AE=6,OE=1,(3分)又BD∥AE,精品资料B AOC y xDE∴△CBD ~△CAE , (4分)∴ ∴∴BD =2即点B 的纵坐标为2 ∴B 点坐标为(-3,2)(5分)∴直线AB 为y =2x +8(6分) ∴C(-4,0) (7分)24.解:(1)依题意有w=(x-20)(250-10x+250)(3分)=-10x 2+700x-10000(4分) (2)∵w=-10x 2+700x-10000=-10(x-35)2+2250 (5分) ∴当x=35时,w 有最大值2250.即销售单价为35元时,该文具每天的销售利润最大(6分). (3)方案A:由题意可得20<x30,(7分)∵a=-10<0,对称轴为x=35,抛物线开口向下,在对称轴左側,w 随x 的增大而增大, ∴当x=30时,w 取最大值为2000元.(8分) 方案B:由题意得x 45,且250-10(x-25)10.解得:45x49,在对称轴右側,w随x 的增大而减小,当x=45时,w 取最大值 为1250元.(9分) ∵2000元>1250元, ∴选择方案A.(10分)25. (1)证明:连结OC 、OE ,OE 交AB 于H (1分),如图1,∵E 是弧AB 的中点,∴OE ⊥AB ,∴∠EHF=90°,∴∠HEF+∠HF E=90°,(2分)而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DC E=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切(3分);(2)解:连结BC(4分),∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE(5分),而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC(6分),∴EF•EC=BE2,BE2=(r)2=r2(7分);(3)解:如图2,连结OA,(8分)∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴(r)2﹣(r﹣x)2=r2﹣x2,即得x=r(9分),∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===,∵EF•EC=r2,∴•EC=r2,∴EC=26、解:(1)(-3,4)(2分)精品资料(2)设PA=t ,OE=l ,由∠DAP=∠POE=∠DPE=90 ° , 得△DAP ∽ △ POE , ∴43-t = tl(3分) ∴l=-14t ²+34t=-14(t -32)²+916(4分)∴当t=32时,l 有最大值916,即P 为AO 中点时,OE 的最大值为916.(5分)(3)存在(6分)① 当P 在y 轴左侧时,P 点的坐标为(-4,0)(7分) 由△ PAD ≌ △ PEO ,得OE=PA=1,∴OP=OA +PA=4, 设DE 交AO 于G , 则有AG=45AO=125,∴重叠部分的面积=12 × 4 ×125 =245(8分)② 当P 在y 轴右侧时,P 点的坐标为(4,0)(9分) 仿照① 的步骤,此时的重叠部分的面积为71277(11分)yECDBAOPxyECD BAOP。
湖北省襄樊市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.3B.36C.3D.32.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C,设点A的坐标为(a,b),则点A′的坐标为()A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b-2)3.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米4.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根B.有两个异号的实数根C.有两个不相等的实数根D.没有实数根5.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<26.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()A.12B.59C.49D.237.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣38.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1089.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°10.若二次函数y=-x2+bx+c与x轴有两个交点(m,0),(m-6,0),该函数图像向下平移n个单位长度时与x轴有且只有一个交点,则n的值是()A.3 B.6 C.9 D.3611.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是( )A.点A B.点B C.点C D.点D12.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()1 2 3 4 5成绩(m)8.2 8.0 8.2 7.5 7.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式42x>4﹣x的解集为_____.14.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.15.如图,边长为6的菱形ABCD中,AC是其对角线,∠B=60°,点P在CD上,CP=2,点M在AD 上,点N在AC上,则△PMN的周长的最小值为_____________ .16.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是________.17.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,AFBE=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣23,求旋转角a的度数.18.小明用一个半径为30cm且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.20.(6分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形.21.(6分)先化简再求值:(a﹣22ab ba-)÷22a ba-,其中a=1+2,b=1﹣2.22.(8分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.23.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=32,求弦AD的长.24.(10分)化简:(x +7)(x -6)-(x -2)(x +1)25.(10分)先化简,再求值:(1+211x -)÷2221x x x ++,其中x=2+1. 26.(12分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为()4,5-,(1,3)-.请在如图所示的网格平面内作出平面直角坐标系;请作出ABC ∆关于y 轴对称的'''A B C ∆;点'B 的坐标为 .ABC ∆的面积为 .27.(12分)如图1,在直角梯形ABCD 中,动点P 从B 点出发,沿B→C→D→A 匀速运动,设点P 运动的路程为x ,△ABP 的面积为y ,图象如图2所示.(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P 运动的路程x =4时,△ABP 的面积为y = ;(3)求AB 的长和梯形ABCD 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:如图所示:设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°,∴AC=2BC=2x ,33,根据题意得:AD=BC=x ,3,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=13263x AM AE x==; 故选B .【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM 是解决问题的关键.2.D【解析】【分析】设点A 的坐标是(x ,y ),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可.【详解】根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 2a x +=0, 2b y +=-1, 解得x=-a ,y=-b-2,∴点A 的坐标是(-a ,-b-2).故选D .【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键3.C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.4.A【解析】【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c 的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键. 5.D【解析】【分析】【详解】解:∵直线l1与x轴的交点为A(﹣1,0),∴﹣1k+b=0,∴242y xy kx k=-+⎧⎨=+⎩,解得:42282kxkkyk-⎧=⎪⎪+⎨⎪=⎪+⎩.∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,∴42282kkkk-⎧>⎪⎪+⎨⎪>⎪+⎩,解得0<k<1.故选D.【点睛】两条直线相交或平行问题;一次函数图象上点的坐标特征.6.D【解析】【分析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是23.故选D. 【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.7.A【解析】分析:详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x 在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.8.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:5300万=53000000=75.310⨯.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).9.C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.10.C【解析】【分析】设交点式为y=-(x-m)(x-m+6),在把它配成顶点式得到y=-[x-(m-3)]2+1,则抛物线的顶点坐标为(m-3,1),然后利用抛物线的平移可确定n的值.【详解】设抛物线解析式为y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴抛物线的顶点坐标为(m-3,1),∴该函数图象向下平移1个单位长度时顶点落在x轴上,即抛物线与x轴有且只有一个交点,即n=1.故选C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.11.B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.12.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D .【点睛】本题考查众数;中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x >1.【解析】【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x ﹣1>8﹣2x ,移项合并得:3x >12,解得:x >1,故答案为:x >1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.14.1.06×104【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:10600=1.06×104, 故答案为:1.06×104 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.【解析】【分析】过P 作关于AC 和AD 的对称点,连接1P 和2P ,过P 作2P C BC , 1P 和2P ,M ,N 共线时最短,根据对称性得知△PMN 的周长的最小值为12PP .因为四边形ABCD 是菱形,AD 是对角线,可以求得60DCF ∠=︒,根据特殊三角形函数值求得1,3CF PF ==,23PE =,再根据线段相加勾股定理即可求解.【详解】过P 作关于AC 和AD 的对称点,连接1P 和2P ,过P 作2P C BC ⊥,Q 四边形ABCD 是菱形,AD 是对角线,60B BAC BCA DCA DAC D ︒∴∠=∠=∠=∠=∠=∠=, 180BCD DCF ∠+∠=︒Q ,18012060DCF ∴∠=︒-︒=︒,cos60sin 60CF PF CP CP=︒=︒Q , 1,3CF PF ∴==4PD CD CP =-=Q ,sin 60PE PD=︒ 23PE ∴= 又由题意得222,43PE P E P P PE P E ==+=2253FP FP PP ∴=+=113PF PC CF =+=Q()()221212221PP FP FP ∴=+=16.﹣1<a <1【解析】【分析】【详解】解:∵k >0,∴在图象的每一支上,y 随x 的增大而减小,①当点(a-1,y 1)、(a+1,y 2)在图象的同一支上,∵y 1<y 2,∴a-1>a+1,解得:无解;②当点(a-1,y 1)、(a+1,y 2)在图象的两支上,∵y 1<y 2,∴a-1<0,a+1>0,解得:-1<a <1.故答案为:-1<a <1.【点睛】本题考查反比例函数的性质.17.(1;(2)结论仍然成立,证明见解析;(3)135°.【解析】【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB 的长,进而得出答案;(2)利用已知得出△BEC ∽△AFC ,进而得出∠1=∠2,即可得出答案;(3)过点D 作DH ⊥BC 于H ,则DB=4-(,进而得出-1,,求出CH=BH ,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE 与AF 的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴∵点E ,F 分别是线段BC ,AC 的中点,∴AE BE ; (2))如图2,∵点E ,F 分别是线段BC ,AC 的中点,∴EC=12BC,FC=12AC,∴12 EC FCBC AC==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴1330AF ACBE BC tan===︒,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(33-2,∴3,3,又∵CH=2-3-1)3,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.18.20【解析】【详解】24030180π⨯=40π. 设这个圆锥形纸帽的底面半径为r .根据题意,得40π=2πr ,解得r=20cm .故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)平均每次降价率为30%,才能使这件A 商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元.