材料力学 中国建筑工业出版社第二章 轴向拉压习题答案
- 格式:docx
- 大小:1.06 MB
- 文档页数:11
第二章 拉伸、压缩与剪切第二章答案2.1 求图示各杆指定截面的轴力,并作轴力图。
40kN 50kN 25kN(a)44F RF N440kN 3F N325kN 2F N220kN11F N1解:F R =5kN F N 4=F R =5 kNF N 3=F R +40=45 kNF N 2=-25+20=-5 kNF N 1=20kN45kN 5kN20kN5kN(b )110kN6kNF N 1=10 kN F N 2=10-10=0F N 3=6 kN1—1截面:2—2截面:3—3截面:10kNF N 11110kN10kN22F N 26kN33F N 32.2 图示一面积为100mm ⨯200mm 的矩形截面杆,受拉力F = 20kN 的作用,试求:(1)6π=θ的斜截面m-m 上的应力;(2)最大正应力max σ和最大剪应力max τ的大小及其作用面的方位角。
解:320101MPa0.10.2P A σ⨯===⨯2303cos 14σσα==⨯=3013sin600.433MPa222στ==⨯=max 1MPaσσ==max 0.5MPa2στ==F2.3 图示一正方形截面的阶梯形混凝土柱。
设重力加速度g = 9.8m/s 2, 混凝土的密度为33m /kg 1004.2⨯=ρ,F = 100kN ,许用应力[]MPa 2=σ。
试根据强度条件选择截面宽度a和b 。
ba解:24,a ρ⋅3422.0410ρ=⨯⨯11[]aσσ=0.228ma ≥==22342424431001021040.2282104a b b ρρ=⋅+⋅=⨯⨯+⨯⨯⨯+⨯⨯⨯2[],bσσ≥0.398m 398mmb≥==2.4 在图示杆系中,AC 和BC 两杆的材料相同,且抗拉和抗压许用应力相等,同为[]σ。
BC 杆保持水平,长度为l ,AC 杆的长度可随θ角的大小而变。
为使杆系使用的材料最省,试求夹角θ的值。
第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。
4.材料经过冷作硬化后,其( D)。
A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。
从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。
A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。
A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。
7.铸铁试件压缩破坏(B)。
A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。
8.为使材料有一定的强度储备,安全系数取值应( A )。
A .大于1; B. 等于1; C.小于1; D. 都有可能。
9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。
A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。
第二章 轴向拉压应力与材料的力学性能2-1 试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-2试画图示各杆的轴力图,并指出轴力的最大值。
图a 与b 所示分布载荷均沿杆轴均匀分布,集度为q 。
题2-2图(a)解:由图2-2a(1)可知, 轴力图如图2-2a(2)所示,图2-2a(b)解:由图2-2b(2)可知, 轴力图如图2-2b(2)所示,图2-2b2-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。
试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为 斜截面m -m 的方位角, 50-=α故有 杆内的最大正应力与最大切应力分别为2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。
题2-5解:由题图可以近似确定所求各量。
MPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。
2-7 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
若杆径d =10mm ,杆长 l =200mm ,杆端承受轴向拉力F = 20kN 作用,试计算拉力作用时与卸去后杆的轴向变形。
题2-6图解:255MPa Pa 1055.2m0.010πN102048223=⨯=⨯⨯⨯==A F σ 查上述εσ-曲线,知此时的轴向应变为 轴向变形为拉力卸去后,有00364.0e =ε, 00026.0p =ε故残留轴向变形为2-9 图示含圆孔板件,承受轴向载荷F 作用。
已知载荷F =32kN ,板宽b=100mm ,板厚=δ15mm ,孔径d =20mm 。
试求板件横截面上的最大拉应力(考虑应力集中)。
