必修4(二)
- 格式:doc
- 大小:92.00 KB
- 文档页数:10
第二章平面向量2.2 平面向量的线性运算 2.2.3 向量数乘运算及其几何意义课后篇巩固探究基础巩固1.下列说法正确的个数为( )①0·a=0;②0·a=0;③a·0=0;④a·0=0. A.1B.2C.3D.4,由于数乘向量的结果是一个向量而不是一个数,因此本题所给的四种说法中只有②与③的结果是一个向量,因此选B.2.13[12(2a +8b )-(4a -2b )]等于( )A.2a-bB.2b-aC.b-aD.a-b=16(2a+8b)-13(4a-2b)=13a+43b-43a+23b=-a+2b=2b-a.3.在△ABC 中,D 是线段BC 的中点,且AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =4AE⃗⃗⃗⃗⃗ ,则( )A.AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗B.AD ⃗⃗⃗⃗⃗ =4AE ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ =2EA⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =4EA⃗⃗⃗⃗⃗AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ ,所以AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗ .4.已知AB ⃗⃗⃗⃗⃗ =a+5b,BC ⃗⃗⃗⃗⃗ =-2a+8b,CD ⃗⃗⃗⃗⃗ =3(a-b),则 ( )A.A,C,D 三点共线B.B,C,D 三点共线C.A,B,C 三点共线D.A,B,D 三点共线BD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(-2a+8b)+3(a-b)=a+5b,所以AB ⃗⃗⃗⃗⃗ =BD⃗⃗⃗⃗⃗ . 又AB ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗ 有公共点B, 所以A,B,D 三点共线.5.已知向量a 与b 不共线,AB ⃗⃗⃗⃗⃗ =a+mb,AC ⃗⃗⃗⃗⃗ =na+b(m,n ∈R),则AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 共线的条件是( ) A.m+n=0 B.m-n=0 C.mn+1=0D.mn-1=0AB ⃗⃗⃗⃗⃗ =a+mb,AC ⃗⃗⃗⃗⃗ =na+b(m,n ∈R)共线,得a+mb=λ(na+b)=λna+λb,∵向量a 与b 不共线,∴{1=λn ,m =λ,即mn-1=0,故选D.6.若AB ⃗⃗⃗⃗⃗ =5e,CD ⃗⃗⃗⃗⃗ =-7e,且|AD ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |,则四边形ABCD 的形状是 .AB ⃗⃗⃗⃗⃗ =-57CD ⃗⃗⃗⃗⃗ ,因此AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |≠|CD ⃗⃗⃗⃗⃗ |,又知|AD ⃗⃗⃗⃗⃗ |=|BC⃗⃗⃗⃗⃗ |,所以四边形ABCD 是等腰梯形.7.在四边形ABCD 中,AB ∥CD,AB=3DC,E 为BC 的中点,则AE ⃗⃗⃗⃗⃗ = AB ⃗⃗⃗⃗⃗ + AD ⃗⃗⃗⃗⃗ .⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +12(AD ⃗⃗⃗⃗⃗ −23AB ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ .128.在△ABC 中,点M 为边AB 的中点,若OP ⃗⃗⃗⃗⃗ ∥OM ⃗⃗⃗⃗⃗⃗ ,且OP ⃗⃗⃗⃗⃗ ==12(OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ ). 又OP ⃗⃗⃗⃗⃗ ∥OM ⃗⃗⃗⃗⃗⃗ ,∴存在实数λ,使OP ⃗⃗⃗⃗⃗ =λOM ⃗⃗⃗⃗⃗⃗ , ∴OP ⃗⃗⃗⃗⃗ =λ2(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )=λ2OA ⃗⃗⃗⃗⃗ +λ2OB⃗⃗⃗⃗⃗ , ∴x=y=λ2,∴yx=1.9.如图,已知D,E 分别为△ABC 的边AB,AC 的中点,延长CD 到M 使DM=CD,延长BE 至N 使BE=EN,求证:M,A,N 三点共线.D 为MC 的中点,且D 为AB 的中点,∴AB ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ . ∴AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ . 同理可证明AN ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ . ∴AM ⃗⃗⃗⃗⃗⃗ =-AN ⃗⃗⃗⃗⃗ .∴AM ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗ 共线,又AM ⃗⃗⃗⃗⃗⃗ 与AN ⃗⃗⃗⃗⃗ 有公共点A. ∴M,A,N 三点共线.10.(1)已知a=3i+2j,b=2i-j,求(13a -b)−(a -23b)+(2b-a);(2)已知向量a,b,且5x+2y=a,3x-y=b,求x,y.原式=13a-b-a+23b+2b-a=(13-1-1)a+(-1+23+2)b=-53a+53b.∵a=3i+2j,b=2i-j,∴原式=-53(3i+2j)+53(2i-j)=(-5+103)i+(-103-53)j=-53i-5j.(2)将3x-y=b 两边同乘2,得6x-2y=2b. 与5x+2y=a 相加,得11x=a+2b, ∴x=111a+211b.∴y=3x-b=3(111a +211b)-b=311a-511b.能力提升1.如图,AB 是☉O 的直径,点C,D 是半圆弧AB 的两个三等分点,AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,则AD ⃗⃗⃗⃗⃗ =( )A.a-12bB.12a-bC.a+12bD.12a+bAODC 为菱形,所以AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =12a+b.2.