【解析】【分析】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出a 的值,再将其代入80(1+a%)中即可求出结论.【详解】(1)设平均每次降价率为x ,才能使这件A 商品的售价为39.2元,根据题意得:80(1﹣x )2=39.2,解得:x 1=0.3=30%,x 2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A 商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×10(1+2a%)=30000, 整理得:a 2+75a ﹣2500=0,解得:a 1=25,a 2=﹣1(不合题意,舍去),∴80(1+a%)=80×(1+25%)=1.答:乙网店在“双十一”购物活动这天的网上标价为1元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.【详解】(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连结BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∴BH⊥FG,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.21.原式=a b a b-=+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.22.(1) ;(2【解析】试题分析:()1 点A 表示 向右直爬2个单位到达点B ,点B 表示的数为2m =,()2把m 的值代入,对式子进行化简即可.试题解析:()1 由题意A 点和B 点的距离为2,其A 点的坐标为 因此B 点坐标 2.m =()2把m 的值代入得:()()00162126m m -++=-+,(018=-+,11=+,=23.(1)证明见解析(2【解析】(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得CD CB BDCA CD AD==,推出CD2=CB•CA,可得(32)2=3CA,推出CA=6,推出AB=CA﹣BC=3,32262BDAD==,设BD=2k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.【详解】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴CD CB BD CA CD AD==,∴CD2=CB•CA,∴(2)2=3CA,∴CA=6,∴AB=CA﹣BC=3,32262BDAD==,设2k,AD=2k,22∴k=6,∴ 24.2x -40.【解析】【分析】原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式=x 2-6x +7x -42-x 2-x +2x +2=2x -40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.25.11x x +-, 【解析】【分析】运用公式化简,再代入求值.【详解】原式=2222211(1)()?11x x x x x-++-- =222(1)•(1)(1)x x x x x +-+ =11x x +- ,当时,原式1= 【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.26.(1)见解析;(2)见解析;(3)'(2,1)B ;(4)4.【解析】【分析】(1)根据C 点坐标确定原点位置,然后作出坐标系即可;(3)根据点B'在坐标系中的位置写出其坐标即可(4)利用长方形的面积剪去周围多余三角形的面积即可.【详解】解:(1)如图所示:(2)如图所示:(3)结合图形可得:()B'2,1;(4)ΔABC 111S 34231224222=⨯-⨯⨯-⨯⨯-⨯⨯ 123144=---=.【点睛】此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.27.(1)x ,y ;(2)2;(3)AB=8,梯形ABCD 的面积=1.【解析】【分析】(1)依据点P 运动的路程为x ,△ABP 的面积为y ,即可得到自变量和因变量;(2)依据函数图象,即可得到点P 运动的路程x=4时,△ABP 的面积;(3)根据图象得出BC 的长,以及此时三角形ABP 面积,利用三角形面积公式求出AB 的长即可;由函数图象得出DC 的长,利用梯形面积公式求出梯形ABCD 面积即可.【详解】(1)∵点P 运动的路程为x ,△ABP 的面积为y ,∴自变量为x ,因变量为y . 故答案为x ,y ;(2)由图可得:当点P 运动的路程x=4时,△ABP 的面积为y=2. 故答案为2;(3)根据图象得:BC=4,此时△ABP 为2,∴12AB•BC=2,即12×AB×4=2,解得:AB=8; 由图象得:DC=9﹣4=5,则S 梯形ABCD =12×BC×(DC+AB )=12×4×(5+8)=1. 【点睛】本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.。
湖北省襄樊市2019-2020学年中考第五次适应性考试数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在直角坐标系中,已知点P (3,4),现将点P 作如下变换:①将点P 先向左平移4个单位,再向下平移3个单位得到点P 1;②作点P 关于y 轴的对称点P 2;③将点P 绕原点O 按逆时针方向旋转90°得到点P 3,则P 1,P 2,P 3的坐标分别是( )A .P 1(0,0),P 2(3,﹣4),P 3(﹣4,3)B .P 1(﹣1,1),P 2(﹣3,4),P 3(4,3)C .P 1(﹣1,1),P 2(﹣3,﹣4),P 3(﹣3,4)D .P 1(﹣1,1),P 2(﹣3,4),P 3(﹣4,3)2.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB =8 cm ,圆柱的高BC =6 cm ,圆锥的高CD =3 cm ,则这个陀螺的表面积是( )A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 23.下列算式的运算结果正确的是( )A .m 3•m 2=m 6B .m 5÷m 3=m 2(m≠0)C .(m ﹣2)3=m ﹣5D .m 4﹣m 2=m 24.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( ) A .13x =-,21x =-B .11x =,23x = C .11x =-,23x = D .13x =-,21x =5.如图,已知OP 平分∠AOB ,∠AOB =60°,CP =2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C 3D .36.用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是( )A .B .C .D .7.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α8.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,若AC =CD =DB ,则cos ∠CAD =( )A .13B .2C .12D .3 9.某运动会颁奖台如图所示,它的主视图是( )A .B .C .D .10.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )A .①的收入去年和前年相同B .③的收入所占比例前年的比去年的大C .去年②的收入为2.8万D .前年年收入不止①②③三种农作物的收入11.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )A .45oB .60oC .120oD .135o12.下列计算正确的是( )A .(8)2=±8B .38+32=62C .(﹣12)0=0D .(x ﹣2y )﹣3=63x y 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.反比例函数y =2k x的图像经过点(2,4),则k 的值等于__________. 14.如图,菱形ABCD 中,AB=4,∠C=60°,菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O 所经过的路径总长为_____.15.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .16.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.17.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.18.如图,△ABC 中,过重心G 的直线平行于BC ,且交边AB 于点D ,交边AC 于点E ,如果设AB u u u r =a r ,AC uuu r =b r ,用a r ,b r 表示GE uuu r ,那么GE uuu r =___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(1x﹣21x-)÷2212x xx x+-+,其中x的值从不等式组11022(1)xx x⎧+⎪⎨⎪-≤⎩>的整数解中选取.20.(6分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-1;乙袋中有三个完全相同的小球,分别标有数字-1、0和1.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数y=x+1图象上的概率.21.(6分)解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.22.(8分)先化简,再求代数式(22222x y xx xy y x xy---+-)÷2yx y-的值,其中x=sin60°,y=tan30°.23.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE 于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.24.(10分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)25.(10分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.26.(12分)计算:(π﹣1)0+|﹣1|﹣24÷6+(﹣1)﹣1.27.(12分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,2≈1.41,3≈1.73)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D把点P的横坐标减4,纵坐标减3可得P1的坐标;让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.【详解】∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).∵点P关于y轴的对称点是P2,∴P2(﹣3,4).∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).故选D.【点睛】本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).2.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.3.B【解析】【分析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.4.C∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.5.C【解析】【分析】由OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,易得△OCP 是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE 的值,继而求得OP 的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM 的长.【详解】解:∵OP 平分∠AOB ,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°,∴CE=12CP=1,∴=,∴∵PD ⊥OA ,点M 是OP 的中点,∴DM=12 故选C .考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.6.A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A .7.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD ,然后在Rt △BCD 中 cos ∠BCD=CD BC ,可得BC=cos cos CD h BCD α=∠. 故选B .点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 8.D【解析】【分析】 根据圆心角,弧,弦的关系定理可以得出»AC =»CD =»BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值.【详解】解:AC CD DB ==Q»AC =»CD =»BD =°°1180603⨯=, °°160302CAD ∠=⨯= °3cos cos30CAD ∠==故选D .【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.9.C【解析】【分析】【详解】从正面看到的图形如图所示:,故选C .10.C【解析】【详解】A 、前年①的收入为60000×117360=19500,去年①的收入为80000×117360=26000,此选项错误; B 、前年③的收入所占比例为360135117360--×100%=30%,去年③的收入所占比例为360126117360--×100%=32.5%,此选项错误; C 、去年②的收入为80000×126360=28000=2.8(万元),此选项正确; D 、前年年收入即为①②③三种农作物的收入,此选项错误,故选C .【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系. 11.A【解析】【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.【详解】设此多边形为n 边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.12.D【解析】【分析】各项中每项计算得到结果,即可作出判断.【详解】解:A .原式=8,错误;B .原式=2+42,错误;C .原式=1,错误;D .原式=x 6y ﹣3=63x y ,正确. 故选D .【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】解:∵点(2,4)在反比例函数2k y x-=的图象上,∴242k -=,即k=1.故答案为1. 点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.14 【解析】【分析】第一次旋转是以点A 为圆心,那么菱形中心旋转的半径就是OA ,解直角三角形可求出OA 的长,圆心角是60°.第二次还是以点A 为圆心,那么菱形中心旋转的半径就是OA ,圆心角是60°.第三次就是以点B 为旋转中心,OB 为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O 所经过的路径总长.