题2-9图解:根据查应力集中因数曲线,得根据 δd b Fσ)(n -=, n max σσK =得2-10 图示板件,承受轴向载荷F 作用。
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。
(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。
(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
第二章 轴向拉压一、选择题1. 图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(D )A •平动 B.转动C •不动D.平动加转动2. 轴向拉伸细长杆件如图2所示•则正确的说法是(C )A. 1-1、2-2面上应力皆均匀分布B. 1-1、2-2面上应力皆非均匀分布C. 1-1面上应力非均匀分布,2-2面上应力均匀分布D. 1-1面上应力均匀分布,2-2面上应力非均匀分布图1 图23. 有A, B 、C 三种材料,其拉伸应力-应变实验曲线如图3所示,曲线(B )材料的弹 性模量E 大,曲线(A )材料的强度高,曲线(C )材料的塑性好。
4. 材料经过冷却硬化后,其(DA.弹性模量提高,塑性降低 C.比利极限提高,塑性提高5. 现有钢铸铁两种杆件•其直径相同。
从承载能力与经济效益两个方面考虑,图4所示结 构中两种合理选择方案是(A )0 A. 1杆为钢,2杆为铸铁 B ・1杆为铸铁,2杆为钢 C. 2杆均为钢D. 2杆均为铸铁6. 如图5所示木接头,水平杆与斜杆成a 角,其挤压面积A 为( A )。
7. 如图6所示两板用圆锥销钉联接,则圆锥销钉的受剪面积为(C ),计算挤压面积为 (D )A. nD 2B. j nd 2C.D.中(3d+D )塑性提高 塑性降低A. bhB. bh tgCCC. bh/cosCtD. bh/ (cosd-sincc) B.弹性模量降低, D.比例极限提高,1却5二、填空题1.直径为d 的圆柱体放在直径为D=3d ,厚为t 的圆基座上,如图7所示低级对基座的支反力均匀分布,圆柱承受轴向压力P,则基座剪切面的剪力 __________图72•判断剪切面和挤压面应注意的是:剪切面是构件的两部分有发生相对错动趋势的平面; 挤压面是构件相互挤压的表面。
四.计算題1 •作出图示等截面直杆的轴力图,其横截面积为2cm 12,指出最大正应力发生的截面,并计算 相应的应力值。
v '〔KNJ.1KN5KNB解:轴力图如下:4KNa-6KN1 2甫3KN.25KN1 2图6三.试画下列杆件的轴力图2K N18K N18X NFwAB 段:o t =^-= 4<1 °_t Pa=20MPa亠 1 0BC 段:o 2=牛=士_2才3=-30朋82^10 p . < JICD 段:o 3=-^=——— a=25MPa2 •图为变截面圆钢杆 ABCD ,已知 P ]二 20KN, P 2=^P3 =35KN . ^=/3 =300mm , !2=400mm,= 12mm ? d 2 = 16mm ; d 3 = 24mm ,绘出轴力图并求杆的最大最小应力。
习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。
α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
第二章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑xF,得kN la F N 08.04/21==γ22-截面,取右段如)(b由0=∑xF,得kN P la F N 24.104/322=+=γ2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
GPa E 200=钢。
解:轴力图如图。
杆的总伸长:m EA l F l N59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP4/4/4/4/)(a )(b )(c 2N1N )(a kNkN 图NF cm cmcm解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。
(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。
如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。
3、一木桩受力如图所示。
柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。
4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。
(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。
如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。
(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。
当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。
