az80镁合金挤压工艺研究-材料成型控制工程本科毕业设计(论文(1)[管理资料]
- 格式:docx
- 大小:4.45 MB
- 文档页数:36
职业技术学院毕业论文题目:镁铝合金的应用及成型工艺研究学生:学号:院(系):职业技术学院专业:数控技术指导教师:2011 年月日作外形复杂构件,管材多用于汽油、润滑油等要求抗腐蚀性的管路系统。
该系列合金包括ZK60(MB15)、ZK61,MB18,MB21等,此类合金的塑性中等,室温下拉伸屈服强度和压缩屈服强度以及高温瞬时强度都明显优于其它合金(如AZ31等),具有良好的成形和焊接性能,无应力腐蚀倾向。
RE代表稀土元素,该系列合金主要包括ZE10、MB8等。
具有优异的耐热性和耐腐蚀性,一般无应力腐蚀倾向,广泛用于制备薄板或厚板、挤压材和锻件等。
该系列主要包括的是美国HK31,HM21,HM31等。
该类合金具有优良的高温性能,焊接性能良好。
但对人体和环境有一定的危害,通常被限制使用。
.镁合金的四大主要应用领域日前介绍了镁合金目前的主要应用领域,主要分四个方面:随着世界能源危机、资源危机与环境污染问题的日趋严重,节能和轻量化已成为汽车工业的重要问题。
采用镁合金制造摩托车发动机、轮毂、减速器、后扶手及减震系统等部件,不仅能减轻整车质量、提高整车的加速和制动性能,还能降低行使震动、排污量、噪声及油耗,可提高驾乘舒适度。
重庆镁业科技股份有限公司目前已研制出10余种摩托车镁合金压铸件和挤压铸造镁合金轮毂,并组装了镁合金用量为14kg的隆鑫LX150摩托车,开创了我国摩托车大量采用镁合金的先例。
重庆镁业和重庆博奥镁业现已形成镁合金摩托车压铸件300万件、镁合金型材1000吨及镁合金1500吨的年生产能力。
目前我国已有300多万辆摩托车应用了镁合金,可节省油耗数亿元以上。
我国是摩托车生产大国,目前年产量达2500多万辆,连续14年居全球首位,若平均每辆镁合金用量按5kg计算,摩托车工业每年需镁合金约12万多吨。
目前,我国的自行车厂商已将大量镁合金零部件运用于自行车赛车、登山车甚至折叠车等高级车种。
首钢远东、重庆镁业、中华自行车、上海交大、南京华宏等国内企业和研究院所都纷纷推出了镁合金自行车样车,其中首钢远东镁合金车型实现了上市销售,重庆镁业的镁合金自行车实现了产品系列化。
摘要摘要镁合金自身属于一种轻质结构金属材料拥有良好的潜在用途,特别是在汽车工业方面,人们渴望这种轻质金属材料得以应用以达到减重目的以此降低能源消耗减少废气排放。
深冷处理作为一种传统热处理的附加过程,低温环境下能够有效改善镁合金显微组织的分布均匀性,晶粒尺寸得以减小,晶体中第二相的体积分数增加,合金的综合力学性能得到一定程度提升。
作为一种新颖的塑性变形工艺,表面机械研磨处理(SMAT)能够在镁合金表面合成由表及里的稳定的梯度纳米结构,大幅提升材料的硬度与强度,与此同时SMAT中钢球对表面的撞击也会引入残余压应力。
因此,挤压态AZ80变形镁合金选作本课题的实验研究对象,首先分别进行深冷处理和SMAT处理,然后对两种工艺加工后的AZ80镁合金的微观组织演变、硬度与强度变化进行测试,并研究应变控制下的疲劳性能与疲劳断裂行为,阐述低周疲劳的变形机理。
本课题利用金相显微镜研究深冷处理之后的AZ80变形镁合金的微观组织尺寸变化以及第二相的数量变化,以及SMAT加工后的AZ80镁合金的表面到中部的组织分布情况;并检测分析深冷处理前后以及SMAT处理前后AZ80镁合金的维氏显微硬度的差异,测试分析了深冷处理对AZ80镁合金的抗拉强度、屈服强度以及延伸率的变化规律,并利用扫描电子显微镜(SEM)观察断口形貌、解释断裂机制。
利用扫描电子显微镜分析深冷处理前后物相成分变化以及形貌改变,并通过背散射电子衍射(EBSD)检测分析深冷处理前后晶粒取向的变化以及织构分布状态的变化。
通过拉-压疲劳试验机测试深冷处理前后、SMAT处理前后AZ80镁合金在各应变幅下的低周疲劳性能,并分析不同工艺处理对应变控制的低周疲劳性能的影响规律,分析在不同应变幅情况下,变形镁合金AZ80的低周拉-压疲劳的变形机理。
原始挤压态AZ80镁合金横截面的平均晶粒大小约为21.66μm,深冷8h后微观组织的平均晶粒尺寸为19.62μm,相比原始组织的晶粒大小降低了9.42%;深冷24h平均晶粒大小降至17.25μm,相比原始晶粒降低了20.36%;深冷48h之后平均晶粒尺寸为17.92μm,相比原始尺寸降低17.27%,与深冷24h晶粒尺寸无明显差异。