【详解】解:∵菱形ABCD 中,AB=4,∠C=60°,∴△ABD 是等边三角形, BO=DO=2,第一次旋转的弧长=60180π⨯=,∵第一、二次旋转的弧长和, 第三次旋转的弧长为:60221803ππ⨯=,故经过6次这样的操作菱形中心O 所经过的路径总长为:2×+23π)=43+.故答案为:43+.【点睛】本题考查菱形的性质,翻转的性质以及解直角三角形的知识.15.312π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 432ππ-+=3 122π+16.1 4【解析】【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S 四边形, ∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比. 17.13【解析】 【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案. 【详解】 列表如下:由表可知,共有6种等可能结果,其中积为正数的有2种结果, 所以积为正数的概率为13, 故答案为13. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.1133a b -+r r【解析】 【分析】连接AG ,延长AG 交BC 于F .首先证明DG=GE ,再利用三角形法则求出DE u u u v即可解决问题. 【详解】连接AG ,延长AG 交BC 于F .∵G 是△ABC 的重心,DE ∥BC , ∴BF=CF ,23ADAE AG AB AC AF ===, ∵DG AD BF AB =,GE AE CF AC =, ∴DG GE BF CF=, ∵BF=CF , ∴DG=GE ,∵23AD a u u u r r =,23AE b =u u u r r ,∴2233DE DA AE b a =+=-u u u r u u u r u u u r r r ,∴111233GE DE b a ==-u u u r u u u r r r ,故答案为1133b a -r r.【点睛】本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.-14【解析】 【分析】先化简,再解不等式组确定x 的值,最后代入求值即可. 【详解】(1x ﹣21x -)÷2212x x x x +-+, =(1)(1)x x x -+-÷2212x x x x +-+, =21x x -,解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,可得:﹣2<x≤2, ∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义, ∴x=2,∴原式=2122 =﹣14.20.(1)见解析;(1). 【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P 在一次函数图像上的个数,即可求得点P 在一次函数图像上的概率.试题解析:(1)画树状图:或列表如下:∴点P 所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1). ∵只有(1,1)与(-1,-1)这两个点在一次函数图像上,∴P (点P 在一次函数图像上)=.考点:用(树状图或列表法)求概率.21.则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析. 【解析】 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1, 解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3, 不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集. 22.23-【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可 【详解】原式()()22,2x y xx y x x y y x y ⎡⎤--=-⋅⎢⎥--⎢⎥⎣⎦ 112,2x yx y x y y ⎛⎫-=-⋅ ⎪--⎝⎭()()()()22,22x y x y x y x y x y x y x y y ⎡⎤---=-⋅⎢⎥----⎢⎥⎣⎦ ()()22,2x y x y x yx y x y y --+-=⋅--()()2,2y x yx y x y y --=⋅--1,x y=-- 33sin60tan3023x y =︒==︒=Q ∴原式23333===--.【点睛】考查分式的混合运算,掌握运算顺序是解题的关键. 23.(1)证明见解析;(2)3或256.(3)65x =或0<1x <【解析】 【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当PEF EAB ∠=∠ 时,则得到四边形ABEP 为矩形,从而求得x 的值;当PEF AEB ∠=∠时,再结合(1)中的结论,得到等腰APE V .再根据等腰三角形的三线合一得到F 是AE 的中点,运用勾股定理和相似三角形的性质进行求解. (3)此题首先应针对点P 的位置分为两种大情况:①D e 与AE 相切,② D e 与线段AE 只有一个公共点,不一定必须相切,只要保证和线段AE 只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段AE 外的情况即是x 的取值范围. 【详解】(1)证明:∵矩形ABCD , ∴AD ∥BC.90.ABE ∴∠=o∴∠PAF=∠AEB. 又∵PF ⊥AE ,90.PFA ABE ∴∠=∠=o∴△PFA ∽△ABE.(2)情况1,当△EFP ∽△ABE ,且∠PEF=∠EAB 时, 则有PE ∥AB∴四边形ABEP 为矩形, ∴PA=EB=3,即x=3.情况2,当△PFE ∽△ABE ,且∠PEF=∠AEB 时, ∵∠PAF=∠AEB , ∴∠PEF=∠PAF. ∴PE=PA. ∵PF ⊥AE ,∴点F 为AE 的中点,5AE ===Q ,15.22EF AE ∴== ,PE EF AE EB=Q 即5253PE =,25.6PE ∴=∴满足条件的x 的值为3或25.6(3) 65x =或0 1.x <<【点睛】两组角对应相等,两三角形相似.24.(1);(2)O'(92;(3)P'(275).【解析】 【分析】(1)先求出AB .利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;(2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH ,OH ,即可得出结论; (3)先确定出直线O'C 的解析式,进而确定出点P 的坐标,再利用含30度角的直角三角形的性质即可得出结论. 【详解】解:(1)∵A (3,0),B (0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A ,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴;(2)如图2,过点O'作O'H ⊥x 轴于H ,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=12AO'=32,,∴OH=OA+AH=92,∴O'(92); (3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP .如图3,作A 关于y 轴的对称点C ,连接O'C 交y 轴于P ,∴O'P+AP=O'P+CP=O'C ,此时,O'P+AP 的值最小. ∵点C 与点A 关于y 轴对称,∴C (﹣3,0).∵O'(922,),∴直线O'C 的解析式为y=5x+5,令x=0,∴y=5,∴P (0,5),∴,作P'D ⊥O'H 于D .∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=12,910,∴DH=O'H﹣O'D=635,O'H+P'D=275,∴P'(276355,).【点睛】本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.25.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=12×4×8﹣12×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.26.2【解析】【分析】先根据0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义化简,然后进一步计算即可. 【详解】解:原式=2+2﹣+2=2﹣2+2=2.【点睛】本题考查了0次幂的意义、绝对值的意义、二次根式的除法、负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.27.30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×33≈40×1.73×13≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2 ∴AB=AE+BE≈23.1+7.2=30.3米.。
湖北省襄樊市2019-2020学年高考第一次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直三棱柱111ABC A B C -中,己知AB BC ⊥,2AB BC ==,122CC =,则异面直线1AC 与11A B 所成的角为( ) A .30︒ B .45︒C .60︒D .90︒【答案】C 【解析】 【分析】由条件可看出11AB A B P ,则1BAC ∠为异面直线1AC 与11A B 所成的角,可证得三角形1BAC 中,1AB BC ⊥,解得1tan BAC ∠,从而得出异面直线1AC 与11A B 所成的角.【详解】连接1AC ,1BC ,如图:又11AB A B P ,则1BAC ∠为异面直线1AC 与11A B 所成的角.因为AB BC ⊥,且三棱柱为直三棱柱,∴1AB CC ⊥,∴AB ⊥面11BCC B , ∴1AB BC ⊥,又2AB BC ==,122CC =()22122223BC =+=,∴1tan 3BAC ∠=160BAC ∠=︒. 故选C 【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.2.如图,ABC V 中260A B ∠=∠=︒,点D 在BC 上,30BAD ∠=︒,将ABD △沿AD 旋转得到三棱锥A .2αβα<≤B .23αβα≤≤C .2βα≤,23αβα<≤两种情况都存在D .存在某一位置使得3a β> 【答案】A 【解析】 【分析】根据题意作出垂线段,表示出所要求得α、β角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案. 【详解】由题可得过点B 作BE AD ⊥交AD 于点E ,过B ′作CD 的垂线,垂足为O ,则易得B AO α=∠',B DO β=∠'.设1CD =,则有2BD AD ==,1DE =,3BE =∴可得23AB AB '==,2B D BD '==.sin ,sin OB OB AB DB αβ''==''Q , sin 3sin βαα∴=>,βα∴>;Q 3]OB '∈,∴1sin [0,]2α∈; Q 2sin 22sin cos 2sin 1sin αααα==-,2αβ∴….综上可得,2αβα<…. 故选:A . 【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.3.设集合{}2{|22,},|log 1A x x x Z B x x =-<∈=<…,则A B =I ( ) A .(0,2) B .(2,2]- C .{1} D .{1,0,1,2}-【答案】C 【解析】 【分析】解对数不等式求得集合B ,由此求得两个集合的交集. 【详解】由22log 1log 2x <=,解得02x <<,故()0,2B =.依题意{}1,0,1,2A =-,所以A B =I {1}. 故选:C 【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题. 4.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4C .14±D .14【答案】A 【解析】 【分析】利用等比数列{}n a 的性质可得2648a a a = ,即可得出.【详解】设4a 与8a 的等比中项是x .由等比数列{}n a 的性质可得2648a a a =,6x a ∴=± .∴4a 与8a 的等比中项561248x a =±=±⨯=±. 故选A . 【点睛】5. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A 【解析】 【分析】首先利用二倍角正切公式由4tan 23θ=-,求出tan θ,再根据充分条件、必要条件的定义判断即可; 【详解】解:∵22tan 4tan 21tan 3θθθ==--,∴可解得tan 2θ=或12-, ∴“tan 2θ=”是“4tan 23θ=-”的充分不必要条件.故选:A 【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题.6.已知集合{|12},{|15}=-<=-A x x B x x 剟?,定义集合*{|,,}==+∈∈A B z z x y x A y B ,则*(*)B A B 等于( )A .{|61}-<x x …B .{|112}<x x …C .{|110}-<x x …D .{|56}-<x x …【答案】C 【解析】 【分析】根据*A B 定义,求出*A B ,即可求出结论. 【详解】因为集合{|15}=-B x x 剟,所以{|51}=--B x x 剟, 则*{|61}=-<A B x x …,所以*(*){|110}=-<B A B x x …. 故选:C. 【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题. 7.设22(1)1z i i=+++(i 是虚数单位),则||z =( )A B .1C .2D【解析】 【分析】先利用复数代数形式的四则运算法则求出z ,即可根据复数的模计算公式求出||z . 【详解】 ∵22)1121(1z i i i i i=-+=+=+++,∴22||112z =+=. 故选:A . 【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用, 属于容易题.8.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M 且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个【答案】B 【解析】 【分析】圆心在FM 的中垂线上,经过点F ,M 且与l 相切的圆的圆心到准线的距离与到焦点F 的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆. 【详解】因为点(2,2)M 在抛物线22y x =上, 又焦点1(2F ,0),由抛物线的定义知,过点F 、M 且与l 相切的圆的圆心即为线段FM 的垂直平分线与抛物线的交点, 这样的交点共有2个,故过点F 、M 且与l 相切的圆的不同情况种数是2种. 故选:B . 【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上. 9.设实数满足条件则的最大值为( )A .1B .2C .3D .4【答案】C 【解析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.10.