高中数学必修一教案第二章小结与复习
- 格式:doc
- 大小:80.00 KB
- 文档页数:4
【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
课题:函数复习小结(二)教学目的:1.熟悉并掌握函数的对称语言.2.进一步熟悉二次函数性质及其应用.3.把握数形结合的特征和方法.4.能够应用函数思想解题.5.了解与函数有关的数学模型.教学重点:数形结合的特征与方法教学难点:函数思想的应用授课类型:复习课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、引入:通过上一节学习,大家了解了本章内容的整体结构,明确了本章的重难点知识,并熟悉了有关函数的基本概念和基本方法,这一节,我们将通过例题分析重点掌握数形结合的特征与方法,并进一步认清函数的思想实质,进而掌握其应用.二、例题分析:例1若函数f(x)=x2+bx+c对任意实数x都有f(2+x)=f(2-x),那么()A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)分析:此题解决的关键是将函数的对称语言转化为对称轴方程.解:由f(2+x)=f(2-x)可知:函数f(x)的对称轴为x=2,由二次函数f(x)开口方向向,可得f(2)最小,又f(4)=f(2+2)=f(2-2)=f(0)在x<2时,y=f(x)为减函数∵0<1<2,∴f(0)>f(1)>f(2)即f(2)<f(1)<f(4)答案:A通过此题可将对称语言推广如下:(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a是函数f(x)的对称轴(2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=2ba是f(x)的对称轴.例2求f(x)=x2-2ax+2在[2,4]上的最大值和最小值.解:先求最小值.因为f(x)的对称轴是x=a ,可分以下三种情况:(1)当a <2时,f(x)在[2,4]上为增函数,所以f(x)min=f(2)=6-4a;(2)当2≤a <4时,f(a)为最小值,f(x)min=2-a 2;(3)当a >4时,f(x)在[2,4]上为减函数,所以f(x)min=f(4)=18-8a综上所述:f(x)min=⎪⎩⎪⎨⎧>-<≤-<-)2( ,818)42( ,2)2( ,462a a a a a a最大值为f(2)与f(4)中较大者:f(2)-f(4)=(6-4a)-(18-8a)=12+4a(1)当a ≥3时,f(2)≥f(4),则f(x)max=f(2)=6-4a;(2)当a <3时,f(2)<f(4),则f(x)max=f(4)=18-8a.故f(x)max=⎩⎨⎧<-≥-)3(,88)3( ,46a a a a 评述:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x=a 与区间[2,4]的位置关系,分三种情况讨论;最大值在端点取得时,只须比较f(2)与f(4)的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两种情况.例3已知f(x)=|lgx|,且0<a <b <c,若f(b)<f(a)<f(c),则下列一定成立的是( )A.a <1,b <1,且c >1B.0<a <1,b >1且c >1C.b >1,c >1D. c >1且c 1<a <1,a <b <a1 分析:画出y=|lgx|的图象如图:f(x)在(0,1上为增函数.观察图象,因为f(a)<f(b)<f(c),所以c >1且c 1<a <1,a <b <a1.答案:D 评述:通过此题体会数形结合思想,体会函数987654321-1-6-4-22468042a 321-1-2-3-4-5-4-22468042a 2-2-4-6-8-10-12-14-16-18-20-22-10-5510152025042a 1.210.80.60.40.2-0.2-0.4-0.60.51 1.52 2.5101a 1c c b a图象在函数单调性问题中的应用.例4函数f(x)=x 2-bx+c ,满足对于任何x ∈R 都有f(1+x)=f(1-x),且f(0)=3,则f(b x )与f(c x )的大小关系是( )A.f(b x )≤f(c x )B.f(b x )≥f(c x )C.f(b x )<f(c x )D.f(b x )>f(c x )分析:由对称语言f(1+x)=f(1-x)可以确定函数对称轴,从而确定b 值,再由f(0)=3,可确定c 值,然后结合b x ,c x 的大小关系及二次函数的单调区间使问题得以解决.