已知点P 是△ABC 内的一点,AP ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ),则△ABC 的面积与△PBC 的面积之比为( ) A.2B.3C.32D.6BC 的中点为D,则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ .∵AP ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AD ⃗⃗⃗⃗⃗ ,如图,过点A 作AE ⊥BC,交BC 于点E,过点P 作PF ⊥BC,交BC 于点F,则|PF ||AE |=|PD ||AD |=13.∴S △ABC S △PBC=12|BC |·|AE |12|BC |·|PF |=3.3.已知OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,设AM ⃗⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ ,则实数λ的值为 .OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,所以23OM ⃗⃗⃗⃗⃗⃗ +13OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,于是23OM ⃗⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =13OB ⃗⃗⃗⃗⃗ −13OM ⃗⃗⃗⃗⃗⃗ ,即23AM ⃗⃗⃗⃗⃗⃗ =13MB ⃗⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ =12MB ⃗⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ =13AB⃗⃗⃗⃗⃗ ,故λ=13.4.在平行四边形ABCD 中,DE ⃗⃗⃗⃗⃗ =12EC ⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗ =FC ⃗⃗⃗⃗ ,若AC ⃗⃗⃗⃗⃗ =λAE⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ ,其中λ,μ∈R,则λ+μ= .,有AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ .因为AC ⃗⃗⃗⃗⃗ =λAE ⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ =λ(AD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ )+μ(AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ )=λ(AD⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )+μ(AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ )=(λ3+μ)AB ⃗⃗⃗⃗⃗ +(λ+μ2)AD ⃗⃗⃗⃗⃗ . 所以AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(λ3+μ)AB ⃗⃗⃗⃗⃗ +(λ+μ2)AD ⃗⃗⃗⃗⃗ ,即{λ3+μ=1,λ+μ2=1,解得{λ=35,μ=45,故λ+μ=75.5.在△ABC 中,点P 是AB 上一点,且CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ ,Q 是BC 的中点,AQ 与CP 的交点为M,且CM ⃗⃗⃗⃗⃗⃗ =t CP ⃗⃗⃗⃗⃗ ,求t 的值.CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ , ∴3CP ⃗⃗⃗⃗⃗ =2CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,即2CP ⃗⃗⃗⃗⃗ -2CA ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ −CP⃗⃗⃗⃗⃗ . ∴2AP⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ,即P 为AB 的一个三等分点(靠近点A),如图所示.∵A,M,Q 三点共线,∴设CM ⃗⃗⃗⃗⃗⃗ =x CQ ⃗⃗⃗⃗⃗ +(1-x)CA ⃗⃗⃗⃗⃗ =x 2CB⃗⃗⃗⃗⃗ +(x-1)AC ⃗⃗⃗⃗⃗ , 又CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,∴CM ⃗⃗⃗⃗⃗⃗ =x 2AB ⃗⃗⃗⃗⃗ +(x 2-1)AC⃗⃗⃗⃗⃗ . 又CP ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,且CM ⃗⃗⃗⃗⃗⃗ =t CP⃗⃗⃗⃗⃗ , ∴x 2AB ⃗⃗⃗⃗⃗ +(x2-1)AC ⃗⃗⃗⃗⃗ =t (13AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ ). ∴{x 2=t3,x2-1=-t ,解得t=34.6.已知△OBC 中,点A 是线段BC 的中点,点D 是线段OB 的一个三等分点(靠近点B),设AB ⃗⃗⃗⃗⃗ =a,AO ⃗⃗⃗⃗⃗ =b. (1)用向量a 与b 表示向量OC⃗⃗⃗⃗⃗ ; (2)若OE ⃗⃗⃗⃗⃗ =35OA ⃗⃗⃗⃗⃗ ,判断C,D,E 是否共线,并说明理由.∵AB ⃗⃗⃗⃗⃗ =a,AO ⃗⃗⃗⃗⃗ =b,点A 是BC 的中点,∴AC⃗⃗⃗⃗⃗ =-a. ∴OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =-a-b. (2)假设存在实数λ,使CE ⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ .∵CE ⃗⃗⃗⃗⃗ =CO ⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ =a+b+35(-b)=a+25b,CD ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +13BO⃗⃗⃗⃗⃗=CB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ )=2a+13(-a+b)=53a+13b,∴a+25b=λ(53a +13b), ∴{53λ=1,13λ=25,此方程组无解, ∴不存在实数λ,满足CE ⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ .∴C,D,E 三点不共线.。