中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位……用纵式表示,十位、千位、十万位……用横式表示,则56846可用算筹表示为()A.B.C.D .【答案】B 【解析】 【分析】根据题意表示出各位上的数字所对应的算筹即可得答案. 【详解】解:根据题意可得,各个数码的筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,56846∴用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为B 中的.故选:B . 【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题.11.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=L ( ) A .12 B .10 C .8D .32log 5+【答案】B 【解析】 【分析】由等比数列的性质求得110a a ,再由对数运算法则可得结论. 【详解】∵数列{}n a 是等比数列,∴3847110218a a a a a a +==,1109a a =,∴53132310312103110log log log log ()log ()a a a a a a a a +++==L L 35log 910==.故选:B. 【点睛】本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键.12.函数()3sin 3x f x x π=+的图象的大致形状是( )A .B .C .D .【答案】B 【解析】 【分析】根据函数奇偶性,可排除D ;求得()f x '及()f x '',由导函数符号可判断()f x 在R 上单调递增,即可排除AC 选项. 【详解】函数()3sin 3x f x x π=+易知()f x 为奇函数,故排除D. 又()2cos x f x x π'=+,易知当0,2x π⎡⎤∈⎢⎥⎣⎦时,()0f x '>;又当,2x π⎛⎫∈+∞⎪⎝⎭时,()2sin 1sin 0x f x x x π''=->-≥, 故()f x '在,2π⎛⎫+∞⎪⎝⎭上单调递增,所以()24f x f ππ⎛⎫''>= ⎪⎝⎭, 综上,[)0,x ∈+∞时,()0f x '>,即()f x 单调递增. 又()f x 为奇函数,所以()f x 在R 上单调递增,故排除A ,C. 故选:B 【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
2024年湖北省襄阳市保康县中考数学适应性试卷一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.(3分)横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃2.(3分)我国航天事业取得了跨越式发展,下列航天图标属于中心对称图形的是( )A.B.C.D.3.(3分)关于x的一元一次不等式x﹣1≤m的解集在数轴上的表示如图所示,则m的值为( )A.3B.2C.1D.04.(3分)下列运算正确的是( )A.4a2﹣2a2=2B.a7÷a3=a4C.5a2•a4=5a8D.(a2b3)2=a4b55.(3分)下列说法正确的是( )A.检测“神舟十六号”载人飞船零件的质量,应采用抽样调查B.任意画一个三角形,其外角和是180°是不可能事件C.某奖券的中奖率为,买100张奖券,一定会中奖1次D.“任意两个等腰三角形是相似三角形”是必然事件6.(3分)将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是( )A.26°B.30°C.36°D.56°7.(3分)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中,如图2是八角形空窗的示意图,它的一个外角∠1=( )A.45°B.60°C.110°D.135°8.(3分)如图,若在象棋盘上建立直角坐标系xOy,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“炮”位于点( )A.(﹣2,﹣1)B.(0,0)C.(1,﹣2)D.(﹣1,1)9.(3分)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD =25°,则∠A的度数为( )A.25°B.35°C.40°D.45°10.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣2,0),B两点,对称轴是直线x=2,下列结论中,所有正确结论的序号为( )①a>0;②点B的坐标为(6,0);③c=3b;④对于任意实数m,都有4a+2b≥am2+bm.A.①②B.②③C.②③④D.③④二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上.11.(3分)计算:= .12.(3分)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 .13.(3分)如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是 .14.(3分)我国古代数学著作《张丘建算经》中著名的“百鸡问题”叙述如下:“鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;百钱买百鸡,则翁、母、雏各几何?”意思是公鸡五钱一只,母鸡三钱一只,小鸡一钱三只,要用一百钱买一百只鸡,问公鸡、母鸡、小鸡各多少只?若现已知母鸡买18只,则公鸡买 只,小鸡买 只.15.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点B顺时针旋转90°得到△DBE,连接AD,CE,延长EC交AD于点F,若CF=1,CE=2,则AF的长 .三、解答题(本大题共9个小题,共75分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.16.(6分).17.(6分)如图,在四边形ABCD中,AB∥CD,AB=CD.过点D分别作DF⊥AB于点F,DE⊥BC于点E,且DE=DF.求证:四边形ABCD是菱形.18.(6分)某综合实践研究小组为了测量广场上空气球A离地面的高度,已知水平面MN,该小组利用自制简易测角仪在水平面上点B,C处分别测得气球A的仰角∠ABN为37°,∠ACN为45°,已知BC=20m,求气球A离地面的高度.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.(8分)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3a0.35240%八年级 1.3b 1.10.24m%根据以上信息,解答下列问题:(1)填空:a= ,b= ,m= ;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.20.(8分)如图,在平面直角坐标系xOy中,直线AB:y=kx﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).(1)求直线AB的表达式;(2)将直线AB沿y轴方向向上平移n个单位后与反比例函数图象在第一象限内交于点C,若S△ABC≤18,请求出n的取值范围.21.(8分)如图,在△OAE中,OA=OE,B是AE中点,以O为圆心,OB为半径作⊙O,分别交AO及其延长线、OE于C,D,F点,连接BD交OE于点G.(1)求证:AE是⊙O的切线;(2)若C是OA的中点,,求阴影部分的面积.22.(10分)如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O处,以点O 为原点,水平方向为x轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线y=a(x﹣20)2+k的一部分,山坡OA上有一堵防御墙,其竖直截面为ABCD,墙宽BC=2米,BC与x轴平行,点B与点O的水平距离为28米、垂直距离为6米.(1)若发射石块在空中飞行的最大高度为10米,①求抛物线的解析式;②试通过计算说明石块能否飞越防御墙;(2)若要使石块恰好落在防御墙顶部BC上(包括端点B、C),求a的取值范围.23.(11分)某数学兴趣小组开展矩形的折叠实验探究,折叠矩形ABCD的一边AD,使点D落在点F处,折痕为AE.(1)如图1,当点F恰好在BC边上时,证明:△ABF∽△FCE.(2)将矩形的边AB折叠,使点B落在AF边上的点M处,折痕为AN.①如图2,当点F恰好在BC边上时,若AB=1,,连接EN,试判断△AEN的形状,并说明理由.②如图3,当点F在矩形内部时,若AB=8,BC=12.点E是CD的中点,求FN的长.24.(12分)在平面直角坐标系中,已知抛物线y=ax2﹣2ax﹣3a(a>0).(1)抛物线的对称轴为直线 ;(2)当﹣2≤x≤2时,函数值y的取值范围是﹣4≤y≤b,求a和b的值;(3)当a=1时,解决下列问题.①抛物线上一点P到x轴的距离为6,求点P的坐标;②将该抛物线在0≤x≤4间的部分记为G,将G在直线y=t下方的部分沿y=t翻折,其余部分保持不变,得到的新图象记为Q.设Q的最高点、最低点的纵坐标分别为y1,y2,若y1﹣y2<6,直接写出t 的取值范围.2024年湖北省襄阳市保康县中考数学适应性试卷参考答案一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.(3分)横冲国际滑雪场某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A.﹣10℃B.﹣8℃C.8℃D.10℃选:D.2.(3分)我国航天事业取得了跨越式发展,下列航天图标属于中心对称图形的是( )A.B.C.D.选:D.3.(3分)关于x的一元一次不等式x﹣1≤m的解集在数轴上的表示如图所示,则m的值为( )A.3B.2C.1D.0选:B.4.(3分)下列运算正确的是( )A.4a2﹣2a2=2B.a7÷a3=a4C.5a2•a4=5a8D.(a2b3)2=a4b5选:B.5.(3分)下列说法正确的是( )A.检测“神舟十六号”载人飞船零件的质量,应采用抽样调查B.任意画一个三角形,其外角和是180°是不可能事件C.某奖券的中奖率为,买100张奖券,一定会中奖1次D.“任意两个等腰三角形是相似三角形”是必然事件选:B.6.(3分)将直角三角板和直尺按照如图位置摆放,若∠1=56°,则∠2的度数是( )A.26°B.30°C.36°D.56°选:A.7.(3分)如图1是我国古建筑墙上采用的八角形空窗,其轮廓是一个正八边形,窗外之境如同镶嵌于一个画框之中,如图2是八角形空窗的示意图,它的一个外角∠1=( )A.45°B.60°C.110°D.135°选:A.8.(3分)如图,若在象棋盘上建立直角坐标系xOy,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“炮”位于点( )A.(﹣2,﹣1)B.(0,0)C.(1,﹣2)D.(﹣1,1)选:B.9.(3分)如图,AB切⊙O于点B,连结OA交⊙O于点C,BD∥OA交⊙O于点D,连结CD,若∠OCD =25°,则∠A的度数为( )A.25°B.35°C.40°D.45°选:C.10.(3分)如图,二次函数y=ax2+bx+c的图象与x轴交于A(﹣2,0),B两点,对称轴是直线x=2,下列结论中,所有正确结论的序号为( )①a>0;②点B的坐标为(6,0);③c=3b;④对于任意实数m,都有4a+2b≥am2+bm.A.①②B.②③C.②③④D.③④选:C.二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上.11.(3分)计算:= a﹣b .【解答】解:===a﹣b,故答案为:a﹣b.12.(3分)一个函数过点(1,3),且y随x增大而增大,请写出一个符合上述条件的函数解析式 y=x+2 13.(3分)如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是 .14.(3分)我国古代数学著作《张丘建算经》中著名的“百鸡问题”叙述如下:“鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一;百钱买百鸡,则翁、母、雏各几何?”意思是公鸡五钱一只,母鸡三钱一只,小鸡一钱三只,要用一百钱买一百只鸡,问公鸡、母鸡、小鸡各多少只?若现已知母鸡买18只,则公鸡买 4 只,小鸡买 78 只.15.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点B顺时针旋转90°得到△DBE,连接AD,CE,延长EC交AD于点F,若CF=1,CE=2,则AF的长 .三、解答题(本大题共9个小题,共75分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.16.(6分).【解答】解:=3﹣2﹣(2﹣)+2×=3﹣2﹣2++=2﹣1.17.(6分)如图,在四边形ABCD中,AB∥CD,AB=CD.过点D分别作DF⊥AB于点F,DE⊥BC于点E,且DE=DF.求证:四边形ABCD是菱形.【解答】证明:连接BD,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵DF⊥AB于点F,DE⊥BC于点E,∴∠BED=∠BFD=90°,在Rt△BED和Rt△BFD中,,∴Rt△BED≌Rt△BFD(HL),∴∠EBD=∠FBD,∵∠FBD=∠CDB,∴∠EBD=∠CDB,∴CB=CD,∴四边形ABCD是菱形.18.(6分)某综合实践研究小组为了测量广场上空气球A离地面的高度,已知水平面MN,该小组利用自制简易测角仪在水平面上点B,C处分别测得气球A的仰角∠ABN为37°,∠ACN为45°,已知BC=20m,求气球A离地面的高度.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:过A作AD⊥MN于D,设CD=x m,∵BC=20m,∴BD=BC+CD=(x+20)m,在Rt△ACD中,∠ACD=45°,∴AD=CD•tan45°=x(m),在Rt△ABD中,∠ABD=37°,∴AD=BD•tan37°≈0.75(x+20)m,∴x=0.75(x+20),解得:x=60,∴AD=60m,∴气球A离地面的高度AD约为60m.19.(8分)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3a0.35240%八年级 1.3b 1.10.24m%根据以上信息,解答下列问题:(1)填空:a= 0.7 ,b= 1.1 ,m= 30 ;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.【解答】解:(1)七年级10个数据中0.7最多,所以众数a=0.7,八年级B等级有4个,C、D等级为10×20%=2个,10×10%=1个,所以A等级有10﹣4﹣2﹣1=3个,所以m%=×100%=30%,所以中位数为b==1.1;故答案为:0.7,1.1,30;(2)30×30%=9(个),答:估计八年级这一天厨余垃圾质量符合A等级的班级数为9个;(3)八年级落实更好,理由:①八年级各班餐厨垃圾质量的中位数1.1低于七年级各班餐厨垃圾质量的中位数1.2.②八年级各班餐厨垃圾质量的方差0.24低于七年级各班餐厨垃圾质量的方差0.352,更稳定,(答案不唯一).20.(8分)如图,在平面直角坐标系xOy中,直线AB:y=kx﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).(1)求直线AB的表达式;(2)将直线AB沿y轴方向向上平移n个单位后与反比例函数图象在第一象限内交于点C,若S△ABC≤18,请求出n的取值范围.【解答】解:(1)∵点B(m,2)在反比例函数的图象上,∴2m=8,∴m=4.∴点B(4,2).把点B(4,2)代入y=kx﹣2,得:4k﹣2=2,∴k=1.∴直线AB的表达式为:y=x﹣2.(2)记平移后的直线与y轴的交点为D,则AD=n,联结BD.