土压盾构施工技术
- 格式:ppt
- 大小:15.22 MB
- 文档页数:80
盾构掘进技术施工要点一、土压平衡盾构掘进(一)土压平衡式掘进特点土压平衡盾构,是将开挖下来的土砂充满到开挖面和隔板之间泥土仓,根据需要在其中注入改良材料,用适当的土压力确保开挖面的稳定性。
通过贯穿隔板设置的螺旋输送机,可在推进的同时进行排土。
在施工时,必须在开挖两层隔板之间充满土砂,对其进行加压达到满足开挖面的稳定需要的状态。
为了获得适合于盾构推进量的排土量,要对土压力和出土盘进行计量,对螺旋式排土器的转数和盾构的推进速度进行控制,达到平衡状态,同时,还要掌握刀盘扭矩和推力等,进行正确的控制管理以防止开挖面的松动和破坏。
(二)土仓压力管理(1)在土压平衡盾构的施工中,为了确保开挖面的稳定,要适当地维持压力舱压力。
一般,如果土仓压力不足,发生开挖面的涌水或坍塌风险就会增大。
如果压力过大,又会引起刀盘扭矩或推力的增大而发生推进速度下降或地面隆起等问题。
(2)土仓压力管理的基本思路是:作为上限值,以尽量控制地表面的沉降为目的而使用静止土压力;作为下限值,可以允许产生少量的地表沉降,但可确保开挖面的稳定为目的而使用主动土压力。
(3)掌握开挖面的稳定状态,一般是用设置在隔板上的土压计来确定土仓压力。
(4)推进过程中,土仓压力维持有如下的方法:①用螺旋排土器的转数控制;②用盾构千斤顶的推进速度控制;③两者的组合控制等。
通常盾构设备采用组合控制的方式。
(5)要根据各施工条件实施良好的管理。
另外,需要确认伴随推进所产生的地基的变形、排土状态、刀盘扭矩以及其变化情况,及时在推进中修正土仓压力。
(三)排土量管理(1)为了一边保持开挖面的稳定一边顺利地进行推进,则需要适量地进行排土,以维持排土量和推进量相平衡。
可是,由于围岩的重度在掘进中会有一定的波动,以及受添加剂的种类、添加量或排土方式等因素的影响,排出渣土的重度也会发生变化,所以要恰当地掌握排土量是比较困难的。
另外,作为排土,其状态可在半固体状态到流体状态之间变化,其性状是各种各样的。
土压平衡盾构施工技术一、盾构施工法概述1.盾构施工程序。
盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行,因而是工艺技术要求高、综合性强的一类施工方法。
其主要施工程序为:建造盾构工作井;盾构机安装就位;出洞口土体加固处理;初推段盾构掘进施工;隧道正常连续掘进施工;盾构接收井洞口的土体加固处理;盾构进入接收井解体吊出。
2.盾构施工优点。
盾构施工与矿山法施工具有以下优点:地面作业少,隐蔽性好,因噪音、振动引起的环境影响小;自动化程度高、劳动强度低、施工速度快;因隧道衬砌属工厂预制,质量有保证;穿越地面建筑群和地下管线密集的区域时,周围可不受施工影响;穿越河底或海底时,隧道施工不影响航道,也完全不受气候影响;对于地质复杂、含水量大、围岩软弱的地层可确保施工安全;在费用和技术难度上不受覆土深度影响。
二、盾构推进隧道施工1. 掘进原理。
盾构在粉质粘土、粉质砂土和砂质粉土等粘性土层中掘进施工时,由刀盘旋转切削下来的土体进入密封土仓后,可对开挖面地层形成被动土压力,与开挖面上的主动土压力相抗衡。
使开挖面的土层处于稳定状态。
当盾构推进时,启动螺旋输送器排土,使排土量等于开挖量,即可使开挖面地层始终处于稳定。
排土量一般通过调节螺旋输送器转速和出土口装置予以控制。
当地层含砂量超过某一限度时,因土的摩阻力大、渗透系数高、地下水丰富等原因,泥土塑流性将明显变差,密封仓内的土体可因固结作用而被压密,导致渣土难于排出,甚至形成泥饼而无法推进,而且单靠切削土提供的被动土压力,常不足以抵抗开挖面的水土压力。
出现这种状况时,可向密封仓内注入水、泡沫、膨润土等,同时进行搅拌,以期适当改善仓内土体的塑流性,顺利排土。
2.轴线控制。
盾构轴线的控制是盾构推进施工的一项关键技术,怎样控制盾构能在已定空间轴线的允许偏差范围内是必须掌握的技术,在实际施工中盾构推进轴线控制不可能是理想的状况,轴线控制不佳状况除地质不均匀引起的正面阻力不均匀及隧道的平面和竖曲线要求外,往往是产生于人为因素,这是指施工不精心及对轴线控制操作技术水平不够两个原因,而后者占多数。