解:∵f(1+x)=f(1-x)∴f(x)的对称轴x=-2b =1 ∴b=2,又f(0)=3,∴c=3,∴f(x)=x 2-2x+3 (1)当x >0时,1<2x <3x ,且f(x)在[1,+∞)上是增函数所以f(2x )<f(3x ),即f(b x )<f(c x ) (2)当x <0时,1>2x >3x ,且f(x)在(-∞,1)上是减函数,所以f(2x )<f(3x ),即f(b x )<f(c x ) (3)当x=0时,2x =3x=1则f(2x )=f(3x ),即f(b x )=f(c x )综上所述,f(b x )≤f(c x ).答案:A三、课堂练习:已知f(x)=x 2-4x-4,x ∈[t,t+1](t ∈R),求f(x)的最小值φ(t )的解析式.解:f(x)=(x-2)2-8(1)当2∈[t,t+1]时,即1<t <2时,φ(t)=f(2)=-8.(2)当t >2时,f(x)在[t,t+1]上是增函数,故φ(t)=f(t)=t 2-4t-4.(3)当t+1<2,即t <1时,f(x)在[t,t+1]上是减函数.故φ(t)=f(t+1)=t 2-2t-7综上所述:φ(t)=⎪⎩⎪⎨⎧≥--<<-≤--)2( ,44)21( ,8)1( ,7222t t t t t t t四、课时小结:本节学习了二次函数在给定区间上求最值的方法,把握数形结合的特征与方法,逐步掌握函数思想在实际问题中的应用.五、课后作业:1.某农工贸集团开发的养殖业和养殖加工生产业的年利润分别是T 和Q (万元),这两项生产与投入的奖金a(万元)的关系是P=a Q a 310,3=,该集团今年计划对这两项生产共投入奖金60万元,为获得最大利润,对养殖业与养殖加工生产业投入应各为多少万元?最大利润为多少万元?解:设投入养殖业为x 万元,则投入养殖加工生产业为60-x 万元由题意:P+Q=x x -+603103 (0≤x ≤60) 设t=x -60,则0≤t ≤60,x=60-t 2 P+Q=31(60-t 2)+310t=-31(t-5)2+385 ∴当t=5时,即x=35时,(P+Q )max=385. ∴对养殖业投入35万元,对养殖加工生产业投入25万元,可获最大利润385万元. 2.已知)91(log 2)(3≤≤+=x x x f ,求函数22)]([)(x f x f y +=的最大值和最小值,并求取最大值和最小值的相应的x 的值 答案:3=x 时,y 取最大值13;1=x 时,y 取最小值63.设集合]1,1[-=A ,]22,22[-=B ,函数2)(2-+=mx x x f(1)设不等式0)(≤x f 的解集为C ,当B A C ⊆时,求实数m 的取值范围;(2)若对任意实数x ,均有)1()(f x f ≥恒成立,求B x ∈时,)(x f 的值域;(3)当B x A m ∈∈,时,证明8|)(|≤x f 答案:(1)11≤≤-m (2)22,22[- (3)因为对称轴]22,22[]41,41[4-⊂-∈-=m x , 故只需证明89|)22(|≤-f ,89|)22(|≤f ,89|)4(|≤m f 即可十二、板书设计(略) 十三、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
数学必修一第二章知识点总结3篇数学必修一第二章知识点总结3篇高一数学必修一的学习,需要大家对知识点进行总结,这样大家最大效率地提高自己的学习成绩。
下面数学必修一第二章知识点总结是小编为大家整理的,在这里跟大家分享一下。
下面就让小编给大家带来数学必修一第二章知识点总结,希望大家喜欢!数学必修一第二章知识点总结1一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:X Kb 1.C om非负整数集(即自然数集) 记作:N正整数集:N或 N+整数集: Z有理数集: Q实数集: R1)列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x R|x-3 2} ,{x|x-3 2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A A② 真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或B A)③ 如果 A B, B C ,那么 A C④ 如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
«第二章思想方法总结»教学设计一、教学目标:1. 知识目标:让学生学会用不同的思想方法解决问题并能够总结解决函数问题的一般方法;2. 能力目标:让学生具备用基本思想方法解决问题的能力;3. 情感目标:培养学生的数学学习兴趣。