∵CD∥AB.∴S△ABD=S△ABC.即:n×4≤18.∴n≤9.21.(8分)如图,在△OAE中,OA=OE,B是AE中点,以O为圆心,OB为半径作⊙O,分别交AO及其延长线、OE于C,D,F点,连接BD交OE于点G.(1)求证:AE是⊙O的切线;(2)若C是OA的中点,,求阴影部分的面积.【解答】(1)证明:连接OB,∵OA=OE,B是AE中点,∴AE⊥OB,∵OB是⊙O的半径,且AE⊥OB,∴AE是⊙O的切线.(2)解:∵C是OA的中点,∴OB=OC=AC=OA,∴cos∠AOB==,∴∠AOB=∠EOB=60°,∵OD=OB,BD=4,∴∠OBD=∠D=∠AOB=30°,∴∠OGB=180°﹣∠OBD﹣∠EOB=90°,∴OG⊥BD,∴BG=DG=BD=2,∵=tan30°=,∴GO=BG=×2=2,∴OB=2GO=4,∴S阴影=S扇形OBF﹣S△OBG=﹣×4×2=﹣4,∴阴影部分的面积是﹣4.22.(10分)如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O处,以点O 为原点,水平方向为x轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线y=a(x﹣20)2+k的一部分,山坡OA上有一堵防御墙,其竖直截面为ABCD,墙宽BC=2米,BC与x轴平行,点B与点O的水平距离为28米、垂直距离为6米.(1)若发射石块在空中飞行的最大高度为10米,①求抛物线的解析式;②试通过计算说明石块能否飞越防御墙;(2)若要使石块恰好落在防御墙顶部BC上(包括端点B、C),求a的取值范围.【解答】解:(1)①设石块运行的函数关系式为y=a(x﹣20)2+10,把(0,0)代入解析式得:400a+10=0,解得:a=﹣,∴解析式为:y=﹣(x﹣20)2+10,即y=﹣x2+x(0≤x≤40);②石块能飞越防御墙AB,理由如下:把x=30代入y=﹣x2+x得:y=﹣×900+30=7.5,∵7.5>6,∴石块能飞越防御墙AB;(3)由题可知B(28,6),抛物线y=a(x﹣20)2+k,∴把(0,0),(28,6)代入得:,解得a=﹣;把C(30,6),(0,0)代入解析式,解得a=﹣,∴a的取值范围为﹣≤a≤﹣.23.(11分)某数学兴趣小组开展矩形的折叠实验探究,折叠矩形ABCD的一边AD,使点D落在点F处,折痕为AE.(1)如图1,当点F恰好在BC边上时,证明:△ABF∽△FCE.(2)将矩形的边AB折叠,使点B落在AF边上的点M处,折痕为AN.①如图2,当点F恰好在BC边上时,若AB=1,,连接EN,试判断△AEN的形状,并说明理由.②如图3,当点F在矩形内部时,若AB=8,BC=12.点E是CD的中点,求FN的长.【解答】(1)证明:由折叠可知,△AFE≌△ADE,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠CFE,∵∠B=∠C=90°,∴△ABF∽△FCE.(2)解:①由折叠可知,△AMN≌△ABN,∴AM=AB=1,∵AF=AD=BC=,∵∠B=90°,∴BF==1=AB,∴△ABF为等腰直角三角形,∵△ABF∽△FCE.∴△FCE为等腰直角三角形,∴CE=CF=﹣1,∵∠AFE=90°,∴∠MFN+∠CFE=90°,∵∠CFE=45°,∴∠MFN=45°,∠FMN=∠AMN=90°,△FMN为等腰直角三角形,∴MN=FM=﹣1,∴BN=﹣1=CE,∴CN==1=AB,∴△ABN≌△NCE(SAS),∴AN=EN,∵∠NAM+∠EAF=∠BAD=45°,∴△AEN为等腰直角三角形,②延长AF交BC于点H,连接EH,∵AM=AB=DC=8,点E为DC中点,∴CE=DE=4,EF=DE=4,AF=AD=BC=12,∴FM=12﹣8=4,∵∠EFH﹣∠AFE=∠D=90°,∠C=90°,∴∠EFH=∠C,在Rt△EFH和Rt△ECH中,EH=EH,EF=EC,∴Rt△EFH≌Rt△ECH(HL),设FH=x,则CH=x,∴BH=12﹣x,AH=12+x,在Rt△ABH中,AB2=BH2+AH2,即82+(12﹣x)2=(12+x)2,解得x=,∴MH=,设MN=y,则BN=y,∴MH=,∵∠NMH=90°,∴在Rt△NMH中,y2+()2=()2,∴y=4,∴FN==4.故FN的长为4.24.(12分)在平面直角坐标系中,已知抛物线y=ax2﹣2ax﹣3a(a>0).(1)抛物线的对称轴为直线 x=1 ;(2)当﹣2≤x≤2时,函数值y的取值范围是﹣4≤y≤b,求a和b的值;(3)当a=1时,解决下列问题.①抛物线上一点P到x轴的距离为6,求点P的坐标;②将该抛物线在0≤x≤4间的部分记为G,将G在直线y=t下方的部分沿y=t翻折,其余部分保持不变,得到的新图象记为Q.设Q的最高点、最低点的纵坐标分别为y1,y2,若y1﹣y2<6,直接写出t 的取值范围.【解答】解:(1)函数的对称轴为:x=﹣=1,∴x=1;故答案为:x=1;(2)函数对称轴为x=1,当﹣2≤x≤2时,函数值y的取值范围是﹣4≤y≤b.故y=﹣4 是函数的最小值,即抛物线的顶点为(1,﹣4).将函数顶点坐标代入函数表达式并解得:a=1.故抛物线的表达式为:y=x2﹣2x﹣3,则b=(﹣2)2﹣2(﹣2)﹣3=5;(3)①∵抛物线上一点P到x轴的距离为6,而顶点坐标为(1,﹣4),x2﹣2x﹣3=6,解得故点P的坐标为,6)或,6);②﹣1<t≤2.设图象折叠后顶点M的对应点为M,点H是x=4函数所处的位置,图象Q为C′M′NH区域,点M(1,﹣4),点H(4,5),则点M′(1,2t+4)当点M′在点H下方时,2t+4<5,t<,函数Q的最高点为H,最低点为N.则5﹣t<6.解得t>﹣1.故﹣1<t<,当点M′在点H上方时,同理可得:故﹣1<t<2.。
湖北省襄阳市2020中考数学适应性考试试题(本试题共4页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效作图一律用2B铅笔或0.5毫米黑色签字笔.4.考试结束后,请将本试题卷与答题卡一并上交.一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.-3的倒数是(▲)A.-3B.3C. -13D.132.2019年,保康县全年投入资金3593万元,实施学校建设项目16个,新建、改扩建校舍20398平方米.其中20398 m2用科学记数法可表示为(▲)A.20.4×103m2B.2.03×104m2C.2.04×104m2 D.3.60×103万元3.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α等于(▲)A.19°B.38°C.42°D.52°4.下列计算正确的是(▲)A.3x2y+5xy=8x3y2B.(x+y)2=x2+y2C.(-2x)2÷x=4x D.a6÷a3=a25.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为(▲)A.1.25尺B.57.5尺C.6.25尺D.56.5尺6.如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为(▲)A.60πcm2B.65πcm2C.120πcm2D.130πcm27.某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如表:跳远成绩160 170 180 190 200 210人数 3 9 6 9 15 3这些立定跳远成绩的中位数和众数分别是(▲)A .9,9B .15,9C .190,200D .185,2008.二次函数y=ax 2+bx+c (a 、b 、c 是常数,且a ≠0)的图象如图所示,下列结论错误的是(▲) A .a <0 B .b <0 C .c <0 D .a <b9.如图,EF 过▱ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若▱ABCD 的周长为18,OE=1.5,则四边形EFCD 的周长为(▲)A .14B .13C .12D .1010.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,3√3),∠ABO=30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为(▲) A .(32,32√3) B .(2,32√3) C .(32√3,32) D .(32,3﹣32√3)二、填空题(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的相应位置上.11.分解因式:2ax 2-8a= ▲ .12.已知一元二次方程x 2-3x ﹣2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值▲. 13.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 ▲ .14.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若弧EF 的长为π2,则图中阴影部分的面积为 ▲ . 15.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE= ∠B=α,DE 交AC 于点E ,且cosα=45.下列结论: ①△ADE ∽△ACD ;②当BD=6时,△ABD与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE≤6.4.其中正确的结论 是 ▲ .(把你认为正确结论的序号都填上)16.如图,在矩形ABCD 中,AB =4,∠DCA =30°,点F 是对角线AC 上的一个动点,连接DF ,以DF 为斜边作∠DFE =30°的直角三角形DEF ,使点E 和点A 位于DF 两侧,点F 从点A 到点C 的运动过程中,点E 的运动路径长是 ▲ .三、解答题(本大题共9个小题,共72分)解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 17.(本小题满分6分) 化简:(x 2−2xx 2−4x +4−4x −2)÷x −4x 2−418.(本小题满分6分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分. 请你根据以上信息,回答下列问题:(1)统计表中m 的值为 ▲ ,统计图中n 的值为 ▲ ,A 类对应扇形的圆心角为 ▲ 度;(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.19.(本小题满分6分)为积极参与县城全国文明城市创建活动,我县某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度AB ,他站在距离教学楼底部E 处6米远的地面C 处,类别 AB C D E 类型 新闻 体育 动画 娱乐 戏曲 人数 11 20 40 m 4测得宣传牌的底部B 的仰角为60°,同时测得教学楼窗户D 处的仰角为30°(A 、B 、D 、E 在同一直线上).然后,小明沿坡度i =1:1.5的斜坡从C 走到F 处,此时DF 正好与地面CE 平行.(1)求点F 到直线CE 的距离(结果保留根号);(2)若小明在F 处又测得宣传牌顶部A 的仰角为45°,求宣传牌的高度AB (结果精确到0.1米,√2≈1.41,√3≈1.73).20.(本小题满分6分)如图,一次函数y =kx +b与反比例函数y =mx 的图象交于A (2, 4)、B (-4,n )两点.(1)分别求出一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx +b >mx 的解集; (3)过点B 作BC ⊥x 轴,垂足为C ,连接AC ,求S △ABC .21.(本小题满分7分)春秋旅行社为吸引市民组团去九路寨风景区旅游,推出了如下收费标准:该市某单位组织员工去九路寨风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去九路寨风景区旅游?22.(本小题满分8分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与边BC 、AC 分别交于D 、E 两点,过点D 作DF ⊥AC ,垂足为点F .如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.(1)求证:DF是⊙O的切线;,求DF的长.(2)若AE=4,cosA=2523.(本小题满分10分)某公司开发出一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x (天)之间的函数关系.已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是▲件,日销售利润是▲元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?24.(本小题满分11分)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,AMBM =13,求CNBN的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:AMMB ∙BNNC∙COOA=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若AFBF =13,BDCD=12,求AECE的值.25.(本小题满分12分)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H 且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF 的面积最大,求点H的坐标及最大面积(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.2020年保康县中考适应性考试数学试题参考答案及评分说明题号 1 2 3 4 5 6 7 8 9 10 答案 C C B C B B C D C A 二、填空题:(本大题共6小题,每小题3分,共18分)11.2a (x+2)(x ﹣2)12.-4 13.1914.2-π2 15.①②③④(答对3个给2分) 16.4√33三、解答题:(本大题共72分) 17.(本题6分)解:原式=[π(π−2)(π−2)2﹣4π−2]÷π−4π2−4 (2分) =[ππ−2﹣4π−2]÷π−4π2−4(3分)=π−4π−2∙(π−2)(π+2)π−4(5分)=x +2 (6分)18.(本题6分) 解:(1)答案依次为:25、25、39.6.(1.5分,即每空0.5分) (2)1500×20100=300(人)该校最喜爱体育节目的人数约有300人;(2.5分) (3)画树状图如下:(4.5分) 共有12种情况,所选2名同学中有男生的有6种结果, 所以所选2名同学中有男生的概率为12. (6分) 19.(本题6分)解:(1)过点F 作FG ⊥EC 于G , (1分) 依题意知FG ∥DE ,DF ∥GE ,∠FGE =90°; ∴四边形DEFG 是矩形; ∴FG =DE ; (2分) 在Rt △CDE 中, DE =CE •tan ∠DCE ;=6×tan30o=2 √3(米);(3分) ∴点F 到地面的距离为2 √3米; (2)∵斜坡CFi =1:1.5.∴Rt △CFG 中,CG =1.5FG =2√3×1.5=3√3,∴FD =EG =3√3+6.(4分) 在Rt △BCE 中,BE =CE •tan ∠BCE =6×tan60o =6√3.(5分) ∴AB =AD +DE ﹣BE .=3√3+6+2√3﹣6√3=6﹣√3≈4.3 (米).答:宣传牌的高度约为4.3米.(6分) 20.(本题6分) 解:∵点A (2,4)在y =ππ的图象上,∴m=8. ∴反比例函数的表达式为y =8π. (1分) ∴n=-2,∴B (-4,-2). (2分) ∵点A (2,4)、B (-4,-2)在直线y =kx +b上,∴{4=2π+π−2=−4π+π (2分)∴{π=1π=2∴一次函数的表达式为y =x +2. (3分) (2)−4<π<0或x >2 (4分)(3)设AB 交x 轴于点D ,则点D 的坐标为(-2,0).