数学必修四练习题(二)一、选择题:(每小题5分,共50分)1、已知向量(2,),(,8)a x b x →→==,若||||→→→→⋅=⋅b a b a ,则x 的值是( )A.4-B. 4C. 0D. 4或-4 2、函数x y sin 2=+5是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数3、已知1sin cos 3αα+=,则=ααcos sin ( )A .21B .21-C .94D .94-4、若a =(23,2),b =(2,23)则a 与b 的夹角θ等于( ) A. 300 B. 450 C. 600 D. 7505、已知扇形的周长是6cm ,面积是2cm 2,则扇形中心角的弧度数是( ) A. 1 B. 1或4 C. 4 D. 2或46、函数3sin(2)26y x π=-+的单调递减区间是( )A. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππB. 52,2,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D. 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦7、函数xxy sin 3sin 3+-=的值域为( )A .[-1,1]B .[0,1]C .[-21,2] D .[21,2] 8、若f(cosx)=cos3x ,则f(sin30°) 的值为( )A .1 B.-1 C.0 D.219、己知P 1(2,-1) 、P 2(0,5) 且点P 在P 1P 2的延长线上,12||2||PP PP =,则P点坐标为( )A.(-2,11)B.()3,34 C.(32,3) D .(2,-7)10、对于函数f(x)=sin(2x+6π),下列命题:①函数图象关于直线x=-12π对称; ②函数图象关于点(125π,0)对称;③函数图象可看作是把y=sin2x 的图象向左平移个6π单位而得到; ④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变)而得到;其中正确的命题的个数是 ( )A.0B.1C.2D.3 二.填空题:(本大题共4小题,每小题5分,共20分)11、已知a =(2,1),b =(-3,4),则3a +4b= 。
第二课探究世界的本质第1框世界的物质性.................................................................................................. - 1 - 第2框运动的规律性.................................................................................................. - 4 -第1框世界的物质性1.自然界的物质性(1)自然界的物质性:自然界在本质上是物质的。
(2)物质的含义:物质是不依赖于人的意识,并能为人的意识所反映的客观实在。
(3)物质的特性:物质的唯一特性是客观实在性。
(4)世界的物质性:无论是天地自然,还是人类社会,在本质上都是物质的。
[辨析] 有人认为,物质和物质的具体形态的关系是整体与部分、多数与少数的关系。
如何看待这一观点?提示:马克思主义哲学上的物质概念,概括的是物质具体形态的共性,与物质具体形态是共性与个性而非整体与部分、多数与少数的关系。
2.人类社会的物质性(1)人类社会是物质世界长期发展的产物。
(2)人类社会在本质上是一个客观的物质体系。
1.准确理解物质的概念2.完整把握哲学上的物质概念与具体的物质形态的关系哲学上的物质概念具体的物质形态区别特性唯一特性是客观实在性除客观实在性以外,还有其自身的个别属性存在状态不生不灭、永恒存在有生有灭联系物质是对具体的物质形态的概括抽象;物质依赖于具体的物质形态。
不能用物质代替具体的物质形态,也不能用具体的物质形态代替物质3.区分客观实在与客观存在客观实在客观存在区别内涵客观实在强调不依赖于人的意识而存在,它相对于人的意识而言,是第一性的东西客观存在是实实在在的事物或现象,它是相对于主观臆造的东西而言,具有真实性外延客观实在的外延是自然界和人类社会,即客观物质世界客观存在的外延不仅包括物质现象,而且包括意识现象;不仅指向客观世界,而且指向主观世界地位客观实在性是万事万物具有的共同的唯一特性,是意识以外的万事万物具有的最抽象、最概括的特点,是绝对的、不变的、永恒的客观存在性是具体存在的事物或现象部分具有的特点,是多变的、易逝的联系客观实在是一种客观存在。
(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。
【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。
2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。
第1课时 平面向量的实际背景及基础概念一、选择题1.下列各量中不是向量的是(A.浮力 B .风速 C.位移 D.2.下列命题正确的是(A.向量AB 与BA 是两平行向量B.若a 、b 都是单位向量,则a=bC.若=,则A 、B 、C 、D四点构成平行四D.3. 在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则(A. 与AC 共线B. 与CB 共线C. 与相等D. 与相等 4.在下列结论中,正确的结论为((1)|a |=|b |⇒a =b ; (2) a ∥b 且|a |=|b | ⇒ a =b ; (3) a =b ⇒a ∥b 且|a |=|b |(4) a ≠b ⇒ a 与b 方向相反 A. (3) B.(2)(3) C.(2)(4) D.(1)(3)(4) 二、填空题:5.物理学中的作用力和反作用力是模 且方向 的共线向量.6.把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是 .7.已知||=1,| AC |=2,若∠BAC=60°,则|BC |= .8.在四边形ABCD 中, =,且||=||,则四边形ABCD 是 .三、解答题:9. 某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C点,最后又改变方向,向东走了200m 到达D 点. (1)作出向量、、 (1 cm 表示200 m).(2)求的模.10.如图,已知四边形ABCD 是矩形,设点集M ={A ,B ,C ,D },求集合T ={、P 、Q ∈M ,且P 、Q 不重合}.第10题图A B一、选择题1.