教学设计:集合的基本运算(第2课时)
- 格式:doc
- 大小:216.50 KB
- 文档页数:6
1.1.3 集合的基本运算(第二课时)一. 教学目标:1. 知识与技能(1)理解全集和补集的定义,会求给定子集的补集(2)能使用Venn图、数轴表达集合的运算,体会直观图对理解抽象概念的作用.(3)通过实例分析和阅读教材,培养学生的自学能力、阅读能力和分析应用能力。
2. 过程与方法学生通过观察和类比,借助Venn图、数轴理解集合的基本运算.3.情感.态度与价值观(1)进一步强化数形结合的思想和体会类比思想在数学中的作用.(2)理解集合作为一种语言,在数学应用中的简洁和准确.二.教学重点.难点重点:全集与补集的概念.难点:理解全集与补集的概念,符号之间的区别与联系。
三.学法与教学用具1.学法:利用Venn图和数轴,掌握并理解集合的基本运算.2.教学用具:多媒体教学。
四. 教学过程:(一)自学指导:1、上节课我们已经学习了集合的两个基本运算:并集与交集。
(让学生复述并集与交集的含义及其符号表示)2、创设情境:(1)已知A={x|x+5>0},B={x|x≤-5},你能否在数轴上表示出A、B、R有何关系?(2)U={教室内所有同学}、A={教室内所有女生}、B={教室内所有男生},你能发现集合U、A、B有何关系?你能否利用Venn图标是吗?3、教师提出问题:通过PPT图片,引导学生完善并集与交集的知识点,并要求学生快速阅读教材,完成以下内容:4、教师巡查,鼓励学生分组探讨完成上面表格,组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围,并帮助学生修改、完善,并指出:这就是我们这一堂课所要学习的内容.(二)师生合作,研探新知关于补集与全集,教师引导学生阅读教材P10~P11页中有关补集的内容,并思考回答下例问题:1、什么叫全集?2、补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?在这个过程中,教师要积极参与到小组讨论中,和学生一起交流,使其理解全集的定义,并强调全集常用矩形方框表示,而补集是相对与全集而言的。
本节课是集合这一章的核心内容,高考常考考点之一,所以一定要掌握并集,补集,交集的概念。
集合的基本运算是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。
1.教学重点:交集与并集,全集与补集的概念。
2.教学难点:理解交集与并集的概念,以及符号之间的区别与联系。
一、知识梳理1、集合的运算A∩B={x|x∈A且x∈B}.A∪B={x|x∈A或x∈B}.∁U A={x|x∈U,且x∉A}2、性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆(A∪B).A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.A∪(∁U A)=U,A∩(∁U A)=∅,∁U(∁U A)=A二、题型探究例1.已知A ={ (x,y) | 4 x+y = 6 },B ={ (x,y) | 3 x+2 y = 7 }.求A ∩ B.解:A∩B = {(x,y) | 4 x+y = 6 }∩{(x,y) | 3 x+2 y = 7 }== {(1,2)}.例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},如果A∩B={-3},求A∪B。
例3.已知集合,且有4个子集,则实数的取值范围是()A.B.C.D.【答案】B.【解析】∵有4个子集,∴有2个元素,∴,∴且,即实数的取值范围是,故选B.例4.已知集合,且,求实数的取值范围.三、达标检测1、设集合Α={1,2,4},Β={x|x2-4x+m=0}.若Α∩Β={1},则Β=( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5}【答案】C2、设集合,,全集,若,则有( )A. B. C. D. 【解析】由,解得,又,如图则,满足条件.【答案】C 3、已知集合,集合,若,则实数的值为 . 【答案】1或-1或0. 【解析】∵,∵,,对集合B 。
