第十二章相关与回归分析
- 格式:doc
- 大小:327.19 KB
- 文档页数:12
第十二章相关与回归分析一、填空1.如果两变量的相关系数为0,说明这两变量之间_____________。
2.相关关系按方向不同,可分为__________和__________。
3.相关关系按相关变量的多少,分为______和复相关。
4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。
自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。
5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。
6.变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。
7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值cY是服从();(2)分布中围绕每个可能的cY值的()是相同的。
7.已知:工资(元)倚劳动生产率(千元)的回归方程为xyc8010+=,因此,当劳动生产率每增长1千元,工资就平均增加 80 元。
8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。
这种分析方法,通常又称为(回归分析)。
9.积差系数r是(协方差)与X和Y的标准差的乘积之比。
二、单项选择1.欲以图形显示两变量X和Y的关系,最好创建(D )。
A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是( A )。
A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3. 相关关系的种类按其涉及变量多少可分为( )。
A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是( B )。
分层回归其实是对两个或多个回归模型进行比较。
我们可以根据两个模型所解释的变异量的差异来比较所建立的两个模型。
一个模型解释了越多的变异,则它对数据的拟合就越好。
假如在其他条件相等的情况下,一个模型比另一个模型解释了更多的变异,则这个模型是一个更好的模型。
两个模型所解释的变异量之间的差异可以用统计显著性来估计和检验。
模型比较可以用来评估个体预测变量。
检验一个预测变量是否显著的方法是比较两个模型,其中第一个模型不包括这个预测变量,而第二个模型包括该变量。
假如该预测变量解释了显著的额外变异,那第二个模型就显著地解释了比第一个模型更多的变异。
这种观点简单而有力。
但是,要理解这种分析,你必须理解该预测变量所解释的独特变异和总体变异之间的差异。
一个预测变量所解释的总体变异是该预测变量和结果变量之间相关的平方。
它包括该预测变量和结果变量之间的所有关系。
预测变量的独特变异是指在控制了其他变量以后,预测变量对结果变量的影响。
这样,预测变量的独特变异依赖于其他预测变量。
在标准多重回归分析中,可以对独特变异进行检验,每个预测变量的回归系数大小依赖于模型中的其他预测变量。
在标准多重回归分析中,回归系数用来检验每个预测变量所解释的独特变异。
这个独特变异就是偏相关的平方(Squared semi-partial correlation)-sr2(偏确定系数)。
它表示了结果变量中由特定预测变量所单独解释的变异。
正如我们看到的,它依赖于模型中的其他变量。
假如预测变量之间存在重叠,那么它们共有的变异就会削弱独特变异。
预测变量的独特效应指的是去除重叠效应后该预测变量与结果变量的相关。
这样,某个预测变量的特定效应就依赖于模型中的其他预测变量。
标准多重回归的局限性在于不能将重叠(共同)变异归因于模型中的任何一个预测变量。
这就意味着模型中所有预测变量的偏决定系数之和要小于整个模型的决定系数(R2)。
总决定系数包括偏决定系数之和与共同变异。
-141-第十二章 回归分析前面我们讲过曲线拟合问题。
曲线拟合问题的特点是,根据得到的若干有关变量的一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数据拟合得最好。