(5分) ∴CD=2.∴S △ABC = S △BCD + S △ACD ==12×2×2+12×2×4=6 (6分)21.(本题7分)解:∵支付给春秋旅行社旅游费用为27000元,当旅游人数是30时,30×800=24000元,低于27000元.∴这次旅游超过了30人.(1分)∴假设这次旅游员工人数为x 人,根据题意列出方程得:∵[1000-(x-25)×20]x =27000,(4分)∴x 2-75x+1350=0,(5分) 解得:x 1=30,x 2=45,(6分)又因为人均旅游费不能低于700元, ∴x 2=45(不合题意舍去).答:该单位这次共有30员工去九路寨风景区旅游.(7分) 22.(本题8分)证明:(1)如图,连接OD ,作OG ⊥AC 于点G ,(1分) ∵OB=OD ,∴∠ODB=∠B ,(2分)又∵AB=AC ,∴∠C=∠B ,∴∠ODB=∠C ,(3分) ∵DF ⊥AC ,∴∠DFC=90°,∴∠ODF=∠DFC=90°, ∴DF 是⊙O 的切线.(4分)(2)AG=12AE=2,(5分)∵cosA=ππππ, ∴OA=ππππππ=2÷25=5,(6分)∴OG=√ππ2−ππ2=√21,(7分)∵∠ODF=∠DFG=∠OGF=90°,∴四边形OGFD 为矩形, ∴DF=OG=√21.(8分) 23.(本题10分)解:(1)340﹣(24﹣22)×5=330(件), 330×(8﹣6)=660(元). 故答案为:330;660.(2分,每空1分)(2)设线段OD 所表示的y 与x 之间的函数关系式为y=kx ,(3分) 将(17,340)代入y=kx 中,(4分) 340=17k ,解得:k=20,∴线段OD 所表示的y 与x 之间的函数关系式为y=20x .(4分) 根据题意得:线段DE 所表示的y 与x 之间的函数关系式为 y=340﹣5(x ﹣22)=﹣5x+450.(5分) 联立两线段所表示的函数关系式成方程组,得{π=20ππ=−5π+450,解得:{π=18π=360,∴交点D 的坐标为(18,360),∴y 与x 之间的函数关系式为y ={20π(0≤π≤18)−5π+450(18<π≤30).(6分)(3)当0≤x ≤18时,根据题意得:(8﹣6)×20x ≥640, 解得:x ≥16;(7分)当18<x ≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640, 解得:x ≤26. ∴16≤x ≤26.(8分) 26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.(9分) ∵点D 的坐标为(18,360), ∴日最大销售量为360件, 360×2=720(元),∴试销售期间,日销售最大利润是720元.(10分) 24.(本题11分) 解:(1)过点A 作AG ∥MN 交BN 延长线于点G ,(1分) ∴∠G=∠BNM , 又∠B=∠B ,∴△ABG ∽△MBN ,∴ππππ=ππππ∴ππππ−1=ππππ−1∴ππ−ππππ=ππ−ππππ,即ππππ=ππππ(2分)同理,在△ACG和△OCN中,ππππ=ππππ(3分)∴ππππ=ππππ∵O为AC中点,∴AO=CO,∴NG=CN,∴ππππ=ππππ=ππππ=13(4分)(2)由(1)知,ππππ=ππππ,ππππ=ππππ(5分)∴ππππ∙ππππ∙ππππ=ππππ∙ππππ∙ππππ=1(6分)(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延长线相交于点C,由(2)得,ππππ∙ππππ∙ππππ=1(7分)在△ACD中,点P是AD上一点,过点P的直线与AC、AD的延长线分别相交于点E、B,由(2)得,ππππ∙ππππ∙ππππ=1(8分)∴ππππ∙ππππ∙ππππ=ππππ∙ππππ∙ππππ(9分)∴ππππ=ππππ∙ππππ∙ππππ=ππππ∙ππππ=13×12=16(10分)∴14=0.7EM∴EM=2.8.(11分)25.(本题12分)解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴{π−π−5=025π+5π−5=0 ; (1分)∴{π=1π=−4(2分)∴抛物线的表达式为y=x2﹣4x﹣5,(3分)(2)如图1,令x=0,则y=﹣5,∴C (0,﹣5),∴OC=OB ,∴∠OBC=∠OCB=45°, ∴AB=6,BC=5√2,(4分) 要使以B ,C ,D 为顶点的三角形与△ABC 相似, 则有ππππ=ππ ππ或ABππ=ππππ ,①当ππππ=ππ ππ时,CD=AB=6,∴D (0,1),(5分)②当AB ππ=ππππ时,∴5√2=5√2ππ ,∴CD=253,∴D (0,103),(6分)即:D 的坐标为(0,1)或(0,103);(3)设H (t ,t 2﹣4t ﹣5),∵CE ∥x 轴,∴点E 的纵坐标为﹣5,∵E 在抛物线上,∴x 2﹣4x ﹣5=﹣5,∴x=0(舍)或x=4,(7分) ∴E (4,﹣5),∴CE=4,∵B (5,0),C (0,﹣5),∴直线BC 的解析式为y=x ﹣5,∴F (t ,t ﹣5),∴HF=t ﹣5﹣(t 2﹣4t ﹣5)=﹣(t ﹣52)2+254,(8分)∵CE ∥x 轴,HF ∥y 轴,∴CE ⊥HF ,∴S 四边形CHEF =12CE•HF=﹣2(t ﹣52)2+252,当t=52时,四边形CHEF 的面积最大为252.(9分)(4)如图2,∵K 为抛物线的顶点,∴K (2,﹣9),∴K 关于y 轴的对称点K'(﹣2,﹣9),(10分) ∵M (4,m )在抛物线上,∴M (4,﹣5),∴点M 关于x 轴的对称点M'(4,5),(11分) ∴直线K'M'的解析式为y=73x ﹣133,∴P (137,0),Q (0,﹣133). (12分)。
湖北省襄樊市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,ABC △的顶点是正方形网格的格点,则sin A 的值为( )A .12B .5C .25D .10102.下列计算正确的是( )A .2x 2+3x 2=5x 4B .2x 2﹣3x 2=﹣1C .2x 2÷3x 2=23x 2 D .2x 2•3x 2=6x 4 3.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3m )与旋钮的旋转角度x (单位:度)(090x <≤o o )近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18oB .36oC .41oD .58o4.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A 25B 5C .2D .125.如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( )A .310B .103C .9D .926.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG GF的值是( )A .43B .54C .65D .767.下列各式正确的是( )A .﹣(﹣2018)=2018B .|﹣2018|=±2018C .20180=0D .2018﹣1=﹣2018 8.函数y kx 1=+与k y x=-在同一坐标系中的大致图象是( ) A 、B 、C 、D 、 9.要使式子2a a +有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠C .2a >-. 或0a ≠D .2a ≥- 且0a ≠10.一、单选题 二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个11.计算a•a 2的结果是( )A .aB .a 2C .2a 2D .a 312.如图,把△ABC 剪成三部分,边AB ,BC ,AC 放在同一直线上,点O 都落在直线MN 上,直线MN ∥AB ,则点O 是△ABC 的( )A .外心B .内心C .三条中线的交点D .三条高的交点二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的角平分线,在AM 上求一点P ,使CP DP +的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置是如何找到的(不要求证明)___________.14.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .15.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.16.若y=334x x -+-+,则x+y= .17.如图,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在点'A 处,且点'A 在△ABC 的外部,则阴影部分图形的周长为_____cm.18.已知α是锐角1sin2α=,那么cosα=_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.20.(6分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.21.(6分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.22.(8分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+14a),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x2的焦点坐标以及直径的长.(2)求抛物线y=14x2-32x+174的焦点坐标以及直径的长.(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为32,求a的值.(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.②直接写出抛物线y=14x2-32x+174的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.23.(8分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.24.(10分)解不等式组:()3x12xx1x132⎧-<⎪⎨+-<⎪⎩25.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当△MAC是以AC为直角边的直角三角形时,求点M的坐标.26.(12分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐。
x22x 侧视图正视图襄阳2020届高三第三次适应性考试数学(理科)试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的).1. 设集合}2)1(log |{2<+=x x A,{B y y ==,则()AB =R ð( )A. ()0,3B. []0,4C. [)3,4D. ()1,3-2. 已知复数15i z a =-在复平面上对应的点在直线520x y +=上,复数152iz z +=(i 是虚数单位),则2017z =( )A .1B .1-C .i -D .i3. 若tan 2α=,则22cos 23sin 2sin ααα+-的值为( )A .25B .25-C .5D.4. 在[][]4,6,2,4x y ∈∈内随机取出两个数,则这两个数满足30x y -->的概率为( )A .14B .18C .110D .1165. 若圆2212160x y x +-+=与直线y kx =交于不同的两点,则实数k 的取值范围为( )A.( B.(C.( D.( 6. 70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N ,并且按照以下的规律进行变换:如果是个奇数,则下一都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N 是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的421--循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为 ( ) A .142B .71C .214D .1077. 在ABC △中,a ,b ,c 分别为内角A ,B,C 的对边,且22233sin a b c A =+-,则C 的值为( )2018161412CBDCADABA .3π B .6π C .4π D .32π 8.x 的值为( ) A .3 B .1 C.2 D .52A .[)4,10-B .[]5,2-C .[]4,3-D .[]2,5-103OA =,2OB =,OC mOA nOB =+,若OA 与OB 的夹角为60°,且OC AB ⊥,则实) A.B. C. 6 D. 4 11.如图,在四边形ABCD 中,2AB BC ==,90ABC ∠=︒,DA DC =.现沿对角线AC 折起,使得平面DAC ⊥平面ABC ,且三棱锥D ABC -的体积为43,此时点A ,B ,C ,D 在同一个球面上,则该球的体积是( )A B C D .12π 12.已知函数()2ln f x ax x x =--存在极值,若这些极值的和大于5ln 2+,则实数a 的取值范围为( )A .(),4-∞B .()4,+∞C .(),2-∞D .()2,+∞第Ⅱ卷本试卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分) 13.若()()62701271x a x a a x a x a x +-=+++⋅⋅⋅+,其中()πsin cos d a x x x =-⎰,则0126a a a a +++⋯+的值为 .51015ADE MB 14.已知函数()1,022,0x x f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,若()2f f a -=⎡⎤⎣⎦,实数x y ,满足约束条件0626x a x y x y -≥+≤-≤⎧⎪⎨⎪⎩,则目标函的最大值为 .15.过点()2,0P 的直线交抛物线24y x =于,A B 两点,若抛物线的焦点为F ,则ABF △面积的最小值为 . 16.以下四个命题:①已知随机变量()20,X N σ~,若,则(2)P X >的值为②设,a b ∈R ,则“22log log a b >”是“21a b ->”的充分不必要条件;③函数()1212xf x x ⎛⎫=- ⎪⎝⎭的零点个数为1; ④命题2:,31np n n ∀∈≥+N ,,则p ⌝为2,31nn n ∀∈≤+N .其中真命题的序号为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 为公差不为0的等差数列,满足15a =,且2930,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)若数列{}n b 满足()111n n n a n b b *+-=∈N ,求数列{}n b 的前n 项和n T .18.(本小题满分12分)已知在四棱锥C ABDE -中,DB ⊥平面ABC ,//AE DB ,ABC △是边长为2的等边三角形,1AE =,M 为AB 的中点.(1)求证:CM EM ⊥;(2)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.19.(本小题满分12分)近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占35,采用微信支付的占23,40岁以上采用微信支付的占14. (1)请完成下面22⨯列联表:(2)采用分层抽样的方法从100名顾客中抽取10人参与抽奖活动,一等奖两名,记 “40岁以下”得一等奖的人数为X ,求X 的分布列及数学期望.