2019年高考数学艺术生百日冲刺专题04三角函数测试题
- 格式:doc
- 大小:199.16 KB
- 文档页数:7
2019年高考试题分类汇编:三角函数(文)1.要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x的图象向左平移1个单位。
答案为C。
2.已知ω>0,直线x=π/4是函数y=sin(ωx+φ)的两条相邻的对称轴,则φ=π/4.答案为A。
3.函数y=2sin(-πx/11)(0≤x≤9)的最大值与最小值之和为11.同时,x=5π/4和x=7π/4是函数f(x)=sin(ωx+φ)的两个零点,则sin2α=2/3.答案为A。
4.若函数f(x)=sin(3x),则sin2α=-3/4.答案为B。
6.sin47-sin17cos30/cos17=-1/2.答案为C。
7.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是y=cos(x/2-1)-1.答案为A。
8.在△ABC中,若___<sinC,则△___的形状是钝角三角形。
答案为A。
9.正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED,则sin∠CED=1/2.答案为B。
10.已知sinα-cosα=2,α∈(0,π),则sin2α=-1/2.答案为A。
11.若sinα+cosα=1/√2,则tan2α=1/3.答案为B。
11.已知函数$f(x)=\sin(x+\frac{\pi}{6})$,$b=f(\log_{10}2)$,若$a=f(\log_{10}5)$,则$a-b=$______。
12.若$a+b=1$,则$a-b=$______。
14.设$\triangle ABC$的内角$A$,$B$,$C$所对的边分别为$a$,$b$,$c$,若三边的长为连续的三个正整数,且$A>B>C$,$3b=20a\cos A$,则$\sin A:\sin B:\sin C=$______。
15.在$\triangle ABC$中,若$\angle A=60^\circ$,$\angleB=45^\circ$,$BC=32$,则$AC=$______。
2019高考数学三角函数汇编1.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .122.曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=3.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD 4.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件5.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β6.函数()2sin sin2f x x x =-在[0,2π]的零点个数为 A .2 B .3C .4D .57.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │8.已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B5C3D59.tan255°= A .-2B .-C .2D .10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .311.函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .12.已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若(A )-2(B )(C(D )213.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 ③()f x 在(0,10π)单调递增 2sin cos ++x xx x()sin()(0,0,||)f x A x A ωϕωϕπ=+>><()f x π()y f x =()g x 4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭④ω的取值范围是[1229510,) 其中所有正确结论的编号是A . ①④B . ②③C . ①②③D . ①③④ 14.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③15.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 16.函数f (x )=sin 22x 的最小正周期是__________. 17.曲线在点处的切线方程为__________. 18.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为 .19.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 20.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________. 21.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 22.ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知sin sin 2A Ca b A +=.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.cos 2xy x =-()0,123.在中,内角所对的边分别为.已知,. (Ⅰ)求的值; (Ⅱ)求的值.23.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.24.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .25.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,bcos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.ABC A B C ,,,,a b c 2b c a +=3sin 4sin c B a C =cosB sin 26B π⎛⎫+ ⎪⎝⎭26.设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++ 的值域.27.在△ABC 中,a =3,–2b c =,cos B =12-. (Ⅰ)求b ,c 的值; (Ⅱ)求sin (B +C )的值.28.在△ABC 中,a =3,b −c =2,cos B =12-. (Ⅰ)求b ,c 的值; (Ⅱ)求sin (B –C )的值.。