通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要作的工作是由数据用最小二乘法计算函数中的待定系数。
从计算的角度看,问题似乎已经完全解决了,还有进一步研究的必要吗?从数理统计的观点看,这里涉及的都是随机变量,我们根据一个样本计算出的那些系数,只是它们的一个(点)估计,应该对它们作区间估计或假设检验,如果置信区间太大,甚至包含了零点,那么系数的估计值是没有多大意义的。
另外也可以用方差分析方法对模型的误差进行分析,对拟合的优劣给出评价。
简单地说,回归分析就是对拟合问题作的统计分析。
具体地说,回归分析在一组数据的基础上研究这样几个问题:(i )建立因变量y 与自变量m x x x ,,,21 之间的回归模型(经验公式); (ii )对回归模型的可信度进行检验;(iii )判断每个自变量),,2,1(m i x i =对y 的影响是否显著;(iv )诊断回归模型是否适合这组数据;(v )利用回归模型对y 进行预报或控制。
§1 多元线性回归回归分析中最简单的形式是x y 10ββ+=,y x ,均为标量,10,ββ为回归系数,称一元线性回归。
它的一个自然推广是x 为多元变量,形如m m x x y βββ+++= 110 (1)2≥m ,或者更一般地)()(110x f x f y m m βββ+++= (2)其中),,(1m x x x =,),,1(m j f j =是已知函数。
这里y 对回归系数),,,(10m ββββ =是线性的,称为多元线性回归。
不难看出,对自变量x 作变量代换,就可将(2)化为(1)的形式,所以下面以(1)为多元线性回归的标准型。
1.1 模型在回归分析中自变量),,,(21m x x x x =是影响因变量y 的主要因素,是人们能控制或能观察的,而y 还受到随机因素的干扰,可以合理地假设这种干扰服从零均值的正态分布,于是模型记作⎩⎨⎧++++=),0(~2110σεεβββN x x y m m (3) 其中σ未知。
第十二章相关与回归分析四、名词解释1 •消减误差比例变量间的相关程度,可以用不知Y与X有关系时预测Y的误差E0,减去知道Y与X有关系时预测Y的误差E i,再将其化为比例来度量。
将削减误差比例记为PRE。
2 •确定性关系当一个变量值确定后,另一个变量值夜完全确定了。
确定性关系往往表现成函数形式。
3 •非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。
4 •因果关系变量之间的关系满足三个条件,才能断定是因果关系。
1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的; 3 )两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。
5 .单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。
三个或三个以上的变量之间的相关关系则称为复相关,又称多兀相关。
6 •正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。
7 .散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X与Y的相互关系,即得相关图,又称散点图。
8 .皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X、Y的标准差乘积的比率。
9 .同序对在观察X序列时,如果看到X i X j ,在Y中看到的是Y i : Y j,则称这一配对是同序对。
10. 异序对在观察X序列时,如果看到X i X j,在Y中看到的是Y i>Y j,则称这一配对是异序对。
11. 同分对女口果在X序列中,我们观察到X i=X j (此时Y序列中无Y i二Y j),则这个配对仅是X 方向而非Y方向的同分对;如果在Y序列中,我们观察到Y j二Y j (此时X序列中无X i=X j), 则这个配对仅是Y方向而非X方向的同分对;我们观察到X i=X j,也观察到Y i二Y j,则称这个配对为X与Y同分对。
第十二章 直线相关与回归A 型选择题1、若计算得一相关系数r=0.94,则( )A 、x 与y 之间一定存在因果关系B 、同一资料作回归分析时,求得回归系数一定为正值C 、同一资料作回归分析时,求得回归系数一定为负值D 、求得回归截距a>0E 、求得回归截距a ≠02、对样本相关系数作统计检验(H 0:ρ=0),结果0.05()v r r >,统计结论是()。