下列等式: a +0=a , b +a =a +b ,AB +AC =BC , AB +BC =BC 正确的个数是( ) A.2 B .3 C.4 D.52.化简++的结果等于( ) A. B . C. SPD.3.若C 是线段AB 的中点,则 AC +为A. B . C. 0D. 以上都错4.O 为平行四边形ABCD 平面上的点,设=a ,=b ,=c ,=d ,则( )A.a +b =c +d B .a +c =b +d C.a +d =b +c D.a +b +c +d =0 二、填空题:5.化简:(OM BO MB AB +++)= ; 6.如图,在四边形ABCD 中,根据图示填空:b +e = , f +d = ,a +b +c = .7.已知向量a 、b 分别表示“向北走5km ”和“向西走5公里”,则a +b 表示 ; 8、一艘船从A 点出发以23km/h 的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h ,则河水的流速的大小为 . 三、解答题:9.一架飞机向北飞行300公里,然后改变方向向东飞行400公里,求飞机飞行的路程和位移.10.如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =,并画出a +d.Dd e c A f Ca bBC一、选择题1.下列等式:①AB -= ②AB -= ③-(-a )=a ④a +(-a )=0 ⑤a +(-b )=a -b( )A.2 B .3 C.4D.52. 在△ABC 中, =a , =b ,则AB 等于( ) A.a +bB .-a +(-b ) C.a -bD.b -a3.在下列各题中,正确的命题个数为( )(1)若向量a 与b 方向相反,且|a |>|b |,则a +b 与a (2)若向量a 与b 方向相反,且|a |>|b |,则a -b 与a +b(3)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a (4)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a +b A.1 B.2 C.3 D.44.若a 、b 是非零向量,且|a -b |=|a |=|b ,则a 和a +b 的夹角是( ) A.090 B . 600 C.300 D.045二、填空题5. 在正六边形ABCDEF 中, AE =m , AD =n ,则BA = .6. 已知a 、b 是非零向量,则|a -b |=|a |+|b |时,应满足条件. 7. 如图,在四边形ABCD 中,根据图示填空: c -d = ,a +b +c -d= .8.已知=a , =b ,若||=12,||=5,且∠AOB =90°,则|a -b |= . 三、解答题9. 试用向量方法证明:对角线互相平分的四边形是平行四边形.10. 已知O 是平行四边形ABCD 的对角线AC 与BD 的交点,若=a , BC =b ,=c ,试证明:c +a -b =.Dd e c A fa b C B第4、5课时 向量的数乘运算及其几何意义一、选择题 1.设e 1、e2A.e 1、e2 B .e 1、e2C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -yA.3B .-3C.0D.24. 下面向量a 、b 共线的有( )(1)a =2e 1,b =-2e 2 (2)a =e 1-e 2,b =-2e 1+2e2(3)a =4e 1-52e 2,b =e 1-101e 2 (4)a =e 1+e 2,b =2e 1-2e 2.(e 1、e 2不共线)A.(2)(3) B .(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 二、填空题5.若a 、b 不共线,且λa +μb =0(λ,μ∈R )则λ= ,μ= .6.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .7.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).8. 如图,在△ABC 中,=a, =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= 三、解答题:9. 如图,平行四边形ABCD 中,=a,=b,N 、M 是AD 、DC 之中点,F 使BF =31BC ,以a、b为基底分解向量与.DABCa bB FC MA N D10.如图,O 是三角形ABC 内一点,PQ ∥BC ,且BCPQ=t,=a,=b,=с,求OP 与.第6课时 平面向量基本定理一、选择题1.设e 1、e 2是同一平面内的两个向量,则有( ) A. e 1、e 2一定平行 B. e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.2 4.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 二、填空题5.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .6. 已知λ1>0,λ2>0,e 1、e 2是一组基底,且 a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).7. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .8. 已知矩形ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 三、解答题9. 已知梯形ABCD 中,AB ∥CD 且AB=2CD ,M , N 分别是DC , AB 中点,设AD =a , AB =b ,试以a, b 为基底表示DC , BC , MN .10. 化简++++.第7课时 平面向量的正交分解和坐标表示及运算一、选择题 1.设a =(23,sin α),b=(cosα,31),且a ∥b ,则锐角α为( ) A.30° B .60° C.45° D.75°2.设k ∈R,下列向量中,与向量a =(1,-1)一定不平行的向量是( )A.(k ,k ) B .(-k ,-k )C.(k 2+1,k2+1)D.(k2-1,k2-1)3.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-36 4.已知|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 二、填空题5.已知a =(3,2),b =(2,-1),若λa +b 与a +λb (λ∈R )平行,则λ= . 