二、教学重、难点:1.教学重点:数形结合思想、分类讨论思想、函数与方程思想的应用;2.教学难点:数形结合思想、分类讨论思想、函数与方程思想的应用与方法总结。
三、教学方法:讲练结合教学法四、讲授新知:1、数形结合思想例:偶函数())(R x x f ∈满足0)1()4(==-f f ,在区间]3,0[与),3[+∞上分别递减和递增,则不等式0)(<x xf 的解集为( )A 、),4()4,(+∞--∞B 、)4,1()1,4( --C 、)0,1()4,(---∞D 、)4,1()0,1()4,( ---∞ 方法点评:数形结合的实质是“以形助数”或“以数助形”,运用数形结合思想解题,不仅直观易于寻找解题途径,而且可以避免繁杂的计算和推理,简化解题过程.图示形象直观,一目了然,巧妙运用数形结合的方法解题,可起到事半功倍的效果.练习:已知定义域为R 的函数)(x f 在区间),8[+∞上为减函数,且函数)8(+=x f y 为偶函数,则( )A 、)7()6(f f >B 、)9()6(f f >C 、)9()7(f f >D 、)10()7(f f >2、分类讨论思想例:已知()2)42(2+--=x a x x f 在]1,1[-内的最小值为)(a g ,求)(a g 的解析式。
方法点评:解分类讨论问题的实质是:将整体问题化为部分问题来解决,化成部分从而增加题设条件,这也是解分类讨论问题总的指导思想。
⑴ 做到分类讨论不重复、不遗漏;⑵ 不断总结经验教训,克服分类讨论中的主观性和盲目性;⑶ 注意掌握好基础知识、基本方法,这是解好分类讨论问题的前提条件。
第二章小结与复习(一)教学目标1.知识与技能掌握指数函数、对数函数、幂函数的概念和性质.对复合函数、抽象函数有一个新的认识.2.过程与方法归纳、总结、提高.3.情感、态度、价值观培养学生分析问题、解决问题和交流的能力及分类讨论、抽象理解能力.(二)教学重点、难点重点:指数函数、对数函数的性质的运用.难点:分类讨论的标准、抽象函数的理解.(三)教学方法讲授法、讨论法.(四)教学过程作用要充分重视.另外,计算器或计算机可以帮助我们方便地作出函数图象,并可以动态地演示函数的变化过程,这对我们研究函数性质很有帮助.课后作业作业:小结与复习习案学生独立完成巩固新知提升能力备选例题例1 已知f (x) = lg x,则y = |f (1 –x)|的图象是下图中的( A )【解析】方法一:y = |f (1 –x)| = |lg(1 –x)|,显然x≠1,故排除B、D;又因为当x = 0时,y = 0,故排除C.方法二:从图象变换得结果:−−−−−−−→−=︒180lg轴翻转把图象绕yxy y = lg(–x))1lg()lg(xyxy-=−−−−−−−−→−-=位把图象向右平移一个单y = lg[– (x–1)]−−−−−−−−−−→−轴翻折到上方轴下方部分沿把xxy = |lg(1 –x)|.【小结】(1)y = lg x变成y = lg (1 –x)过程不会变换,不知道关于什么轴对称导致误解.(2)解决有关图象的选择问题,方法比较灵活,可用特值排除法,也可直接求解,但一定要注意图象的特点,对于图象的对称、平移问题一定要注意对称轴是什么. 平移是左移还是右移,移动的单位是多少,这是移动的关键.例2 设a>0,a≠1,t>0,比较t alog21与21log+ta的大小,并证明你的结论.【解析】∵t>0,∴可比较talog与21log+ta的大小,高中数学 第二章小结与复习教案 新人教A 版必修1- 11 - / 11 即比较t 与21+t 的大小. ∵当t = 1时,21+=t t ,∴21log log +=t t a a . 当t ≠1时, ∵12)(212+-=-+t t t t = 2)1(-t >0,∴t + 1>t 2,∴21+t >t . ∴当0<a <1时,t a log >21log +t a, 即t a log 21>21log +t a . 当a >1时,t a log <21log +t a, 即t a log 21<21log +t a . 综上知:当t = 1时,21log log 21+=t t aa ; 当t >0且t ≠1时,若0<a <1, 有t a log 21>21log +t a; 若a >1,则有t a log 21<21log +t a. 【小结】解决此类比较大小的题目,要注意结合函数的单调性,作差比较一定要判断差值与0的大小,从而作出大小的比较,注意分类讨论的思想应用,本题中的t +1和t 2的比较. 可由t + 1 – 222)1(21)(-=-+=t t t t ≥0,所以t + 1≥t 2 (t =1时取等号),从而得出0<12+t t ≤1和21+t ≥t .。