土压平衡盾构施工工艺1. 概述土压平衡盾构(TBM)是一种先进的隧道掘进技术,是目前全球范围内最常用的隧道掘进方法之一。
TBM 的掘进过程是由一个大型的盾构机来实现的,该机器能够将同时围绕着盾构机的土层进行压缩和保证平衡,以确保掘进过程持续稳定进行。
2. 工程准备在进行TBM 施工之前,需要进行一系列的工程准备。
首先需要进行勘探设计,以确定施工的具体方案。
其次,需要选择合适的 TBM 设备,并进行必要的试验和检验。
然后,施工方还需要对隧道工地进行清理和准备工作,将隧道工地的杂物和垃圾清理干净,确保施工现场整洁。
3. 施工方案TBM 施工的主要流程包括:钻进、开挖、支护和撤机。
在进入TBM 施工时,需要进行以下步骤:3.1 钻进TBM 施工的第一步是进行钻进作业。
钻进需要先打井,将 TBM 设备安装在井口处。
待 TBM 设备安装完成后,需要进行贯入试验,验证 TBM 设备的稳定性和准确性。
3.2 开挖在钻进作业完成后,将开始进行开挖作业。
TBM 设备通过旋转推进头,驱动盾构机前进。
同时,通过同步设置的顶板千斤顶或切削力补偿器来控制施工现场的土压平衡,以保持盾构机的稳定运行。
3.3 支护开挖完成后,需要进行支护。
支护是为了防止掘进后的隧道局部塌陷或整个管道系统的坍塌,以保证工地安全和施工质量。
支护直接影响着整个施工的安全和稳定性,因此支护的工作必须得到重视。
3.4 撤机当隧道开挖完成后,需要进行撤机作业。
撤机始于盾构机的后方,将主体部分拆卸下来,然后在逆向方向进行回撤,黏着部位的地基要另行考虑方案并安排实施,最后进行设备拆除和工地清理。
4. 施工优势TBM 施工具有许多优势。
首先,可保持隧道开挖的高度和宽度的一致性,大大提高了施工效率。
其次,TBM 施工的噪音和灰尘要比传统的开挖方法低得多。
此外,TBM 施工能够同时进行多个施工步骤,相对传统施工方式更加快速高效。
5. 施工安全TBM 施工需要进行严格的安全控制。
土压平衡盾构在现代城市建设中,隧道施工技术一直是一个备受关注的话题。
土压平衡盾构作为隧道施工中的重要技术手段,被广泛运用于地铁、隧道、水利工程等领域。
本文将介绍土压平衡盾构的工作原理、施工流程、应用领域以及发展趋势。
工作原理土压平衡盾构是一种通过对盾构机内部进行适当压力控制,使土体在掌握平衡条件下对盾构机的推进方向施加支护压力的施工方法。
其主要工作原理如下:1.土压平衡控制:通过盾构机内设的控制系统,对注入的压浆进行控制,使得盾构机内外的土压力保持平衡,避免挤压或塌陷的发生。
2.推力控制:由盾构机的主推进液压缸提供推力,推动盾构机朝着设计方向推进,同时根据隧道的地质条件,调整推进速度和力度,保证施工安全。
3.土体支护:在盾构机推进的同时,通过盾构机后部的支护系统提供对土体的支撑和加固,防止隧道倒塌。
施工流程土压平衡盾构施工流程一般包括以下几个步骤:1.现场勘察:对隧道工程的地质条件、地下管线等情况进行详细调查和勘察,了解地层情况,为后续施工提供数据支持。
2.盾构机铺设:将盾构机按照设计要求铺设在施工现场,进行机器调试和检验。
3.推进施工:启动盾构机,根据设计要求控制推进速度和土压平衡,逐步推进隧道施工。
4.土体处理:处理盾构机后部土体的排出和支护,防止土体坍塌,同时保护环境。
5.隧道验收:完成隧道的整体施工后,进行验收,确保施工质量和安全。
应用领域土压平衡盾构技术在地铁、铁路、公路、水利等领域均有广泛应用,其主要应用包括:•地铁隧道:土压平衡盾构在地铁隧道的施工中应用广泛,能够适应不同地质条件,提高施工效率和质量。
•水利工程:在水利隧道、排水管道等工程中,土压平衡盾构可以有效应对复杂的地下水文条件,保证施工安全。
•公路隧道:对于公路隧道的施工,土压平衡盾构可以减少交通影响,提高工程质量。
发展趋势随着城市化进程的不断加快,土压平衡盾构技术在隧道施工中将继续发挥重要作用,并呈现出以下几个发展趋势:•智能化:随着技术的不断发展,土压平衡盾构将趋向智能化,实现自动化控制和监测,提高施工效率和安全性。