集合的基本运算(第二课时) 导学案【学习目标】1.理解全集、补集的含义,会求给定子集的补集;2.熟练掌握集合的基本运算;3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;4.能利用集合的关系和运算及Venn 图来求有限集合中元素的个数.【学习重点】求给定集合的补集.【学习难点】1.求交、并、补集的运算;2.数形结合思想在解题中的应用.一、知识链接1. 集合间的三种运算 、 、 .2. =⋃B A ;=⋂B A .二、学习过程思考一在下列范围内解方程0)3)(2(2=--x x(1)有理数范围内;(2)实数范围内.1.全集如果一个集合 ,那么我们就称这个集合为 .通常记作 .2.补集文字语言:对于集合A ,由全集U 中 组成的集合,称为 .记作 .符号语言:=A C U .图形语言: .思考二求下列各集合间的运算u C u = ;=φu C ;=⋃A C A u ;=⋂A C A u ;=)(A C C u u . =⋂)(B A C u ;=⋃)(B A C u .三、典例剖析例1.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.变式:已知集合{}x A ,3,1=,{}2,1x B =,若A B C B u =⋃,求B C u .例2.已知全集{}6,5,4,3,2,1=U ,{},6,1=⋂B A C u {}{},4,3,2=⋂=⋂B A B C A u 求B.例3.已知集合{}{}21|,22|<<=<<-=x x B a x a x A ,且B C A R ⊂≠,求a 的取值范围.变式.已知集合{}{}21|,22|<<=<<-=x x B a x a x A ,且A C B R ⊂≠,求a 的取值范围.课后检测一、选择题1.设全集{}60|,≤≤==x x A R U ,则A C R 等于 ( )A {}6,5,4,3,2,1,0 B {}60|><x x x 或 C {}60|<<x x D {}60|≥≤x x x 或 2.设U为全集,集合,M U N U N M ⊆⊆⊆且则 ( ) A U U C N C M ⊆ B U M C ⊆N C U U C N C M = D ()U U C M C ⊆N 3.已知集合{}3|0,|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,则集合{}|1x x ≥是 ( ) A N M ⋂ B N M ⋃ C ()M N ⋂U C D ()M N ⋃U C4.已知全集{}8,5,2=U ,且{}2=A C u ,则集合A 的真子集个数为 ( ) A 3 B 4 C 5 D 65.对于非空集合M和N,定义M与N的差{}|M N x x M x N -=∈∉且,那么M-(M-N)总等于 ( ) A N B M C M N ⋂ D M N ⋃二.填空题6.设集合{}{},(,)|1A B x y x y ==-=-(x,y)|x+2y=7,则A B ⋂=_______.7.设{}{}2,|20,U A x x x N +==<∈x|x 是不大于10的正整数,则U C A =____. 8.已知全集为U,,,D C B B C A u u ==则A 与D 的关系是____.9.设全集{}{},|U A x ==x|x 是三角形x 是锐角三角形,{}|B x =x 是钝角三角形,则U C A B⋃()=______________. 10.已知全集{}{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则_______.三.解答题11.设全集{}{}{}y A C A x x I I ,2,5,32,3,22==-+=,求x,y 的值.12.设全集R U =,{}m x m x A 213|<<-=,{}31|<<-=x x B ,若B C A u ⊂≠,求实数m的取值范围.。
《1.3.2 集合的基本运算》教学设计1.能举例说明全集;对于具体的集合,能写出其补集;并会用符号语言、图形语言表教学重点:全集、补集的含义.教学难点:补集的含义,利用Venn图解决一些与集合运算有关的问题.PPT.一、问题导入问题1:上一节课学习了交集和并集,请你默写定义,并用符号语言和图形语言表示.集合的并集是类比了实数的加法运算,实数也有减法运算,那么集合是否也可以“相减”呢?如集合A={1,2,3},B={3},则集合A“减去”集合B应该是什么呢?请写出你的猜想.师生活动:学生先默写,之后互相检查,再写出猜想,以小组交流,教师适时引导.设计意图:通过回顾并集概念,寻找集合运算与实数运算之间的相似性,为类比引入补集做好铺垫.二、全集1.形成概念问题2:小学到初中,数的研究范围逐步地由自然数到整数,再到有理数,引进无理数后,数的研究范围扩充到实数.思考下面两个集合中元素是否相同?为什么?A={x∈Q|(x-1)(x2-2)=0};B={x∈R|(x-1)(x2-2)=0}.师生活动:学生独立完成,之后展示交流,教师补充.预设的答案:两个集合中的元素不相同.