专题4三角函数测试题命题报告:高频考点:三角函数求值和化简、三角函数的图像和性质,三角函数恒等变换以及解三角形等。
考情分析:本单元再全国卷所占分值约15分左右,如果在客观题出现,一般三题左右,如果出现值解答题中,一般一题,难度不大重点推荐:第22题,是否存在问题,有一定难度。
21题数学文化题。
一.选择题1.若角600°的终边上有一点(﹣1,a),则a的值是()A.B.C.2 D.﹣2【答案】:B【解析】角600°的终边上有一点(﹣1,a),∴tan600°=tan(540°+60°)=tan60°==,∴a=﹣.故选:B2.(2018•贵阳二模)已知sin(π﹣α)=﹣,且α∈(﹣),则tan(2π﹣α)=()A.B.C.D.【答案】:B3.(2018•安徽二模)θ为第三象限角,,则sinθ﹣cosθ=()A.B.C.D.【答案】:B【解析】∵θ为第三象限角, =,∴tanθ==2,再根据sin2θ+cos2θ=1,sinθ<0,cosθ<0,∴sinθ=﹣,cosθ=﹣,∴sinθ﹣cosθ=﹣,故选:B.4.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是()A.B.C.D.【答案】:B【解析】函数f(x)=sin(2x+φ)的图象向右平移个单位后,可得y=sin(2x﹣+φ).∵图象关于原点对称,∴φ﹣=kπ,k∈Z可得:φ=.当k=0时,可得φ=.故选:B.5.(2018•桂林三模)关于函数f(x)=2cos2+sinx(x∈[0,π]),则f(x)的最大值与最小值之差为()A.3 B.2 C.0 D.﹣2【答案】:A【解析】f(x)=2cos2+sinx=cosx+sinx+1=,∵x∈[0,π],∴x+∈[,],可得sin(x+)∈[﹣,1],∴函数f(x)∈[0,3],则f(x)的最大值与最小值之差为3.故选:A.不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?【分析】△PAB中,∠APB=180°-(75°+60°)=45°,由正弦定理得=⇒AP=50.△QAB中,∠ABQ=90°,∴AQ=100,∠PAQ=75°-45°=30°,由余弦定理得PQ2=(50)2+(100)2-2×50×100cos30°=5000,∴PQ==50.因此,P,Q两棵树之间的距离为50 m,A,P两棵树之间的距离为50 m.18.(2018秋•重庆期中)已知函数f(x)=2cos2x+sin(2x﹣).(Ⅰ)求f(x)的最大值;(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=f(B)且A≠B,a=1,c=,求b.【解析】:(Ⅰ) f ( x)=cos 2x+1+sin 2xcos﹣cos2xsin=sin2x+cos2x+1=sin(2x+)+1∴当sin(2x+)=时,可得f ( x)的最大值为 2;(Ⅱ) f ( A)=f (B)⇒sin(2A+)=sin(2B+),且 A≠B,∴2A++2B=π,即 A+B=,那么:C=π﹣A﹣B=,余弦定理:c2=a2+b2﹣2abcosC,即13=1+b2+b,∴b=3.19.函数f(x)=2sin2(+x)﹣cos2x.(1)请把函数f(x)的表达式化成f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<)的形式,并求f(x)的最小正周期;(2)求函数f(x)在x∈[,]时的值域.【解析】:(1)函数f(x)=2sin2(+x)﹣cos2x=1﹣cos()cos2x=sin2x﹣cos2x+1=2sin (2x﹣)+1,∴f(x)的最小正周期T=.(2)由(1)可知f(x)=2sin(2x﹣)+1∵x∈[,],∴2x﹣∈[,]∴≤sin(2x﹣)≤1,则2≤f(x)≤3故得函数f(x)在x∈[,]时的值域为[2,3].20.(2018春•金华期末)已知函数的最大值为3.(1)求a的值及f(x)的单调递减区间;(2)若,,求cosα的值.【解析】:(1)====.当时,f(x)max=2﹣1+a=3,∴a=2.由,k∈Z.得到,k∈Z.∴f(x)的单调递减区间为,k∈Z;(2)∵,,∴,又,∴,∴,∴==.21.已知函数,(ω>0).(Ⅰ)求函数f(x)的值域;(Ⅱ)若方程f(x)=﹣1在(0,π)上只有三个实数根,求实数ω的取值范围.【思路分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的值域求得函数f(x)的值域.(Ⅱ)求出方程f(x)=﹣1在(0,π)上从小到大的4个实数根,再根据只有三个实数根,求出实数ω的取值范围.【解析】:(Ⅰ)函数=sinωx+2cos(﹣)sin(﹣)=sinωx+2cos(﹣)sin(﹣)=sinωx+sin(ωx﹣)=sinωx﹣cosωx=2sin (ωx﹣),故函数f(x)的值域为[﹣2,2].(Ⅱ)若方程f(x)=﹣1,即sin(ωx﹣)=﹣,∴ωx﹣=2kπ﹣,或ωx﹣=2kπ﹣,k∈Z.即x=,或 x=,(0,π)上,由小到大的四个正解依次为:x=,或x=,或x=,或x=,∵方程f(x)=﹣1在(0,π)上只有三个实数根,∴,解得<ω≤.22.已知函数f(x)=sinωx(sinωx+co sωx)﹣(ω>0)的图象相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;(Ⅱ)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;(Ⅲ)是否存在锐角α,β,使a+2β=,f()•f(2)=同时成立?若存在,求出角α,β的值;若不存在,请说明理由.【思路分析】(Ⅰ)由已知利用三角函数恒等变换的应用可得函数解析式f(x)=sin(2ωx﹣),利用正弦函数的周期公式可求ω的值.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,可求范围﹣≤﹣≤,根据正弦函数的图象和性质即可计算得解.(Ⅲ)由已知利用三角函数恒等变换的应用可求tan2β=,结合范围β为锐角,0<2β<π,可得β=,α=﹣2β=,即可得解.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,得:﹣≤﹣≤,∴﹣1≤sin(x﹣)≤,∴f(x)min=﹣,此时x﹣=﹣,解得x=﹣;f(x)min=,此时x﹣=,解得x=π.………………………(7分)(Ⅲ)存在,理由如下:存在,理由如下:∵f(α+)=sin,f(2β+)=sin(β+)=cosβ,∴f(α+)•f(2β+)=sin cosβ=,∴sin cosβ=,………………………(9分)又a+2β=,a=﹣2β,∴sin cosβ=sin(﹣β)cosβ=,∴(cosβ﹣sinβ)cosβ=,∴cos2β﹣sinβcosβ=,∴×﹣sin2β=,即:cos2β﹣sin2β=0,∴tan2β=,又β为锐角,0<2β<π,∴2β=,β=,从而α=﹣2β=.………………………(12分)。