5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。
已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。
试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。
6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。
试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。
2-1a 求图示各杆指截面的轴力,并作轴力图。
(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。
列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。
方法二:简便方法。
(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。
故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。
2-2b 作图示杆的轴力图。
(c)图:(b)图:(3)杆的轴力图如图(d )所示。
2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。
试计算两柱上、中、下三段的应力。
(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。
将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。
列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。
(2)作柱的轴力图,如(e)、(f)所示。
(3)求柱各段的应力。
解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。
(2)列平衡方程求杆的轴力 PN 图(d)题2-2b()2/0)(0011l x P N P N X <<=→=-→=∑拉()2/32/))(2/(0)2/(0l x l l x q N N l x q X x x <<-=→=--→=∑拉⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=⨯⨯-==-=⨯⨯-==-=⨯⨯-==⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=⨯⨯-==-=⨯⨯-==-=⨯⨯-==MPa Pa A N MPaPa A N MPa Pa A N MPa Pa A N MPaPa A N MPa Pa A N GH GH FG FG EF EF CD CD BC BC AB AB 65.001.001.0105.62.001.001.01023.001.001.010385.001.001.0105.8101.001.010106.001.001.0106333333σσσσσσ右柱左柱2-6一受轴向拉伸的杆件,横截面面积A =200mm 2,力P =10kN ,求法线与杆轴成30o 及45o 的斜截面上的正应力ασ和剪应力ατ。
解:(1)求轴向拉压杆横截面应力MPa Pa A N 5010200101063=⨯⨯==-σ(2)由轴向拉压杆斜截面上应力公式:⎪⎩⎪⎨⎧==αστασσαα2sin 2cos 2求得: ⎪⎩⎪⎨⎧=⨯=====⎪⎩⎪⎨⎧=⨯=====MPaMPaMPa MPa 25)452sin(2502sin 22545cos 50cos 65.21)302sin(2502sin 25.3730cos 50cos 452245302230αστασσαστασσ和2-9(1)证明轴向拉伸(或压缩)的圆截面杆,其横截面上沿圆周方向的线应变s ε等于沿直径方向的线应变d ε。
(2)一圆截面钢杆,直径d =10mm ,在轴向拉力P 作用下,直径减少了0.0025mm ,试求拉力P 。
(1)证明:ddddd d d s ∆=∆=∆=εππε,故,d s εε= (2)解:因4'105.2100025.0-⨯==∆==d d d εε,又01.025.0105.24''=⨯-==→-=-v v εεεε 故,kN N A E A P 7.151057.101.04001.010200429=⨯=⨯⨯⨯⨯=⋅=⋅=πεσ2-11图示结构中,刚性杆AB 由两根弹性杆AC 和BD 悬吊。
已知:P 、l 、E 1A 1和E 2A 2 ,试求x 等于多少时可使AB 杆保持水平?分析:两根杆的反力和x ,三个未知量,仅凭列AB 的平衡方程,无法求解。
显然要列变形协调方程。
解:(1)研究AB 杆,列平衡方程2N (b)题2-11⎩⎨⎧=+=⋅+⋅-PN N l N x P BD CA BD 0,………(a ) 三个未知量,仅凭平衡方程无法求解。