A. 肯定两变量为直线关系B 、认为两变量有线性相关C 、两变量不相关B. 两变量无线性相关E 、两变量有曲线相关3、若1210.05()20.01(),v v r r r r >>,则可认为( )。
A. 第一组资料两变量关系密切B. 第二组资料两变量关系密切C 、难说哪一组资料中两变量关系更密切D 、两组资料中两变量关系密切程度不一样E 、以上答案均不对4、相关分析可以用于( )有无关系的研究A 、性别与体重B 、肺活量与胸围C 、职业与血型D 、国籍与智商E 、儿童的性别与体重5、相关系数的假设检验结果P<α,则在α水平上可认为相应的两个变量间()A 、有直线相关关系B 、有曲线相关关系C 、有确定的直线函数关系D 、有确定的曲线函数关系E 、不存在相关关系6、根据样本算得一相关系数r ,经t 检验,P <0.01说明( )A 、两变量有高度相关B 、r 来自高度相关的相关总体C 、r 来自总体相关系数ρ的总体D 、r 来自ρ≠0的总体E 、r 来自ρ>0的总体7、相关系数显著检验的无效假设为( )A 、r 有高度的相关性B 、r 来自ρ≠0的总体C 、r 来自ρ=0的总体D 、r 与总体相关系数ρ差数为0E 、r 来自ρ>0的总体8、计算线性相关系数要求( )A .反应变量Y 呈正态分布,而自变量X 可以不满足正态分布的要求B .自变量X 呈正态分布,而反应变量Y 可以不满足正态分布的要求C .自变量X 和反应变量Y 都应满足正态分布的要求D .两变量可以是任何类型的变量E .反应变量Y 要求是定量变量,X 可以是任何类型的变量9、对简单相关系数r 进行检验,当检验统计量t r >t 0.05(ν)时,可以认为两变量x与Y 间( )A .有一定关系B .有正相关关系C .无相关关系D .有直线关系E .有负相关关系10、相关系数反映了两变量间的( )A 、依存关系B 、函数关系C 、比例关系D 、相关关系E 、因果关系11、)2(,2/05.0-<n r r 时,则在05.0=α水准上可认为相应的两变量X 、Y 间( )。
第十二章 相关与回归分析四、名词解释1.消减误差比例变量间的相关程度,可以用不知Y 与X 有关系时预测Y 的误差0E ,减去知道Y 与X 有关系时预测Y 的误差1E ,再将其化为比例来度量。
将削减误差比例记为PRE 。
2. 确定性关系当一个变量值确定后,另一个变量值夜完全确定了。
确定性关系往往表现成函数形式。
3.非确定性关系在非确定性关系中,给定了一个变量值,另一个变量值还可以在一定范围内变化。
4.因果关系变量之间的关系满足三个条件,才能断定是因果关系。
1)连个变量有共变关系,即一个变量的变化会伴随着另一个变量的变化;2)两个变量之间的关系不是由其他因素形成的,即因变量的变化是由自变量的变化引起的;3)两个变量的产生和变化有明确的时间顺序,即一个在前,另一个在后,前者称为自变量,后者称为因变量。
5.单相关和复相关单相关只涉及到两个变量,所以又称为二元相关。
三个或三个以上的变量之间的相关关系则称为复相关,又称多元相关。
6.正相关与负相关正相关与负相关:正相关是指一个变量的值增加时,另一变量的值也增加;负相关是指一个变量的值增加时,另一变量的值却减少。
7.散点图散点图:将相关表所示的各个有对应关系的数据在直角坐标系上画出来,以直观地观察X 与Y 的相互关系,即得相关图,又称散点图。
8.皮尔逊相关系数r皮尔逊相关系数是协方差与两个随机变量X 、Y 的标准差乘积的比率。
9.同序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y Y <,则称这一配对是同序对。
10.异序对在观察X 序列时,如果看到i j X X <,在Y 中看到的是i j Y >Y ,则称这一配对是异序对。
11.同分对如果在X 序列中,我们观察到i j X =X (此时Y 序列中无i j Y =Y ),则这个配对仅是X 方向而非Y 方向的同分对;如果在Y 序列中,我们观察到i jY =Y (此时X 序列中无i j X =X ),则这个配对仅是Y 方向而非X 方向的同分对;我们观察到i j X =X ,也观察到i j Y =Y ,则称这个配对为X 与Y 同分对。