6.若a=(-1,x)与b=(-x ,2)共线且方向相同,则x= . 7.若A(0, 1), B(1, 2), C(3, 4) 则-2=8.在△ABC 中,AB =a, BC =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= .三、解答题9.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标.10.在中,设对角线AC =a ,BD =b 试用a, b 表示AB ,BC .11.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形.12.设1e , 2e 是两个不共线向量,已知=21e +k 2e , =1e +32e ,=21e -2e , 若三点A , B , D 共线,求k 的值.第8课时 平面向量共线的坐标表示一、选择题1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( ) A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A.-3 B .-1 C.1 D.33.若=i +2j , =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量). 与共线,则x 、y 的值可能分别为( )A.1,2 B .2,2 C.3,2 D.2,44.若a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则坐标满足的条件为( ) A.x 1x 2-y1y2=0 B .x1y1-x2y2=0 C.x1y2+x2y1=0 D.x1y2-x2y1=0 二、填空题5.已知a =(4,2),b =(6,y ),且a ∥b ,则y = .6已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .7.已知□ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 8.若A (-1,-1),B (1,3),C (x ,5)三点共线,则x = . 三、解答题9.已知a =(1,2),b =(-3,2),当k 为何值时k a +b 与a -3b 平行?10.已知A 、B 、C 、D 四点坐标分别为A (1,0),B (4,3),C (2,4),D (0,2),试证明:四边形ABCD 是梯形.11.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),AE =AC 3131=, 求证:∥.12.△ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ,∠BAC 平分线交BC 边于D , 求D 点坐标第9课时 平面向量的数量积的物理背景及其含义一、选择题1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 2.已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23材 C.6 D.123.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( )A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件4.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是( )A.λ>310 B .λ≥310 C.λ<310 D.λ≤310 二、填空题5.已知a =(3,0),b =(k ,5)且a 与b 的夹角为43π,则k 的值为 . 6.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 7.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .8.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 三、解答题9.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.10.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角.11.对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角.12.已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.第10课时 平面向量数量积的运算律一、选择题1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 4.给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b ),则x 等于( ) A.23 B .223 C. 323 D. 423 二、填空题5.已知a =(1,2),b (1,1),c=b -k a ,若c ⊥a ,则c = .6.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 7.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 8.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 三、解答题5. 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).6. 已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1.7. 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x .12.如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒, 求点B 和向量的坐标.第11课时 平面向量数量积的坐标表示、模、夹角一、选择题1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(--C.)54,53(-或)53,54(-D.)54,53(-或)54,53(-4.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为( ) A.13 B .513 C.565D.65 二、填空题5.