(2)列变形协调方程AB 杆位置要水平,BD AC l l ∆=∆ 而:EAaN l EA a N l BD BD CD AC ⋅=∆⋅=∆,即EAaN EA a N l l BD CD BD AC ⋅=⋅=∆=∆………………………………………………(b ) (3)联解平衡方程式组和变形协调方程,可得:221111A E A E lA E x +=2-13 图示三角支架中,杆AB 由两根不等边角钢L63ⅹ40ⅹ4组成,当W =15kN 时,校核杆AB 的强度。
(3)强度校核:经查表,等边角钢的面积为4.058cm 2。
故,AB 杆的拉压强度足够。
2-14 图示桁架中,每根杆长均为1m ,并均由两根 Q 235等边角钢组成。
设P =400kN ,试选择AC 杆和CD 杆所用角钢的型号。
解:(1)求支反力R A 、R B :因屋架及荷载左右对称,所以:kN 200400212=⨯===P R R B A (2)求AC 杆和CD 杆的内力:用截面法1-1切开, 取截面的左边部分为研究对象,设三杆是拉杆,内力 沿截面外法线方向,脱离体受力如图(b )所示。
解:(1)拉紧的柔性约束对滑轮的作用,只相当于一个力矢2W ,而无主矩。
研究销钉,假设AB 、AC 为拉杆,受力如图(b),所示。
(注意:拉杆施与销钉的拉力是沿“背离销钉,指向杆内”) (2)列平衡方程,求AB 杆内力。
)(600230sin 0拉kN N W N Y AB AB =→=-→=∑N AB题2-13(b)[]MPa MPa Pa A N AB AB 1609.7310058.42106043=≤=⨯⨯⨯==-σσ(b)列平衡方程求AC 杆和CD 杆的内力:⎪⎪⎩⎪⎪⎨⎧-=-=→⎪⎪⎩⎪⎪⎨⎧=⨯+=⨯⨯-⨯⨯-→⎪⎩⎪⎨⎧==∑∑332060sin 20)30cos 1(2)60sin 1(00)(P N P N N P P N Y F m DC ACDCAC D (3)由强度条件选择等边角钢的型号:[][][][]⎪⎩⎪⎨⎧≥≥→⎪⎪⎪⎩⎪⎪⎪⎨⎧⨯⨯⨯=≥⨯⨯⨯=≥→⎪⎪⎪⎩⎪⎪⎪⎨⎧≤=≤=2226326322.761.310160131040021016013210400222cm cm m m A A N A N A A N A N AC DC DC AC AC DC DC DC AC AC AC σσσσσσ 故,AC 杆选两根L54040⨯⨯的等边角钢:。
CD 杆选两根L66363⨯⨯的等边角钢。
2-15图示三角架中,已知:[][]MPa ,A MPa A 100900,160,6002211====σσ22mm mm ,试求结构的许可荷载[P ]。
解:(1)求杆件的容许轴力[N ][][]kN 9696000106001016066111==⨯⨯⨯=⨯=-N A N σ[][]kN 9090000109001010066222==⨯⨯⨯=⨯=-N A N σ(2)求出内力N 与P 的关系,研究节点,受力如图(b): 由于结构对称,荷载对称,所示N 1=N 2)(06cos 20211拉P N N P N Y ==→=-→=∑π(3)由强度条件确定P :kN P kNP kNP kN N P N kN N P N 90909690][96][2211≤→⎩⎨⎧≤≤→⎩⎨⎧=≤==≤= 故,结构的容许荷载[]kN 90=P2-16 图示钢筋混凝土短柱,边长mm a 400=, 柱内有四根直径为mm d 30=的钢筋。
已知,柱 受压后混凝土的应力值为MPa h 6=σ,试求轴 向压力P 及钢筋的应力g σ。
解:方法一:钢筋混凝土短柱,下端固定,上端 为盖板覆盖,可认为短柱是由无数根纵向纤维组°N 2题2-15(b)N1成,各纵向纤维的线应变相同。
即g h εε=。
由胡虎定理εσE =可得:10102.01021111=⨯⨯===h g h h g g h g E E E E εεσσ故,MPa h g 6061010=⨯==σσ故, kN A A P g g h h 6.1129403.0106044.01062626=⨯⨯⨯⨯+⨯⨯=⋅+⋅=πσσ方法二: 由胡虎定理EA Nll =∆可得:gg g g h h h h A E l N l ,A E l N l =∆=∆ 而,钢筋和混凝土的纵向绝对伸长量相等。
044156.04.04/03.0102.01024/22111122=⨯⨯⨯⨯=⋅==→=ππa d E E A E A E N N A E l N A E l N h g h h g g h g g g g h h h 故:N N N kNN N h g h 39.42960044156.0044156.09604.010626=⨯===⨯⨯=kN N N P g h 6.112939.4249604=⨯+=⨯+=由轴向拉压杆的应力公式得:MPa Pa A N G gg 60403.01039.4223=⨯⨯==πσ 2-24 图示为低碳钢的εσ-曲线,若超过屈服极限后继续加载,当试件横截面上应力MPa 300=σ时,测得其轴向线应变3105.3-⨯=ε,然后立即卸载至0=σ,试求试件的轴向塑性应变P ε。
解:(1)卸载遵循弹性规律:卸卸εσE =。
查表可知低碳钢的弹性模量:E =200GPa3116105.110210300-⨯=→⨯=⨯→=e e E εεεσ卸卸(2)卸载前的轴向线应变3105.3-⨯=ε,则3102-⨯=-=e P εεε题2-25题2-242-25 图示拉杆为钢杆,测得表面上K 点处的横向线应变4'102-⨯-=ε,试求荷载P 和总伸长量l ∆。