参考公式: 22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.参考数据:20.(本小题满分12分),M 是椭圆上一点,若120MF MF ⋅=,8MF MF ⋅=.(1)求椭圆的方程;(2)点P 是椭圆上任意一点,12A A 、分别是椭圆的左、右顶点,直线12PA PA ,与直线交于,E F 两点,试证:以EF 为直径的圆交x 轴于定点,并求该定点的坐标.21.(本小题满分12分)已知函数()sin c e (os )xf x x x =+.(1,()e cos xf x kx x ≥+恒成立,求实数k 的取值范围; (2)()f x 的图象的所有切线,令各切点的横坐标按从小到大构成数列{}n x ,求数列{}n x 的所有项之和.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy ,以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐.直线l 的参数方程为).(Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)设直线l 与曲线C 的两个交点分别为,A B ,求 23.(本小题满分10分)选修4-5:不等式选讲(Ⅰ)解不等式()0f x x +>;(Ⅱ)若关于x 的不等式()22f x a a ≤-在R 上的解集为R ,求实数a 的取值范围.高三年级第三次适应性考试 理科数学·参考答案17.【解析】(1)设等差数列{}n a 的公差为d (0d ≠),由2930,,a a a 成等比数列可知()()()2111298a a d a d d +=++,又15a =,解得2d =,∴23n a n =+.………………4分(2)由()111n n n a n b b *+-=∈N ,得()11112,n n n a n n b b *---=≥∈N , 当2n ≥时,1b b ⎛++- ⎝(111a b +++8分 ()()12n n n n b *=+∈N 1n n ⎛++-⎝………12分 18. 【解析】(1)因为ABC △是等边三角形,M 为AB 的中点,所以CM AB ⊥.又因为DB ⊥平面ABC , DB CM ∴⊥,可得CM ⊥平面ABDE ,因为EM ⊂平面ABDE ,所以CM EM ⊥;(4分) (2)如图,以点M 为坐标原点,,MC MB 所在直线分别为,x y 轴,过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系.因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成的角.(6分) 由题意得tan 2BDDMB MB∠==,即2BD =,故()0,1,0B ,)C ,()()0,1,2,0,1,1DE -,于是(3,BC =()0,0,2BD =,(CE =- (CD =-设平面BCD 与平面CDE的法向量分别为()111,,x y z =m ,()222,,x y z =n ,则由00BC BD ⎧⋅=⎨⋅=⎩m m 得11x =,得1y , (10分) B CD E --的大小为90︒.(12分)51015zxyACDE MB3x-2y x+y-4=0y19.【解析】(1)由已知可得,40岁以下的有3100605⨯=人,使用微信支付的有260403⨯=人,40岁以上使用微信支付的有140104⨯=人.所以22⨯列联表为:有的把握认为“使用微信支付与年龄有关”. .....5分(2)采用分层抽样的方法从100名顾客中抽取10人,则从“40岁以下”的人中抽取6人,从“40岁以上”的人中抽取4人,X 的所有可能取值为0,1,215153520.【解析】(1)由120MF MF ⋅=,得12MF MF ⊥,即12MFMF ⊥,由勾股定理,得8MF MF ⋅=,解得4,2MF MF ==,根据椭圆的定义,可得2MF MF a +=,即3a =,所以2224b a c =-=,所以椭圆的方程为.....4分(2)由(1)得()13,0A -,()23,0A ,设()00,P x y ,则直线1PA 的方程为,直线2PA 的方程为,再设以EF 为直径的圆交x 轴于点(),0Q m ,则QE QF ⊥,从而1QE QF k k ⋅=-,即220209492y m x ⎛⎫=-- ⎪ ⎪-⎝⎭,故以EF 为直径的圆交x 轴于定点,该定点的坐标为..........12分 21.【解析】(1)令()()cos e xg x f x kx x =-- sin e x x kx =-,要使()e cos x f x kx x≥+恒成立,只需()min0g x ≥,()()sin s e co x g x x x k =+-',令()()sin c e os xh x x x =+,则()2cos 0e x h x x '=≥对恒成立,()h x ∴在..........2分①当1k ≤时, ()0g x '≥恒成立, ()g x 在上为增函数,()()min 00g x g ∴==,1k ∴≤满足题意;()0g x '=在上有实根0x , ()h x 在则当[)00,x x ∈时,()0g x '<,()()000g x g ∴<=不符合题意;()0g x '≤恒成立, ()g x 在上为减函数,()()00g x g ∴<=不符合题意,1k ∴≤,即(],1k ∈-∞. ..........5分 (2)()f x =()sin co e s x x x +,()e '2cos x f x x ∴=,设切点坐标为()()0000,sin cos ex x x x +,则切线斜率为()0002cos 'e x f x x =,从而切线方程为()000sin cos e x y x x -+()0002cos e x x x x =-,,令1tan y x =,对称,从而所作的所有切线的切点的横坐标构成数列{}n x1008对,每对和为π,∴数列{}n x 的所有项之和为1008π. .....12分 22.【解析】(1)曲线C 的直角坐标方程为,直线l 的普通方程为……5分(2l 上,将直线l 的参数方程代入曲线C 的直角坐标方程,得251240t t ∴+-=,设两根为1t ,2t ,12125t t +=-故1t 与2t 异号,125PA PB t t ∴+=-==,121245PA PB t t t t ⋅=⋅=-⋅=,………………10分 23.【解析】(1)不等式()0f x x +>可化为,当1x <-时, ()()21x x x --+>-+,解得3x >-,即31x -<<-;当12x -≤≤时, ()21x x x --+>+,解得1x <,即11x -≤<;当2x >时, 21x x x -+>+,解得3x >,即3x >,综上所述,不等式()0f x x +>的解集为{|31x x -<<或3}x >.……………5分(2)由不等式()22f x a a ≤-可得2212x x a a ≤--+-,2x x --∴223a a -≥,即2230a a --≥,解得1a ≤-或3a ≥,故实数a 的取值范围是1a ≤-或3a ≥.…10分。
湖北襄城2019适应性考试试题-数学数学试题〔时限:120分钟 总分值:120分〕【一】选择题〔每题3分,共36分〕 1.-21的倒数是〔 〕 A.-21 B.-2 C.2 D.21 2.李明的作业本上有四道题:〔1〕a 2·a 3=a 5,〔2〕〔2b 2〕3=8b 6,〔3〕〔x+1〕2=x 2+1,〔4〕4a 6÷(-2a 3)=-2a 3,假如你是他的数学老师,请找出他做错的题是〔〕 A.〔1〕 B.〔2〕 C.〔3〕 D.〔4〕3.函数y=12+-x x 中的自变量的取值范围为〔 〕 A.x >-2 B.x >2且x ≠-1 C.x ≥2 D.x ≥2且x ≠-14. 右图是某几何体的三种视图,那么该几何体是〔 〕A 、正方体B 、圆柱体C 、圆锥体D 、球体5. 以下图形中既是轴对称图形,又是中心对称图形的是〔 〕6.以下说法正确的选项是〔 〕 A.一个游戏的中奖率是101 ,那么做10次如此的游戏一定会中奖B.为了解全国中学生的心理健康情况,应采纳普查的方式C.一组数据6,8,7,8,8,9,10的众数和中位数基本上8D.假设甲组数据的方差S 2甲=0.01,,乙组数据的方差S 2乙=0.1,那么乙组数据比甲组数据稳定7.北京2017奥运的国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为 〔 〕平方米.A 、0.258×106B 、2.58×105C 、25.8×104D 、258×1038. 在中央电视台2套“快乐辞典”节目中,有一期的某道题目是:如下图,天平中放有 〕 A 、43倍 B 、32倍 C 、2倍 D 、3倍 9. 以下一元二次方程中,没有实数根的是〔 〕A 、x 2+2x-1=0 B 、x 2+22x-1=0 主视图 俯视图左视图C 、x 2+2x+1=0D 、-x 2+2x+2=010. 如图,以点O 为圆心的两个同心圆,半径分别为5和3,假设大圆的弦AB 与小圆相交,那么弦长AB 的取值范围是〔 〕A 、8≤AB ≤10 B 、AB ≥8C 、8<AB <10D 、8<AB ≤1011. 如图扇形AOB 的半径为6cm ,圆心角的 度数为120°,假设将此扇形围成一个圆锥,那么围成的圆锥的底面半径为〔 〕A 、2㎝ B. 4㎝ C 、1㎝ D.8㎝12. 如下图的计算程序中,y 与x 之间的函数关系所对应的图象应为〔 〕【二】填空题〔每题3分,共15分〕13. 如图,在△ABC 中,∠C =90°、假设BD ∥AE ,∠DBC =20°,那么∠CAE 的度数是 、14. 一等腰三角形的两边长x 、y 满足方程组 ⎩⎨⎧,823,32=+=-y x y x 那么此等腰三角形的周长为 、 15. 如图,在□ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,那么AF 的长为__________. 16. 某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,那么选出的恰为一男一女的概率是 、17. 如图,⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 . 【三】解答题〔此题有9个小题,共69分〕 18.〔6分〕先化简:)3231(21943322-+⋅-÷+x x x x ;假设结果等于32,求出相应x 的值、 19.〔6分〕某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次、某班 体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下〔每个分组包 括左端点,不包括右端点〕.求:〔1〕该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?〔2〕该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围、〔3〕从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?20.〔6分〕为了支援四川雅安地区人民抗震救灾,某休闲用品有限公司主动承担了为灾区120︒B O A 6cm生产2万顶帐篷的任务,计划10天完成、〔1〕按此计划,该公司平均每天应生产帐篷 顶;〔2〕生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人....的工作效率比原计划提高了25%,结果提早2天完成了生产任务、求该公司原计划安排多少名工人生产帐篷?21.〔6分〕如下图,某幼儿园为了加强安全治理,决定将园内的滑滑板的倾斜角由45°降为30°,原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.假设滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像如此改造是否可行?请说明理由.〔参考数据:2≈1.414,3≈1.732,6≈2.449〕22.〔7分〕如图,△ABC 是边长为5的等边三角将△ABC 绕点C 顺时针旋转120°,得到△EDC,连接BD ,交AC 于F.〔1〕猜想AC 与BD 的位置关系,并证明你的结论;〔2〕求线段BD 的长.23.〔7分〕如图,反比例函数y=xk 〔k >0〕与矩形OABC 在第一象限相交于D 、E 两点,OA=2,OC=4,连接OD 、OE 、DE.记△OAD 、△OCE 的面积分别为S 1、S 2 .〔1〕①点B 的坐标为 ;②S 1 S 2〔填“>”、“<”、“=”〕; 〔2〕当点D 为线段AB 的中点时,求k 的值及点E 的坐标;〔3〕当S 1+S 2=2时,试判断△ODE 的形状,并求△ODE 的面积.24.〔8分〕为加强对学生的爱国主义教育,某学校团组织决定在“五·四”青年节到来之际,计划租用6辆客车送一批团员师生去烈士塔参加新团员入团宣誓仪式.现有甲、乙两种y 元.〔1〕求出y 〔元〕与x 〔辆〕之间的函数关系式,指出自变量的取值范围;〔2〕假设该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否能够结余?假设有结余,最多可结余多少元?25.〔11分〕如图,以Rt △ABC 的直角边AB 为直径做圆O ,与斜边AC 交于点D ,E 为BC 边的中点,连接DE.〔1〕求证:DE 是⊙O 的切线;〔2〕连接OE 、AE ,当∠CAB 为何值时,四边形AODE 是平行四边形,并说明理由; 〔3〕在(2)的条件下,求sin ∠CAE 的值.26.〔12分〕矩形OABC 在平面直角坐标系中的位置如下图,A 、C 两点的坐标分别为A 〔6,0〕,C 〔0,-3〕,直线y=-43x EC B与BC 边相交于D 点.〔1〕假设抛物线y=ax 2-49x 通过点A ,试确定此抛物线的解析式; 〔2〕在〔1〕中的抛物线的对称轴上取一点E ,求出EA+ED 的最小值;〔3〕设〔1〕中的抛物线的对称轴与直线OD 交于点M ,点P 为对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD 相似,求符合条件的点P 的坐标.襄城区2018年中考适应性考试数学试题答案【一】选择题:1.B2.C3.C4.B5.D6.C7.B8.B9.C 10.D 11.A 12.D【二】填空题:13. 70° 14.5 15.6 16.53 17. )2,6(或)2,6(- 【三】解答题:18.解:……(3分)由32x =32,可得x 2=2,解得 x =±2、 ……(6分) 19. 解:〔1〕该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8、 因为100.8>100,因此一定超过全校平均次数、 ……(2分)〔2〕那个学生的跳绳成绩在该班是中位数,由4+13+19=36,因此中位数一定在100~120范围内、 ……(4分)〔3〕该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33〔人〕, 因此,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为5033、 ……(6分)20. 解:〔1〕2000 ……(1分) 〔2〕设该公司原计划安排x 名工人生产帐篷,那么由题意得:20002000022000(125)(1022)(50)x x -⨯+=--+%, 5163(50)x x ∴=+、 解那个方程,得750x =、经检验,750x =是所列方程的根,且符合题意、答:该公司原计划安排750名工人生产帐篷、 ……(6分)21.解:∵在直角三角形ABC 中,sin45°=AB AC ,∴AC=AB ·sin45°=225.∵在直角三角形ABC 中,∠C=90°,∠ABC=45°,∴BC=AC=225,∵在直角三角形ADC 中,tan30°=CD AC,∴CD=030tan AC =256∴BD=CD-BC=25(6-2)≈2.5875≈2.29∵6-2.59=3.41〔米〕>3米,∴如此改造是可行的. ……(6分)22.