材料成型毕业论文范文2 篇材料成型毕业论文范文一:金属材料加工中材料成型与控制工程摘要:本文以金属材料为例,对材料成型与控制工程中的加工技术进行细化分析,首先,理论概述了金属材料的选材原则,然后具体分析了铸造成型、挤压与锻模塑性成型、粉末冶金以及机械加工四种加工方法,旨在为相关工作人员提供有借鉴性的参考资料,进一步提高我国制造业的加工水平与整体质量。
关键词:材料成型;控制工程;金属材料;加工工艺0 引言对于我国制造业而言,材料成型与控制工程是其实现长期健康发展的根本保障,不仅如此,材料成型与控制工程也是我国机械制造业的关键环境,因此,相关企业必须对其给予高度重视。
无论是电力机械制造,还是船只等交通工具制造,均离不开材料成型与控制工程,材料成型与控制技术的水平与质量将会直接决定机械制造水平与质量。
因此,对材料成型与控制工程中的金属材料加工技术进行细化分析,具有非常重要的现实意义。
1金属材料选材原则在金属复合材料成型加工过程中,将适量的增强物添加于金属复合材料中,可以在很大程度上高材料的强度,优化材料的耐磨性,但与此同时,也会在一定程度上扩大材料二次加工的难度系数,正因此,不同种类的金属复合材料,拥有不同的加工工艺以及加工方法。
例如,连续纤维增强金属基复合材料构件等金属复合材料便可以通过复合成型; 而部分金属复合材料却需要经过多重技术手段,才能成型,这些成型技术的实践,需要相关工作人员长期不断加以科研以及探究,才能正式投入使用,促使金属复合材料成型加工技术水平与质量实现不断发展与完善。
由于成型加工过程中,如果技术手段存在细小纰漏,或是个别细节存在问题,均会给金属基复合材料结构造成一定的影响,导致其与实际需求出现差异,最终为实际工程预埋巨大的风险隐患,诱发难以估量的后果。
所以,相关工作人员在对金属复合材料进行选材过程中,必须准确把握金属材料的本质以及复合材料可塑性,只有这样,才能保证其可以顺利成型,并保证使用安全。
压铸镁合金压铸镁合金材料的发展历史:1808 年面世, 1886 年始用于工业生产。
镁合金压铸技术[1]从1916 年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。
人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。
从1927年推出高强度 MgAl9Zn1 开始,镁合金的工业应用获得了实质性的进展。
1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946 年单车使用镁合金量达 18kg 左右。
美国在 1948~1962 年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。
尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。
近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。
特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。
此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。
常用的压铸镁合金大多是美国牌号[2]AZ91,AM60,AM50,AM20,AS41 和AE42,分别属于Mg-Al-Zn,Mg-Al-Mn,Mg-Al-Si 和Mg-Al-RE 四大系列。
对压铸镁合金的研究:镁合金的密度小于 2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金;鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合金实际压铸周期可比铝合金短50%。
AZ80+0.4%Ce挤压态镁合金热变形各向异性行为研究镁合金作为质量最轻的金属结构材料,是武器装备轻量化的首选材料。
目前大多数镁合金产品是压铸件,其力学性能差、缺陷多,轻量化效果差,只能应用于非承重结构件。
在镁合金中加入稀土元素,可以提高镁合金的力学性能、耐热性和防腐性;另外,采用挤压成形能进一步提高镁合金综合力学性能,使其成为新一代武器装备主承力构件,扩大了镁合金的应用范围。
因此,研究稀土镁合金挤压板材的塑性变形行为的相关基础问题有重要意义。
本文对AZ80+0.4%Ce稀土镁合金的热变形行为、微观组织演化规律和热加工图进行了研究。
(1)采用Gleeble-3500热模拟实验机进行了热压缩试验,获得AZ80+0.4%Ce镁合金在变形温度为300-420℃、应变速率为5×10。