六、计算题1.对某市市民按老中青进行喜欢民族音乐情况的调查,样本容量为200人,调查结果示于下表,试把该频数列联表:①转化为相对频数的联合分布列联表②转化为相对频数的条件分布列联表;③指出对于民族音乐的态度与被调查者的年岁有无关系,并说明理由。
对于民族音乐的态度(Y)年岁(X)Σ老中青喜欢不喜欢38 38 30 15 33 46Σ2.已知十名学生身高和体重资料如下表,(1)根据下述资料算出身高和体重的皮尔逊相关系数和斯皮尔曼相关系数;(2)根据下述资料求出两变量之间的回归方程(设身高为自变量,体重为因变量)。
身高(cm)171 167 177 154 169体重(kg)53 56 64 49 55身高(cm)175 163 152 172 162体重(kg)66 52 47 58 50 【皮尔逊相关系数:0.889,斯皮尔曼相关系数:0.94,回归方程:Y=-54.48+0.66X】3.假定有不同文化程度的35~45岁育龄妇女100人的生育情况如下表,求文化程度与平均生育数的相关系数r。
序号一二三四五育龄妇女人数20 20 20 20 20文化程度(年)平均生育数4.7463.3193.08122.41161.944.某市有12所大专院校,现组织一个评审委员会对各校校园及学生体质进行评价,结果如下,试求环境质量与学生体质的关系的斯皮尔曼相关系数和肯得尔等级相关系数。
环境名次 3 9 7 5 12 8 10 2 11 4 1 6体质名次 5 9 6 7 12 8 11 1 10 3 2 4【斯皮尔曼相关系数:0.94,肯德尔等级相关系数:0.83】5.以下是婚姻美满与文化程度的抽样调查的结果,请计算婚姻美满与文化程度之Gamma系数和肯德尔相关系数τc。
文化程度婚姻美满大学中学小学美满9 16 5一般8 30 18不美满 3 4 7【τc=0.18】6.以下为两位评判员对10名参赛人名次的打分。
试用斯皮尔曼等级相关系数来描述两评判员打分的接近程度。
参赛人 A B C D E F G H I J评判员1 评判员2 1122433455866778991010【斯皮尔曼相关系数:0.95】7.某原始资料为:X 65 73 91 88 76 53 96 67 82 85Y 5 7 13 13.5 7 4.5 15 6.7 10 11 要求:(1)求回归方程;(2)这是正相关还是负相关;(3)求估计标准误差;(4)用积差法求相关系数。
【Y=-11.48+0.27X】【正相关】【相关系数r=0.95】8.两变量X、Y之间的关系如下表,X 2 4 6 8 10 12Y 14 10 9 7 5 4(1)求回归方程;(2)求相关系数。
【Y=-0.957X+14.867】【r=0.98】9.试就下表所示资料,计算关于身高和体重的皮尔逊相关系数。
N0身高(厘米)体重(千克)12345678910 16016116516516717017217417618051565966637069738065【r=0.77】10.青年歌手大奖赛评委会对10名决赛选手的演唱水平(X)和综合素质(Y)进行打分,评价结果如下表(表中已先将选手按演唱水平作了次序排列)所示,试计算选手的演唱水平和综合素质间的肯德尔等级相关系数及斯皮尔曼等级相关系数。
选手名A B C D E F G H I J演唱水平(X ) 综合素质(Y ) 1 2 3 4 5 6 7 8 9 10 3 1 5 2 7 4 10 8 6 9 【肯德尔系数:0.56,斯皮尔曼系数:0.76】11.青年歌手大奖赛,假设五位评委对10名决赛选手的演唱水平进行排序,他们的有关评价结果列于下表,试通过计算肯德尔和谐系数,检验专家意见的一致性和相关程度。
五位评委 10名决赛选手A B C D E F G H I J A B C D E 1 2 3 4 5 6 7 8 9 10 3 2 1 4 5 8 9 7 10 6 1 3 2 4 8 7 6 5 9 10 4 2 1 5 3 10 8 6 7 9 5 2 1 9 3 8 4 6 10 7【0.76】12.某地区失业率与通货膨胀率之间的资料如下表所示,试求:(1)拟合指数回归方程c Y =x ab ;(2)失业率与通货膨胀率之间的相关系数。