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .6.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 7.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 8.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .三、解答题9.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .10.已知点A (1,2)和B (4,-1),问能否在y 轴上找到一点C ,使∠ACB=90°,若不能,说明理由;若能,求C 点坐标.11.四边形ABCD 中=AB (6,1), BC =(x ,y ),CD =(-2,-3), (1)若BC ∥DA ,求x 与y 间的关系式;(2)满足(1)问的同时又有⊥,求x ,y 的值及四边形ABCD 的面积.12.在△ABC 中,=(2, 3),=(1, k ),且△ABC 的一个内角为直角, 求k 值..第12课时 平面向量的应用举例一选择题1.在四边形ABCD 中,若则,AD AB AC += ( ) A .ABCD 是矩形 B.ABCD 是菱形C ABCD 是正方形 D.ABCD 是平行四边形 2已知:在是则中,ABC ABC ∆<∙∆,0( )A 钝角三角形B 直角三角形C 锐角三角形D 任意三角形二.解答题3.设M 、N 分别是四边形ABCD 的对边AB 、CD 的中点,求证:)(21MN +=4.求证:对角线相等的四边形是矩形.5.求证:圆的直径所对的圆周角为直角.6.求证:直角三角形斜边上的中线等于斜边的一半.7.证明:三角形的三条高交于一点.8..AC AB CE BD CE BD ABC ==∆,求证:为中线,且,中,第13课时 向量在物理中的应用一选择题1某人以时速为a km 向东行走,此时正刮着时速为a km 的南风,则此人感到的风向及风速分别为( )A .东北, 2akm/h B.东南, akm/hC .西南, 2akm/h D.东南, 2akm/h2.一船以4km/h 的速度沿与水流方向成1200的方向航行,已知河水流速为2km/h ,则ABCDA E3h 后船的实际航程为( )A .63km B.6km C .53km D.5km二、填空题3.力F 1,F 2共同作用在某质点上,已知F 1=5N, F 2=12N,且F 1与F 2互相垂直,则质点所受合力的大小为_______________4.在200米山顶上.测得山下一塔顶与塔底的俯角分别为 60,30则塔高为__________米 5.某人向正东方向走x 千米后,他向右转150,然后朝新方向走3千米.结果他离开出发点恰好3千米,则 x=_________________.6.若用两根完全相同的绳子向两侧呈“V ”挂重物,每根绳子最大拉力为100N ,两根绳子间的夹角为600,则能挂重物的最大重量是 . 三、解答题7.一个质量为100g 的球从1.8m 的. 高处落到水平板上又弹回到1.25m 的高度,求在整个过程中重力对球所做的功。
考点知识巩固(二)一、理解常见文言实词在文中的含义1.写出下列通假字的本字,并解释其义《师说》(1)所以传道受.业解惑也通________,________(2)授之书而习其句读.者通________,________(3)或师焉,或不.焉通________,________《晏子治东阿》(4)并曾.赋敛通________,________(5)仓库少内.通________,________(6)再拜便辟.通________,________《谏太宗十思疏》(7)振.之以威怒通________,________2.解释下列加点字词的词义《师说》(1)句读..之不知:________________________________________________________________________(2)君子不齿..:________________________________________________________________________ 《晏子治东阿》(3)今子治而乱.:________________________________________________________________________(4)货赂..不至:________________________________________________________________________(5)入于权家..:________________________________________________________________________(6)愿乞骸骨...:________________________________________________________________________ 《谏太宗十思疏》(7)必浚.其泉源:________________________________________________________________________(8)而况于明哲..乎:________________________________________________________________________(9)能克.终者盖寡:________________________________________________________________________(10)虽董.之以严刑:________________________________________________________________________(11)乐盘游..则思三驱以为度:________________________________________________________________________(12)惧谗邪则思正身以黜.恶:________________________________________________________________________ 3.解释下列加点的古今异义词的古义《师说》(1)古之学者..必有师古义:________________________________________________________________________ 今义:指在学术上有一定成就的人。
(2)小学..而大遗古义:________________________________________________________________________ 今义:对儿童、少年实施初等教育的学校,给儿童、少年以全面的基础教育。