解:〔1〕AC 与BD 互相垂直平分.证明:连接AD ,由题意知,△ABC ≌△EDC ,∠ACE=120°,又∵△ABC 是等边三角形,∴AB=DC=BC=DE=5,∠ABC=∠ACB=∠DCE=∠E=60°, ∴∠ACE+∠ACB=120°+60°=180°,∴B 、C 、E 三点在一条直线上.∴AB ∥DC ,∴四边形ABCD 为菱形,∴AC 与BD 互相垂直平分. ……(4分) 〔2〕由〔1〕知,四边形ABCD 为菱形,∴∠DBE=21∠ABC=30°,∵∠DBE+∠BDE+∠E=180°,∴∠BDE=90°.∵ B 、C 、E 三点在一条直线上,∴BE=10,∴ BD=22DE BE -=22510-=53 ……(7分)23.解:〔1〕①点B 的坐标为〔4,2〕;②S 1=S 2 ……(2分) 〔2〕k 的值为1,点E 的坐标为〔4,41〕 ……(4分)(3)可证得△ODE 为直角三角形.∴S ODE ∆=21OD ·DE= 21×5×253=415……(7分)24.解:〔1〕y=280x + 200〔6-x 〕= 80x+1200〔0≤x ≤6〕. ……(3分) 〔2〕能够有结余.由题意,知⎩⎨⎧≥-+≤+240)6(30451650120080x x x解之,得4≤x ≤585. 故预支的租车费用能够有结余.∵x 取整数,∴x 取4或5.∵k=80>0,∴y 随x 的增大而增大,∴当x=4时,y 的值最小,其最小值y=4×80+1200=1520〔元〕,∴最多可结余1650-1520=130〔元〕. ……(8分)25.〔1〕证明:连接OD 、BD.∵AB 是⊙O 的直径,∴∠ADB=90°,∵∠ADB+∠BDC=180°,∴∠BDC=90°,∵E 为BC 边的中点,∴BE=DE=CE=21BC ∴∠BDE=∠DBE, ∵OB=BD, ∴∠OBD=∠ODB,又∵∠ABC=∠OBD+∠DBE=90°,∴∠ODB+∠BDE=90°,即∠ODE=90°,∴OD ⊥DE ,∴DE 是⊙O 的切线. ……(4分)〔2〕解:当∠CAB=45°时,四边形AODE 是平行四边形.又∵∠ABC =90°,∴∠CAB=∠C =45°,∴AB=BC.同理可得BD=CD, ∵∠BDC=90°,E 为BC 边的中点,∴DE ⊥BC, ∴∠CED=∠ABC =90°, ∴DE ∥AB.又∵DE=21BC,OA=21AB, ∴DE=OA. ∴四边形AODE 是平行四边形. ……(8分)〔3〕过点E 作EF ⊥AC 交AC 于点F,设EF=x ,那么CE=BE=2x,BC=AB=22x, 在Rt △ABE 中,AE=22BE AB +=10x在Rt △AFE 中,sin ∠CAE=AE EF =x x 10=1010 ……(11分) 26.解:〔1〕抛物线y=ax 2-49x 通过点A 〔6,0〕, ∴0=36a-49×36, ∴a=83,故抛物线的解析式为y=83x 2-49x. ……(3分) 〔2〕直线y=-43x 与BC 边相交于D 点, 当y=-3时,x=4,∴点D 的坐标为〔4,-3〕.∵点O 与点A 关于对称轴对称,且点E 在对称轴上,∴EA=EO, ∴EA+ED=EO+ED,那么最小值为OD=2234+=5,∴EA+ED 的最小值为5. ……(6分) 〔3〕抛物线的对称轴与x 轴的交点P 1符合条件.∵OA ∥CB ,∴∠P 1OM=∠CDO.∵∠OP 1M=∠DCO=90°,∴Rt △P 1OM ∽Rt △CDO.∵抛物线的对称轴为x=3,∴点P 1的坐标为〔3,0〕.过点O 作OD 的垂线交抛物线的对称轴于点P 2.∵对称轴平行于y 轴,∴∠P 2MO=∠DOC.F∵∠P2OM=∠DCO=90°, ∴Rt△P2MO∽Rt△DOC.∴点P2也符合条件,∠OP2M=∠ODC.∵P1O=CO=3,∠P2P1O=∠DCO=90°,∴Rt△P2P1O ≌Rt△DCO. ∴P1P2=CD=4.∵点P2在第一象限,∴点P2的坐标为〔3,4〕.∴符合条件的点P有两个,分别是P1〔3,0〕,P2〔3,4〕.……(12分)。
2019-2020年保康县中考适应性考试考试数学试题(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试卷和答题卡上,并将考试号条型码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效.作图一律用2B铅笔或0.5毫米黑色签字笔.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共12小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答.1.-1.5的倒数是( D )A .0B .-1.5C .1.5 D.-232.下图中不是中心对称图形的是( A )A B C D3.下列计算正确的是( A )A .(x 3)3=x 9B .(-2x )3=-6x 3C .2x 2-x =xD .x 2÷x 3=x 24.空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.000 002 5米.用科学记数法表示0.000 002 5为( C )A .2.5×10-5B .2.5×105C .2.5×10-6D .2.5×1065.如图M22是由八个相同的小正方体组合而成的几何体,其左视图是( B)6.如图,直线a ∥b ,射线DC 与直线a 相交于点C ,过点D 作DE⊥b 于点E ,已知∠1=25°,则∠2的度数为( A )A .115°B .125°C .155°D .165°7.某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15A .320,210,230B .320,210,210 C.206,210,210 D .206,210,2308.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( B ) A. B.1 C. D.29、用一条长为40cm 的绳子围成一个面积为acm2的长方形,aA .20B .40C .100D .12010.如图,直线AB 与半径为2的⊙O 相切于点C D ,是⊙O 上一点,且30EDC ∠=,弦EF AB ∥,则EF 的长度为( B )A .2B .CD . 11、一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶路程随时间变化的图象如图,下列结论错误的是( B )A .轮船的速度为20 km/hB .快艇的速度为803km/h C .轮船比快艇先出发2 h D .快艇比轮船早到2 h12、如图,将边长为3的等边ABC ∆沿着BA 方向平移,则'BC 的长为( C )A ;B .C .D .二、填空题:本大题共6道小题,每小题3分,共18分.把答案填在题中横线上.13.把多项式3m 2-6mn +3n 2分解因式的结果是 ▲3(m-n )2 .(第10题14.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.15.如图,直线MN 与⊙O 相切于点M ,ME =EF ,且EF ∥MN ,则cos E = ▲.16.水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 0.2 m .17.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图8所示的直角梯形,则原直角三角形纸片的斜边长是 6或2 .三、解答题:本大题有9道小题,共69分.解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.18.(本题满分5分) 化简:221212222-++++--x x x x x x x 19.(本题满分6分)在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从如图的五张卡片中任意拿走三张,使剩下的卡片从左到右连成一个两位数,该数就是他猜的价格.如果商品的价格是50元,求他一次就能猜中的概率 .20.(本题满分5分)某广场一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角,且CB =5米.(1)求钢缆CD 的A DC B E长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:tan400=0.84, sin400=0.64, cos400=3 4)21.(本小题满分6分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分7分)如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.23.(本题满分7分)已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.24.(本题满分10分)商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高?并说明理由.25.(本题满分12分)如图1,在⊙O 中,E 是弧AB 的中点,C 为⊙O 上的一动点(C 与E 在AB 异侧),连接EC 交AB 于点F ,EB=(r 是⊙O 的半径).(1)D 为AB 延长线上一点,若DC=DF ,证明:直线DC 与⊙O 相切;(2)求EF •EC 的值;(3)如图2,当F 是AB 的四等分点时,求EC 的值.26.(本题 满分11分)如图,二次函数y=12x ²+bx -32的图象与x 轴交于点A (-3,0)和点B ,以AB 为边在x 轴上方作正方形ABCD ,点P 是x 轴上一动点,连接DP ,过点P 作DP 的垂线与y 轴交于点E .(1)请直接写出点D 的坐标;(2)当点P 在线段AO (点P 不与A ,O 重合)上运动至何处时,线段OE 的长有最大值,求出这个最大值;(3)是否存在这样的点P 使△PED 是等腰三角形?若存在,请求出点P 的坐标及此时△PED 与正方形ABCD 重叠部分的面积;若不存在,请说明理由.参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,共36分)1-6、7-12小题的答案依次为:DDACBA 、BBDBBC二、填空题(本大题共5个小题,每小题3分,共15分)13.3(m-n )2; 14.; 15. ; 16.0.2; 17.或三、解答题(本大题共9个小题,共69分)18.解:原式= )1)(2()2()1()1)(1(2-+++-+-x x x x x x x (3分) =111-+-+x x x x (4分)=112-+x x .(5分)19.解:从如 图的五张卡片中任意拿走三张的所有可能情况有(3 5 5), (3 5 6), (3 5 0), ( 3 5 6), ( 3 5 0), (3 6 0) ,(5 5 6), (5 5 0), ( 5 6 0), (5 6 0)十种(5分),符合题意的情况有两种,因此概率P=2/10=1/5 (6分)20.解:(1)在R t△BCD中,(1分),∴CD== 6.7,(2分)(2)在R t△BCD中,BC=5,∴BD=5 tan400=4.2. (3分)过E作AB的垂线,垂足为F,在R t△AFE中,AE=1.6,∠EAF=180°-120°=60°,AF=AE=0.8(4分)∴FB=AF+AD+BD=0.8+2+4.20=7米(5分)答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.21.解∵(1)扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2分)(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天;表示优的圆心角度数是360°=57.6°,(3分)如图所示:;(4分)(3)∵样本中优和良的天数分别为:8,32,(5分)∴一年(365天)达到优和良的总天数为:×365=292(天)(6分).∴估计该市一年达到优和良的总天数为292天.22.(1)证明:∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC(1分)∵点E、F分别为AC、BC的中点∴EF=AB,EC=AC,FC=BC∴EF=EC=FC(2分)∴EF=FC=ED=DC,∴四边形EFCD是菱形.(3分)(2)解:连接DF,与EC相交于点G,(4分)∵四边形EFCD是菱形∴DF⊥EC,垂足为G (5分)∵EF=AB=4,EF∥AB∴∠FEG=∠A=60°(6分)在Rt△EFG中,∠EGF=90°∴DF=2FG=2×4sin∠FEC=8sin60°=4.(7分)23.解:(1)∵y =图象过点A(-1,6),∴ ∴ m=2(2分)(2)分别过点A 、B 作x 轴的垂线,垂足分别为点E 、D由题意得,AE =6,OE =1,(3分)又BD ∥AE ,∴△CBD ~△CAE ,(4分)∴ ∴ ∴BD =2即点B 的纵坐标为2∴B 点坐标为(-3,2)(5分) ∴直线AB 为y =2x +8(6分)∴C(-4,0) (7分)24.解:(1)依题意有w=(x-20)(250-10x+250)(3分)=-10x 2+700x-10000(4分)(2)∵w=-10x 2+700x-10000=-10(x-35)2+2250 (5分)∴当x=35时,w 有最大值2250.即销售单价为35元时,该文具每天的销售利润最大(6分).(3)方案A:由题意可得20<x 30,(7分)∵a=-10<0,对称轴为x=35,抛物线开口向下,在对称轴左側,w 随x 的增大而增大, ∴当x=30时,w 取最大值为2000元.(8分)方案B:由题意得x45,且250-10(x-25)10.解得:45x 49,在对称轴右側,w随x的增大而减小,当x=45时,w取最大值为1250元.(9分)∵2000元>1250元,∴选择方案A.(10分)25. (1)证明:连结OC、OE,OE交AB于H(1分),如图1,∵E是弧AB的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HF E=90°,(2分)而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DC E=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切(3分);(2)解:连结BC(4分),∵E是弧AB的中点,∴弧AE=弧BE,∴∠ABE=∠BCE(5分),而∠FEB=∠BEC,∴△EBF∽△ECB,∴EF:BE=BE:EC(6分),∴EF•EC=BE2,BE2=(r)2=r2(7分);(3)解:如图2,连结OA,(8分)∵弧AE=弧BE,∴AE=BE=r,设OH=x,则HE=r﹣x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=r2,在Rt△EAH中,AH2+EH2=EA2,即AH2+(r﹣x)2=(r)2,∴(r)2﹣(r﹣x)2=r2﹣x2,即得x=r(9分),∴HE=r﹣r=r,在Rt△OAH中,AH===,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF===,∵EF•EC=r2,∴•EC=r 2,∴EC=26、解:(1)(-3,4)(2分)(2)设PA=t ,OE=l ,由∠DAP=∠POE=∠DPE=90 ° ,得△DAP ∽ △ POE ,∴43-t = t l (3分)∴l=-14t ²+34t=-14(t -32)²+916(4分)∴当t=32时,l 有最大值916,即P 为AO 中点时,OE 的最大值为916.(5分)(3)存在(6分)① 当P 在y 轴左侧时,P 点的坐标为(-4,0)(7分) 由△ PAD ≌ △ PEO ,得OE=PA=1,∴OP=OA +PA=4, 设DE 交AO 于G ,则有AG=45AO=125 ,∴重叠部分的面积=12 × 4 ×125 =245(8分)② 当P 在y 轴右侧时,P 点的坐标为(4,0)(9分)仿照① 的步骤,此时的重叠部分的面积为71277(11分)。