失业率(%) 1.0 1.6 2.0 2.5 3.1 3.6 4.0 4.5 5.1 5.6 6.0 6.5 通胀率(%) 1.6 1.5 1.1 1.3 0.6 0.9 0.8 0.8 0.7 0.6 0.6 0.6【()xe y 1803.0717.1-=】【相关系数0.76】13.试就下表所示资料,求算员工工作满足感高与归属感之Gamma 系数,并解释Gamma 系数具有削减误差比例PRE 性质。
工作满足感与归属感归属感(Y ) 工作满足感(X ) Y F低(1) 中(2) 高(3) 低(1) 中(2) 高(3) 8 4 3 6 5 1 4 4 5 15 12 13 Fx18 13 940【G=0.092】14.已知相关系数r =0.6,估计标准误差XY S =8,样本容量为62。
求:1)剩余变差值;2)剩余变差占总变差的百分比; 3)求总变差值。
15.在相关和回归分析中,已知下列资料:2X S =16,2Y S =25,2XY S =-19,a =30。
要求:1)计算相关系数r ,说明相关程度;2)求出直线回归方程。
16.在相关和回归分析中,已知下列有关资料:X S =5,Y S =10,n =20,r =0.9,2)(∑-Y Y =2000。
试计算:1)回归系数b ;2)回归变差和剩余变差; 3)估计标准误差XY S 。
17.根据下述假设资料求回归方程。
X 1 2 3 4 5 6 7 Y 23.023.424.125.226.126.927.318.某10户家庭样本具有下列收入(元)和食品支出(元/周)数据: 收入(X ) 20 30 33 40 15 13 26 38 25 43 支出(Y )7981154810910要求:1)写出最小平方法计算的回归直线方程;2)在95.46%把握下,当X =45时,写出Y 的预测区间。
19.根据下述假设资料,试用积差法求相关系数。
输出X (亿元)12106168910输出Y (亿元) 12 8 6 11 10 8 1120.对40个企业的横截面样本数据进行一元回归分析,因变量与其平均数的离差平方和为6000,而回归直线拟合的剩余变差为2000,求:1)变量间的相关指数R ; 2)该方程的估计标准误差。
七、问答题1.简述积差系数的特性。
2.简述回归分析和相关分析之间的密切联系。
部分计算参考:(见计算题六)2. 已知十名学生身高和体重资料如下表,(1)根据下述资料算出身高和体重的皮尔逊相关系数和斯皮尔曼相关系数;(2)根据下述资料求出两变量之间的回归方程(设身高为自变量,体重为因变量)。
皮尔逊相关系数与回归方程 编号 身体重编号 身高(cm ) 体重(kg )1 171 532 167 563 177 644 154 495169 55 6 175 66 7 163 52 8 152 47 9 172 58 10162502x 2y高(cm )x (kg )yxy1 171 53 292412809 9063 2 167 56 27889 3136 9352 3 177 64 31329 4096 11328 4 154 49 23716 2401 7546 5 169 55 28561 3025 9295 6 175 66 30625 4356 11550 7 163 52 26569 2704 8476 8 152 47 23104 2209 7144 9 172 58 29584 3364 9976 10 162 5026244 2500 8100 合计 1662550 27686230600918302222n xy x y r 0.89n x (x)n y (y)-==--∑∑∑∑∑∑∑22n xy x y b 0.659n x (x)y x a=b 54.479n ny=a+bx=-54.479+0.659x-==--=-∑∑∑∑∑∑∑斯皮尔曼相关系数 编号 身高(cm )次序体重(kg ) 次序 d1 171 4 53 6 -2 4 2 167 6 56 4 2 43 177 1 64 2 -1 1 4 154 9 49 9 0 05 169 5 55 5 0 06 175 2 66 1 1 17 163 7 52 7 0 08 152 10 47 10 0 09 172 3 58 3 0 0 10 16285080 合计102s 26d r 1-0.94n(n -1)==∑2d4. 某市有12所大专院校,现组织一个评审委员会对各校校园及学生体质进行评价,结 果如下,试求环境质量与学生体质的关系的斯皮尔曼相关系数和肯得尔等级相关系数。