原因如下:A={x∈Q|(x-1)(x2-2)=0}={1};B={x∈R|(x-1)(x2-2)=0}={1,2,-2}.教师讲解:在不同范围研究同一个问题,可能有不同的结果,如上述方程(x-1)(x2-2)=0的根在不同数集范围下是不同的.因此,在研究问题时,经常要确定研究对象的范围.即:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),通常记作U.设计意图:利用已有的知识类比学习新知识,学生容易接受,举例说明让学生体会到在研究对象时,确定研究范围的重要性.2.初步理解追问:你能再举出几个全集的例子吗?师生活动:学生举例,展示交流,教师补充.预设的答案:上操站队时,全校学生构成的集合是全集;班主任分配宿舍时,我班所有学生构成的集合就是全集;参加学校运动会按班级报参赛项目时,我班的运动员构成的集合就是全集.设计意图:通过举例,让学生初步理解全集的概念.三、补集3.形成概念问题3:阅读教科书第12、13页,什么是补集?猜想定义.在问题1中,你的猜想正确吗?有哪些值得肯定之处?师生活动:学生阅读课本获得定义,并通过比较发现自己的猜想与教科书中定义的一致之处,以及不同之处.预设的答案:在学生默写的基础上教师修正,给出答案(如图1).设计意图:阅读获得定义,默写记忆定义,并通过比较,肯定学生猜想中的合理之处,激发学生的兴趣.4.精致定义问题4:学习了集合的三种运算,它们之间有哪些异同,你是如何区别的?师生活动:学生先独立梳理,再展示交流,教师设计表格帮助学生进行整理.预设的答案: 语言 并集 交集 补集自然语言 由所有属于集合A 或属于集合B 的元素组成的集合 由所有属于集合A 且属于集合B 的元素组成的集合 由全集U 中不属于集合A 的所有元素组成的集合称为集合A 在全集U中的补集记法A ∪B A ∩B AC U 记法读作A 并BA 交B A 在全集U 中的补集符号语言A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B } AC U ={x ∈U ,且x ∉A } 图形语言集合关系 A 、B 可以是任意集合A 、B 可以是任意集合 A ⊆U 图1 自然语言 符号语言图形语言 对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U的补集,简称为集合A 的补集,记作A C U (读作“集合A 在全集U 中的补集”)}{A x U x A C U ∉∈=,且设计意图:集合的三种运算(并集、交集、补集)的定义相近,符号语言表示相似,易混淆,通过将三者放在一起对比,异同点一目了然,帮助学生进一步理解概念.四、概念应用问题5:自己独立完成教科书第13页的例5、例6,然后对比教材批改.每一个题目求解的依据是什么?师生活动:学生独立完成,教师巡视观察学生做的情况,有个别问题个别纠正,共性问题教师再针对性讲解.答案略.设计意图:练习补集运算,巩固集合运算.五、运算律问题6:定义了一种运算之后,为简便计算会研究其运算律.回忆一下并集、交集运算律有哪些?通过类比猜想补集运算有哪些运算律?师生活动:学生思考交流,教师给出如下提示:A∪(C U A)=________,A∩(C U A)=________,C U(C U A)=________.(其中U 为全集)预设的答案:A∪(C U A)=U,A∩(C U A)= ,C U(C U A)=A .(其中U为全集)设计意图:通过类比并集、交集的运算律,探索发现补集的运算律.六、巩固应用例1 (1)设集合U={1,2,3,4,5,6},M={1,2,4},则C U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}(2)设全集U=R,集合A={x|2<x≤5},则C U A=________.(3)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}(4)设全集为R,A={x|3≤x<7},B={x|2<x<10},则C R(A∪B)=________,(C R A)∩B=________.师生活动:学生独立完成之后展示交流.预设的答案:(1)C;(2){x|x≤2,或x>5};(3)B;(4){x|x≤2,或x≥10},{x|2<x<3,或7≤x<10}解:把全集R和集合A,B在数轴上表示如下:图2由图2知,A∪B={x|2<x<10},∴C R(A∪B)={x|x≤2,或x≥10}.∵C R A={x|x<3,或x≥7},∴(C R A)∩B={x|2<x<3,或7≤x<10}.设计意图:巩固集合的基本运算.问题7:本题求解的依据是什么?每个题目中所给集合有什么特点?你获得了什么求解经验?