4-5×10-1s-1范围内的应力-应变曲线,通过对流变应力影响因素分析,得出随着温度的升高和应变速率的降低,流变应力、应力峰值、峰值应变逐渐减小;不同取样方向镁合金的应力-应变响应具有明显的力学性能各向异性特征,且随着温度的升高和应变速率的降低,各向异性的特征明显降低。
(2)通过对热压缩试验数据处理,获得AZ80+0.4%Ce稀土镁合金0°、90°、45°三个取样方向的峰值应力本构方程、临界应力和临界应变;随着温度的降低和应变速率的增加,不同取样方向AZ80+0.4%Ce镁合金的临界应力和临界应变均增加,且临界应变值均在峰值应变的30-50%范围内。
不同取样方向临界应变按从小到大顺序排列为0°、90°、45°,这是由不同取样方向临界动态再结晶机制的差异所决定的。
(3)使用金相显微镜对热压缩后镁合金的微观组织进行了观察分析,得出低温高应变速率变形条件下,不同取样方向微观组织演化规律具有明显的各向异性特征,不同取样方向的塑性变形机制差异明显,但随着温度升高和应变速率的降低,三个取样方向的微观组织演化规律逐渐接近,这是力学性能各向异性特征随温度的增加和应变速率的降低而不断降低的根本原因。
《挤压铸造过程数值模拟及工艺优化》篇一一、引言挤压铸造是一种重要的金属铸造工艺,广泛应用于各种工程领域。
为了更精确地掌握和控制挤压铸造过程,提升产品的质量、降低成本、优化工艺参数,进行数值模拟及工艺优化至关重要。
本文将对挤压铸造过程进行数值模拟,并通过分析模拟结果来探讨其工艺优化。
二、挤压铸造过程数值模拟1. 模型建立在挤压铸造过程中,模型建立是数值模拟的基础。
通过CAD 软件建立铸件、模具及挤压装置的三维模型,并导入有限元分析软件中。
在模型中考虑材料的物理性能、热传导性能、流变特性等关键因素。
2. 材料选择与参数设置根据所使用的合金材料和实际生产要求,设置合适的材料参数。
这些参数包括材料密度、比热容、热导率等,对于流动性和热物理性质的不同阶段要详细描述。
此外,挤压铸造过程中压力、温度等关键工艺参数也需根据实际进行设置。
3. 数值模拟过程利用有限元分析软件对挤压铸造过程进行数值模拟。
这一过程包括模具填充、冷却凝固、压力释放等关键阶段。
通过数值模拟可以观察材料在各个阶段的流动状态、温度分布以及应力变化等。
三、工艺优化探讨1. 填充过程优化通过数值模拟结果,可以观察到铸件在填充过程中的流动状态。
针对流动不均匀或出现涡流等问题,可以通过调整模具设计、改变浇注速度和压力等措施进行优化。
同时,合理的填充顺序和速度控制也是提高产品质量的关键因素。
2. 冷却凝固过程优化冷却凝固是决定铸件质量的重要环节。
通过数值模拟分析,可以找出温度梯度较大的区域和潜在的热应力集中点。
根据这些信息,可以调整冷却速率和模具温度分布,以改善铸件的凝固过程和力学性能。
3. 工艺参数优化工艺参数的优化包括压力、温度、时间等关键因素的调整。
通过数值模拟分析,可以确定最佳的工艺参数组合,以提高产品质量、降低成本和减少生产周期。
同时,根据生产需求和市场反馈,可以不断调整和优化这些参数,以适应市场的变化。
四、实际生产中的效果与应用通过在生产实践中应用数值模拟的结果和工艺优化的方法,可以实现更好的产品设计和制造。
AZ80镁合金管材静液挤压扩展成形工艺研究的开题
报告
一、研究背景和意义
AZ80镁合金是典型的高强度、轻量化材料,具有优良的耐腐蚀性能和热稳定性以及优异的可加工性能。
由于其重量轻、强度高,广泛应用
于航空航天、汽车、电子等领域。
然而,由于其低的绘制性能和难度加工性,大规模应用受到限制。
随着科技的发展和工艺的进步,静液挤压成形学应用于镁合金管材成形
过程中,大大提高了AZ80镁合金材料的加工性能和成形质量。
因此,本课题旨在研究AZ80镁合金管材的静液挤压扩展成形工艺,提高材料的加工性能和成形质量,为其在航空、航天、汽车等领域的应
用提供技术支持。
二、研究内容和方法
1.研究概述
本课题主要研究AZ80镁合金管材的静液挤压扩展成形工艺,包括成形过程中各工艺参数对成形质量的影响、扩展比和管材壁厚的变化规律
等方面。
2.研究方法
(1)理论分析:通过理论计算和分析,研究管材扩展比、壁厚变化规
律和材料的变形行为,为实验提供基础理论依据。
(2)工艺优化:通过实验分析,研究各工艺参数(如挤出速度、压力、温度等)对管材成形过程及成形质量的影响,优化工艺参数。
(3)成形质量测试:采用电子万能试验机等测试仪器,对成形后的管
材进行拉伸性能、弯曲性能、硬度等性能测试,评估其成形质量。
三、预期结果和意义
本研究通过静液挤压扩展成形工艺,实现了AZ80镁合金管材的成功成形,提高了材料的加工性能和成形质量,为其在航空、航天、汽车等领域的应用提供了基础研究和技术支持。
同时,本研究可以为其他镁合金材料的成形提供参考和指导作用。