加泥式土压平衡盾构施工技术中铁十六局盾构工程项目经理部内容提要:本文详细介绍了土压平衡盾构机组成、工作原理,并结合深圳地铁7标段盾构隧道的施工,重点对盾构隧道的主要施工过程和关键工艺技术进行总结和分析。
关键词:土压平衡盾构施工技术一、盾构施工法概述及盾构机的选型1.1盾构施工法概述盾构施工法于19世纪初在英国开始使用,经过反复摸索,在近30~40年间取得了飞速发展,现在,该施工法已同矿山法一起成为城市隧道施工的两大主要施工方法。
20世纪90年代该项技术被引进我国,主要集中应用盾构技术来进行上、下水道、电力通讯隧道、人防工事、地铁隧道等施工。
目前在上海、广州、深圳、南京等城市已经开始采用盾构法来施工地铁隧道,盾构法在国内逐渐开始发展普及。
盾构施工法与矿山法相比具有的特点是地层掘进、出土运输、衬砌拼装、接缝防水和盾尾间隙注浆充填等主要作业都在盾构保护下进行,因而是工艺技术要求高、综合性强的一类施工方法。
其主要施工程序为:1、建造盾构工作井2、盾构机安装就位3、出洞口土体加固处理4、初推段盾构掘进施工5、隧道正常连续掘进施工6、盾构接收井洞口的土体加固处理7、盾构进入接收井解体吊出盾构施工与矿山法施工具有以下优点:1、地面作业少,隐蔽性好,因噪音、振动引起的环境影响小;2、自动化程度高、劳动强度低、施工速度快;3、因隧道衬砌属工厂预制,质量有保证;4、穿越地面建筑群和地下管线密集的区域时,周围可不受施工影响;5、穿越河底或海底时,隧道施工不影响航道,也完全不受气候影响;6、对于地质复杂、含水量大、围岩软弱的地层可确保施工安全;7、在费用和技术难度上不受覆土深度影响。
盾构法施工也存在一些缺点:1、一次性投入大,施工设备费用较高;2、覆土较浅时,地表沉降较难控制;3、用于施作小曲率半径(R<20D)隧道时掘进较困难。
1.2盾构机的选型盾构施工法大体上分为开放式和封闭式两种。
开放式就是没有隔墙而工作面开放的盾构,考虑到确保工作面稳定、高压气下的作业环境等问题,目前已基本上不再采用这个方法。
土压平衡盾构施工工艺土压平衡盾构的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。
土压平衡盾构属封闭式盾构。
盾构另一个作用是能够承受来自地层的压力,防止地下水或流砂的入侵。
01工作原理1.盾构机的掘进液压马达驱动刀盘旋转,同时启动盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的渣土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过盾构井口垂直运至地面。
2.掘进中控制排土量与排土速度当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍塌或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。
3.管片拼装盾构机掘进一环的距离后,通过管片拼装机通缝或错缝拼装单层衬砌管片,使隧道—次成型。
02操作工艺盾构掘进时泥土质量控制1.泥土压力控制。
盾构中的泥土压力可通过以下3种方式调节:(1)调节螺旋输送机的转数;(2)调节盾构千斤顶的推进速度;(3)两者组合控制。
2.泥土塑流性控制。
泥土的塑流性可通过以下4种方法测试。
(1)土仓内的土压。
可通过设在盾构隔板上的土压计测定,是判断泥土塑流性的一种简洁方法。
(2)盾构负荷。
由掘削扭矩、螺旋输送机的扭矩等负荷的变化推定泥土的塑流性。
(3)螺旋输送机的排土效率。
泥土塑流性好的情况下,从螺旋输送机的转数算出的排土量与计算掘削土量的相关性较高。
(4)排土形状测量。
根据目测排土状况或者泥土取样的坍落度试验可以判定泥土的塑流性。
3.防止刀盘泥饼的形成:(1)土舱内水、土、气压力设定值不宜过高,应设法减小刀盘与正面岩土的挤压应力;(2)采取发泡剂等措施切断裂隙水的通道,防止地层中裂隙水涌入;(3)合理布设刀盘刀具,遇到塑性大、裂隙水丰富的风化岩土时,应及时拆除滚刀;(4)向刀盘正面压注一定量的发泡剂或润滑水,减小刀盘与正面土体的碾磨力,同时还可增加破碎的流塑性;(5)在土舱内加以适当的气压,提高螺旋输送机的排土能力。