师生活动:学生观察总结,展示交流,师生完善补充.预设的答案:求解的依据是定义.对于用列举法给出的集合,可直接观察或借助于Venn 图写出结果.对于用描述法给出的集合,首先明确集合中的元素,其次将两个集合化为最简形式;对于连续的数集常借助数轴表示结果,此时要注意数轴上方所有“线”下面的实数组成了并集,数轴上方“双线”(即公共部分)下面的实数组成了交集,要注意端点是否在集合中.设计意图:通过应用加深对概念的理解,并提升数学运算素养.例2 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(C U A)∩B =∅,则m=__________.问题8:本题中两个集合可否化简?集合B化简之后有几种情况?待求解的问题是否可以化简?师生活动:学生根据问题7的引导,对题目进行化简,教师引导学生对集合B要分类讨论写出其化简后的情况.然后再对化简后的问题进行求解就比较容易了.解:A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.设计意图:通过两个集合的运算,转化为两个集合间的关系,利用学生熟悉的一元二次方程根的情况,分类讨论求解,培养学生分析问题的能力,提升数学运算素养.七、归纳总结、布置作业问题9:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本运算有哪些?(2)求解集合运算问题,你获得了哪些经验?师生活动:相互讨论、概括总结.预设的答案:(1)略;(2)①集合中的元素若是离散的,一般采用什么方法;集合中的元素若是连续的实数,则用什么方法,此时要注意端点的情况.②已知集合的运算结果求参数,要注意检验参数的值是否满足题意,或者是否满足集合中元素的互异性.设计意图:梳理总结,深化理解.布置作业:教科书习题1.3的第4,5,6题.八、目标检测设计1.设全集U={1,2,3,4,5,6},A={1,2,3,4},则C U A等于()A.{1,2,5,6} B.{5,6} C.{2} D.{1,2,3,4}2.如图所示,阴影部分表示的集合是______________,全集是_______________.3.已知集合A,B均为全集U={1,2,3,4}的子集,且C U(A∪B)={4},B={1,2},则A∩C U B等于()A.{3} B.{4} C.{3,4} D.4.设集合S={x|x>-2},T={x|-4≤x≤1},则(C R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案:1.B2.{7,9},U={1,2,3,4,5,6,7,8,9,10}或写成{n∈N|1≤n≤10}3.A4.C设计意图:1,2题考查集合的全集集和补集的概念,3,4题考查集合的运算的综合应用.。
1.3.1集合的基本运算(1)课时教学设计一、课题:集合的基本运算(1)二、教学内容1.集合并集的含义与运算;2.集合交集的含义与运算;3.区分交、并运算的运算符号,会进行简单的离散型和连续型集合的交、并运算.三、教学目标学生能通过类比实数运算,结合具体实例,能理解集合并集、交集运算的含义,掌握简单的集合运算,并学会使用Venn图、数轴等几何方法表达集合的关系及运算,体会直观图示对理解抽象概念的作用,从而体会数形结合在理解集合中的重要作用,发展学生数学运算的核心素养.四、教学重难点教学重点:理解并集、交集的含义,并会进行简单的集合基本运算.教学难点:区分交、并集运算符号,掌握集合的交、并运算.五、教学设计过程问题1:我们知道,实数有加法运算,两个实数可以相加,集合是否也有类似的运算呢?请同学们考察下列两组集合,你能说出集合C与集合A,B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.师生活动:引导学生通过观察集合,并借助Venn图得出集合间的关系,并发现集合C的元素全部由集合A,B 构成,并且没有元素不属于集合A,B.设计意图:学生通过观察具体集合,发现集合并集的运算实质,获得数学活动经验,回顾上节知识的同时也回顾了数形结合解决问题的思想.追问:你能用集合的语言描述集合C与集合A,B之间的关系吗?师生活动:学生尝试将自然语言转化为集合语言,老师进行必要的指导和补充.设计意图:让学生学会用数学的语言来描述数学问题,获得概念的严谨表述.并集概念:一般地,由所有属于集合A或集合B的元素组成的集合. 称为集合A与B的并集,记作:A∪B;读作“A并B”.用描述法表示为A∪B ={x|x∈A,或x∈B}.Venn图表示为:例1:设A ={4,5,6,8},B ={3,5,7,8},求A∪B.解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.