(3)李氏子蟠,年十七,好古文..古义:________________________________________________________________________ 今义:“五四”运动前的文言文的统称。
《谏太宗十思疏》(4)臣闻求木之长者,必固其根本..古义:________________________________________________________________________ 今义:根源或重要部分。
(5)虽在下愚.古义:________________________________________________________________________ 今义:愚蠢。
(6)承天景.命 古义:________________________________________________________________________ 今义:景色。
(7)既得志则纵情..以傲物 古义:________________________________________________________________________ 今义:尽情。
(8)傲物则骨肉为行路..古义:________________________________________________________________________ 今义:走路。
(9)念高危则思谦冲.而自牧 古义:________________________________________________________________________ 今义:快速猛闯。
(10)乐盘游则思三驱以为..度 古义:________________________________________________________________________ 今义:动词,认为。
4.解释下列多义词《师说》(1)道⎩⎪⎨⎪⎧ ①有碑仆道. ②从郦山下,道.芷阳间行 ③王行,度道.里会遇之礼毕 ④闻道.有先后,术业有专攻 ⑤行军用兵之道.,非及向时之士也 ⑥于是废先王之道.,焚百家之言 ⑦不足为外人道.也(2)传⎩⎪⎨⎪⎧ ①师者,所以传.道受业解惑也 ②师道之不传.也久矣 ③六艺经传.皆通习之 《晏子治东阿》(3)治⎩⎪⎨⎪⎧ ①晏子治.东阿 ②三年不治.,臣请死之 (4)便⎩⎪⎨⎪⎧ ①仓库少内,便.事左右 ②再拜便.辟《谏太宗十思疏》(5)下⎩⎪⎨⎪⎧ ①虑壅蔽则思虚心以纳下. ②虽在下.愚,知其不可 ③惧满溢则思江海而下.百川5.解释下列加点的词语并指出其活用类型《师说》(1)择善.而从之: ________________________________________________________________________(2)而耻.学于师: ________________________________________________________________________(3)小.学而大.遗: ________________________________________________________________________(4)孔子师.郯子: ________________________________________________________________________ 《晏子治东阿》(5)而君反以罪.臣: ________________________________________________________________________(6)三年不治.: ________________________________________________________________________(7)属托..不行: ________________________________________________________________________(8)臣请死.之: ________________________________________________________________________《谏太宗十思疏》(9)必固.其根本: ________________________________________________________________________(10)乐.盘游则思三驱以为度: ________________________________________________________________________(11)将有所作.则思知止以安.人: ________________________________________________________________________(12)何必劳.神苦.思: ________________________________________________________________________二、理解常见文言虚词在文中的含义6.写出下列句子中加点虚词的意义和用法(1)则⎩⎪⎨⎪⎧ ①曰师、曰弟子云者,则.群聚而笑之 ②位卑则.足羞,官盛则近谀 ③于其身也,则.耻师焉 (2)乎⎩⎪⎨⎪⎧ ①知其不可,而况于明哲乎. ②生乎.吾前 ③其闻道也固先乎.吾 ④嗟乎.,一人之心,千万人之心也(3)之⎩⎪⎨⎪⎧ ①思国之.安者 ②岂其取之易而守之.难乎 ③虽董之.以严刑 ④择善而从之. ⑤东阿者,子之.东阿也7.重点虚词系列练其⎩⎪⎨⎪⎧ ①必固其.根本 ②其.为惑也,终不解矣 ③其.闻道也固先乎吾 ④其.皆出于此 ⑤吾未见其.明也 ⑥其.可怪也欤三、理解与现代汉语不同的句式及用法8.指出下列句子的句式特点《师说》(1) 耻学于师: ________________________________________________________________________ 《谏太宗十思疏》(2)惧满溢则思江海而下百川:________________________________________________________________________(3)振之以威怒:________________________________________________________________________四、重要语句翻译将下列句子翻译成现代汉语《师说》9.彼童子之师,授之书而习其句读者,非吾所谓传其道解其惑者也。
译文:________________________________________________________________________10.巫医乐师百工之人,君子不齿,今其智乃反不能及,其可怪也欤!译文:________________________________________________________________________ 《晏子治东阿》11.吾以子为可,而使子治东阿,今子治而乱。