3c-层序地层学
- 格式:pdf
- 大小:517.30 KB
- 文档页数:4
层序地层学层序地层学是指研究以侵蚀面或无沉积作用面以及可与之对比的整合面为界的、有成因联系并具旋回性的地层的年代地层格架内的岩石关系为主要内容的一门学科。
它是于80 年代晚期在地震地层学的基础上发展起来的。
层序地层学作为一种地学理论已在地质学界得到广泛承认;而作为一种新的勘探方法,已被世界各大石油公司采用。
在我国,层序地层学的研究也已广泛展开,并取得了一批学术成果。
理论体系层序1. 基本层序:层序是由不整合面或其对应的整合面限定的一组相对整合的、具有成因联系的地层序列。
层序也称基本层序、沉积层序,也称为“三级层序”。
2. 巨层序或大层序:其与旋回层序中的一级旋回对应,包括若干个层序。
在层序地层分级体系中为一级层序。
3. 超层序:超层序是比层序大的且与二级旋回相对应的二级层序。
4. 构造层序:构造层序是以古构造运动界面为边界的一类层序,与巨层序或大层序相当,是一级层序。
5. 亚层序:是比层序小,比小层序大的层序。
但这一级层序一般不单独划出,有时与小层序级别相当。
6. 小(准)层序和小层序组:小层序是由海泛面及其对应面所限定的一组相对连续的、有成因联系的层和层组。
在层序中的特殊位置上,小层序可能要么上面、要么下面被层序界面所限定。
体系域体系域是同时期各沉积体系(如河流、三角洲、斜坡等)形成的沉积序列总和,是组成层序的基本单元。
体系域以整合或不整合面为界,由成因上相联系的相对整合的地层组成 [3]。
盆底扇盆底扇是在低的斜坡和盆底沉积的以海底扇为特征的低水位体系域的一部分。
扇的形成与峡谷侵蚀到斜坡和河谷下切至大陆架有关。
硅质碎屑沉积物通过河谷和峡谷穿过斜坡和大陆架形成盆底扇。
斜坡扇斜坡扇是由浊积有堤水道和越岸沉积物组成的扇状体,盖在盆底扇上且被上覆的低水位楔下超形成的。
正常海退地层叠置样式以进积和加积为特征,由滨线处负可容纳空间造成的,沉积物供给速率大于可容纳空间的增长速率,在基准面处于低位和高位时都可以发育。
地球科学中的层序地层学和古生物学地球科学是一门研究地球的各个层面的综合学科,其中层序地层学和古生物学则是两个十分重要的分支学科。
层序地层学主要研究地层的堆积顺序和层序特征,而古生物学则主要研究生物在地质时间尺度上的演化和分布。
两个学科有着密不可分的联系,通过对地层和古生物的研究,可以更好地了解地球的演化历史和生命的发展历程。
一、层序地层学层序地层学是一门研究地层孔隙和渗透性、古地理、相似性、流体分布、沉积构造、封闭性等问题的学科。
地质学家通过对地层的研究,可以了解地球的演化历史、各地区的地质构造以及资源的分布情况。
地层可以用不同的分类方法进行划分,其中最为常用的是年代地层。
年代地层基于不同岩层的形成时间来进行划分,可以分为不同的时代、世、期、纪等。
每个年代地层内部还可以细分为不同的层位,这些层位在不同地区的厚度和性质都会有所不同。
层序比年代地层更为精细,可以把不同年代地层内部根据堆积顺序进一步分为若干层序。
层序是由一定的岩相组成,具有相似的地质历史、沉积环境和堆积模式。
根据层序可以推测出古地理、沉积构造、相似性等地质特征,有利于地质勘探和资源开发。
二、古生物学地球上的生命经历了漫长的演化史,在不同的地质时期发生了各式各样的变化和适应。
古生物学正是研究生物在地质时间尺度上的演化和分布的学科。
通过对古化石、化石记录和生物地理学的研究,人们可以了解生命在地球上的演化历程、生态系统的变迁以及地球环境的演化。
化石是古生物学的主要研究对象。
化石是地球上曾经生活的生物体遗留下来的物质,它们经过埋藏和化石化后,保存了生物的形态、荧光、组织成分等信息。
通过对化石的分析,可以了解各种生物的形态、组成、行为习性和生态环境等信息,为了解古生态和地球演化历史提供了有力的证据。
化石记录是古生物学的重要组成部分。
它是指所有化石遗存的总和,包括生物组成和数量、生存环境和地理位置等信息。
通过对化石记录的研究,可以了解不同的生物组合和环境特点,推断出古地理、气候变化、生态系统演化等信息。
地层结构stratigraphic texture地层结构(stratigraphic texture)是地层序列内岩层的叠覆与堆积型式。
通常所说的旋回性、韵律性、加积型、退积型、进积型沉积等,都属于地层结构的概念范畴。
地层结构概念主要是用于研究和描述相当于或略小于一个体系域的地层间隔内岩层的纵、横向总体(或优势)堆积方式,并可根据其成因或形态,将总体退积、加积、进积,或超覆、叠覆、退覆堆积的地层,分别称为退积、加积、进积,或超覆、叠覆、退覆结构的地层。
对于地层分析、预测来说,地层结构概念是非常重要的。
为有利于研究坝区渗漏边界条件,结合河谷地貌特征,可将河流松散堆积物的地层结构划分为三种模型:1.单一结构型主要由卵砾(漂)石组成,透水性强而均一,但厚度一般不大。
下伏基岩可作为相对隔水底板,渗漏边界条件较简单,易于确定。
上游河段多此型式,由于谷坡高陡,松散堆积物多分布于谷底,所以渗漏主要发生于坝基。
此种型式可引起严重的渗漏,但易于处理。
2.多厚层结构型由多层厚度较大的粗、细粒物质组成,可分为两种情况:(1)自上而下颗粒组成逐层变粗的多层结构。
透水性自上而下逐渐变强,故可把它简化为上弱下强(透水)的双层结构。
显然,上部弱水层的透水性和完整程度对于控制坝区渗漏有重要作用。
(2)粗、细粒互层结构。
透水层强弱相间,因此对渗漏条件的控制取决于细粒弱透水层的延续性和完整性。
若弱透水层能有效地阻隔上下粗粒强透水层之间的水力联系,则有利于坝基的防渗。
上述两种情况均以基岩作为相对隔水底板。
若在岩溶地区,则下部边界需移到岩溶漏水带以下。
3.多薄层结构型常由透水性较弱的中、细砂或极细砂组成,并与厚度不大的粘性土层交互相间,属于平原河流的沉积模式。
粘性土层往往呈透镜体状,延续性差,因而各透水层之间具有一定的水力在系,当其叠加厚度较大时,同样可构成严重的防漏条件。
其下部常以早期沉积的地层作为不透水边界。
体系域system tract与海平面升降有关的同期沉积体系钻井资料层序、体系域地震资料层序、体系域露头资料层序、体系域层序地层学提供了地层岩性预测的最好模式SB 层序界面HST 高位体系域Highstand system tractTST 海侵体系域Transgression system trackLST 低水位体系域Lowstand system tractSMST 陆架(棚)边缘体系域Shelf margin system tractTS 初始海泛面Transgres-sion surfaceMFS 最大海泛面Maximum flooding surfaceCS 密集段(缓慢沉积段)condensed section凝缩段(缓慢沉积段)由在极缓慢的速度下沉积的半远洋或远洋沉积物的薄层岩层组成,主要产于海进体系域内部或高位体系域的远端。