设计意图:通过具体例题,深化并集概念,练习离散集合的并集运算.例2:设集合A ={x| –1<x<2},集合B ={x| 1<x<3},求A∪B.解:用数轴表示:则A∪B={x| –1<x<2}∪{x| 1<x<3}={x| –1<x<3}追问:若中间−1、2两个虚点变为实点后结果改变了吗?师生活动:学生思考后回答.设计意图:让学生做题时注意把握细节,并体会集合端点对集合并集结果的影响.问题2:下列关系式成立吗?(1)A∪A=A (2)A∪∅=A师生活动:学生根据并集的概念思考后易得到答案.设计意图:让学生体会特殊集合的并集运算,考虑问题中特殊情况的处理.追问:若A⊆B则A∪B=?师生活动:可以引导学生借助Venn图来理解和解决问题.设计意图:在问题2的基础上,继续让学生进一步理解并集概念,了解集合间的关系与集合运算的联系,并学会用Venn图来直观的研究问题.问题3:考察下面的问题,集合A,B与集合C之间有什么关系?(1)A={2,4,6,8,10}, B={3,5,8,12} ,C={8}(2)A={x |x是立德中学今年在校的女同学},B={x |x是立德中学今年在校的高一年级同学},C={x |x是立德中学今年在校的高一年级女同学}.师生活动:学生观察两组集合,发现集合C中的元素是由集合A,B中共有的元素组成的,引导学生注意并且不能有漏掉的.如果学生总结不严谨,可以给出集合D={x |x是立德中学今年在校的身高超过170cm的高一年级女同学},通过比较C与D的不同点,来引导、帮助学生更加严谨地归纳总结交集的概念,强调是集合C是由属于集合A且又属于集合B的所有元素组成.设计意图:通过给出两个实例,让学生们自己观察并交流,找出集合A,B与集合C之间的关系,通过模仿上面并集的概念,锻炼了学生观察、类比以及总结的能力.交集概念:一般地,由属于集合A且属于集合B的所有元素组成的集合,成为A与B的交集,记作A∩B,读作“A交B”.用描述法表示为:A∩B ={x|x∈A且x∈B}用Venn图表示为:例3:立德中学开运动会,设A={x |x是立德中学高一年级参加百米赛跑的同学},B={x |x是立德中学高一年级参加跳高比赛的同学},求A∩B.解:A∩B就是立德中学高一年级中既参加百米赛跑又加跳高比赛的同学组成的集合.所以,A∩B={x |x是立德中学高一年级既参加百米赛跑又参加跳高比赛的同学}.例4:设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1和 l2的位置关系.解:平面内直线l1和 l2可能有三种位置关系,即相交于一点,平行或重合.(1)直线l1和 l2相交于一点P,可表示为L1∩ L2={点P};(2)直线l1和 l2平行可表示为L1∩ L2=∅;(3)直线l1和 l2重合可表示为L1∩ L2=L1=L2.设计意图:学生通过应用交集运算解决实际问题和几何问题,巩固了对交集概念的理解,实现了交集运算的实际应用,同时也考察了学生分类讨论的能力.问题4:下列交集运算的结果是什么呢?(1)A∩A=?(2)A∩∅=?(3)若A⊆B,则A∩B=?师生活动:学生借助Venn图,思考讨论后给出答案.设计意图:让学生在问题2和交集概念的基础上,类比并集的概念,加强概念横向间的联系.问题5:请同学们对比交集和并集的概念,从文字上面能发现什么不同吗?师生活动:学生指出交集中使用的是“且”字,并集中使用的是“或”字.设计意图:让学生对比交集和并集的概念,加强概念横向间的对比.追问:如果我们称大于3或大于5的实数为集合A,那么3是集合A的元素吗?5呢?6呢?这三个元素有什么不同呢?师生活动:学生经讨论后发现,3不是集合A的元素,5和6是集合A的元素,其中3不满足大于3也不满足大于5,5只满足其中第一个,6两个都满足。
集合的基本运算(第2课时)
(一)教学目标
1.知识与技能
(1)了解全集的意义.
(2)理解补集的含义,会求给定子集的补集.
2.过程与方法
通过示例认识全集,类比实数的减法运算认识补集,加深对补集概念的理解,完善集合运算体系,提高思维能力.
3.情感、态度与价值观
通过补集概念的形成与发展、理解与掌握,感知事物具有相对性,渗透相对的辨证观点.
(二)教学重点与难点
重点:补集概念的理解;难点:有关补集的综合运算.
(三)教学方法
通过示例,尝试发现式学习法;通过示例的分析、探究,培养发现探索一般性规律的能力.
(四)教学过程
U
,
5, 7},求A ∩(U
B ),(U A )∩(U B ). 总结: (U
A )∩(U
B ) = U
(A ∪B ), (
U A )∪(U B ) =
U
(A ∩B ).
∪B )并比较与(U A )∩(U B )的
结果.
解:因为
U
A = {1, 3, 6, 7},
U
B = {2, 4, 6},所以A ∩(U B )
= {2, 4}, (
U
A )∩(U
B ) = {6}.
应用举例
例2 填空
(1)若S = {2,3,4},A = {4,3},则
S
A = . (2)若S = {三角形},
B = {锐角三角形},则
S
B = . (3)若S = {1,2,4,8},A = ,则
S
A = . (4)若U = {1,3,a 2 + 3a + 1},A = {1,3},U A = {5},则a . (5)已知A = {0,2,4},U A = {–1,1},
U
B = {–1,0,2},求B = . (6)设全集U = {2,3,m 2 + 2m – 3},A = {|m + 1| ,2},U
A = {5},求m .
(7)设全集U = {1,2,3,4},A = {x | x 2 – 5x + m = 0,x ∈U },求U
A 、m .
师生合作分析例题.
例2(1):主要是比较A 及S 的区别,从而求
S A
.
例2(2):由三角形的分类找B 的补集.
例2(3):运用空集的定义. 例2(4):利用集合元素的特征.
综合应用并集、补集知识求解. 例2(7):解答过程中渗透分类讨论思想. 例2(1)解:S A = {2}
例2(2)解:
S
B = {直角三角
形或钝角三角形} 例2(3)解:S A = S
例2(4)解:a 2 + 3a + 1 = 5,
a = – 4或1.
例2(5)解:利用韦恩图由A 设
U
A 先求U = {–1,0,1,2,
4},再求B = {1,4}.
进一步深化
理解补集的概念. 掌握补集的求法.
备选例题
例1 已知A = {0,2,4,6},S A = {–1,–3,1,3},S B = {–1,0,2},用列举法写出集合B.
【解析】∵A = {0,2,4,6},S A = {–1,–3,1,3},
∴S = {–3,–1,0,1,2,3,4,6}
而S B = {–1,0,2},∴B =S (S B) = {–3,1,3,4,6}.
例2 已知全集S = {1,3,x3 + 3x2 + 2x},A = {1,|2x– 1|},如果S A = {0},则这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.
【解析】∵S A= {0},∴0∈S,但0∉A,∴x3+ 3x2+ 2x= 0,x(x+ 1) (x + 2) = 0,
即x1 = 0,x2 = –1,x3 = –2.
当x = 0时,|2x– 1| = 1,A中已有元素1,不满足集合的性质;
当x= –1时,|2x– 1| = 3,3∈S;当x = –2时,|2x– 1| = 5,但5∉S.
∴实数x的值存在,它只能是–1.
例3 已知集合S = {x | 1<x≤7},A = {x | 2≤x<5},B = {x | 3≤x <7}. 求:
(1)(S A)∩(S B);(2)S (A∪B);(3)(S A)∪(S B);(4)S (A∩B).
【解析】如图所示,可得
A∩B = {x | 3≤x<5},A∪B = {x | 2≤x<7},
S A = {x | 1<x<2,或5≤x≤7},
S
B = {x | 1<x<3}∪{7}.
由此可得:(1)(S A)∩(S B) = {x | 1<x<2}∪{7};
(2)S (A∪B) = {x | 1<x<2}∪{7};
(3)(S A)∪(S B) = {x | 1<x<3}∪{x |5≤x≤7} = {x | 1<x<3,或5≤x≤7};
(4)S (A∩B) = {x | 1<x<3}∪{x | 5≤x≤7} = {x | 1<x<3,或5≤x≤7}.
例4 若集合S = {小于10的正整数},A S
⊆,B S
⊆,且(S A)∩B = {1,9},A∩B = {2},(S A)∩(S B) = {4,6,8},求A和B.
【解析】由(S A)∩B = {1,9}可知1,9∉A,但1,9∈B,
由A∩B = {2}知,2∈A,2∈B.
由(S A)∩(S B) = {4,6,8}知4,6,8∉A,且4,6,8∉B
下列考虑3,5,7是否在A,B中:
若3∈B,则因3∉A∩B,得3∉A. 于是3∈S A,所以3∈(S A)∩B,
这与(S A)∩B = {1,9}相矛盾.
故3∉B,即3∈(S B),又∵3∉(S A)∩(S B),
∴3∉(S A),从而3∈A;同理可得:5∈A,5∉B;7∈A,7∉B. 故A = {2,3,5,7},B = {1,2,9}.
评注:此题Venn图求解更易.。