2019年高考百日冲刺 小题专项练:三角与向量班级:_______ 姓名:_____ 分数:_____一、选择题:(每小题5分,共60分)1、已知2tan()3πα-=-,且(,)2παπ∈--,则cos()3sin()cos()9sin απαπαα-++-+的值为( ) A .15- B .37- C .15 D .372.若11tan ,tan()32a a b =+=,则tan =b ( )(A) 17 (B) 16 (C) 57 (D) 563.在C ∆AB 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3πB =,且a ,b ,c 成等比数列,则C ∆AB 一定是( )A .不等边三角形B .钝角三角形C .等腰直角三角形D .等边三角形 4. 已知函数()()2sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图象如图所示,则把函数()f x 的图像向左平移6π后得到的函数图象的解析式是( )A .2sin 2y x =B .2sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 26y x π⎛⎫=- ⎪⎝⎭D .2sin 6y x π⎛⎫=- ⎪⎝⎭5.若()2cos()f x x m ωφ=++,对任意实数t 都有()()4f t f t π+=-,且()18f π=-.则实数m 的值等于( )A .1±B .-3或1C .3±D .-1或3 6.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关 7.若3cos()45πα-=,则sin 2α=( ) (A )725(B )15 (C )15- (D )725-8. 如图,在等腰直角三角形ABC 中,,D ,E 是线段BC 上的点,且,则的取值范围是( )A .B .C .D .9.设函数)s i n ()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上单调,且⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为( ) A .2πB .2πC .4πD .π10.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )511.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅的最小值是( )A .12-B .2C .0D .112.如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM xAB AN yAC ==,则x y +的最小值为( )A .2B .13 C .43 D .34二、填空题(每小题5分,共20分)13.设当x θ=时,函数()2sin cos f x x x =-取得最大值,则cos θ=__________. 14. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2,A C a c==,若228b c +=,则ABC ∆的面积为____________. 15.已知>0,在函数y=2sin ωx 与y=2cos ωx 的图像的交点中,距离最短的两个交点的距离为ω =_____.16.已知点()1,0A m -,()1,0B m +,若圆C :2288310x y x y +--+=上存在一点P ,使得0PA PB ⋅=,则正实数...m 的最小值为 .答题卡二.填空题:13.___________ 14.___________ 15.___________ 16.____________MNA BGQ答案二.填空题:13. 14. 15. 2π 16. 4。
北京2019年高考数学三角函数章节专题测试(附答案)两角和差的正弦公式两角和差的余弦公式两角和差的正切公式。
下面是查字典数学网整理的北京2019年高考数学三角函数章节专题测试,请考生练习。
1.两角和与差的正切公式(1)T(+):tan(+)=_____________________________________________ ________.(2)T(-):tan(-)=______________________________________________ _______.2.两角和与差的正切公式的变形(1)T(+)的变形:tan +tan=__________________________________________________ __________.tan +tan +tan tan tan(+)=____________.tan tan=__________________________________________________ ___________.(2)T(-)的变形:tan -tan=__________________________________________________ _________.tan -tan -tan tan tan(-)=____________.tan tan=__________________________________________________ ____________.一、选择题1.已知,sin =,则tan的值等于()A.1B.7C.- 1D.-72.若sin =,tan(+)=1,且是第二象限角,则tan 的值是()A. 7B.-2C.-7D.-33.已知tan =,tan =,0,则+的值是()A.1B.4C.7D.-14.A,B,C是ABC的三个内角,且tan A,tan B是方程3x2-5x+1=0的两个实数根,则ABC是()A.钝角三角形B.锐角三角形C.直角三角形D.无法确定5.化简tan 10tan 20+tan 20tan 60+tan 60tan 10的值等于()A.1B.2C.tan 10D.tan 206.在ABC中,角C=120,tan A+tan B=,则tan Atan B的值为()A. 1B.3C.-1D.4二、填空题7.sin45=________.8.已知tan=2,则的值为________.9.如果tan ,tan 是方程x2-3x-3=0两根,则=________.10.已知、均为锐角,且tan =,则tan(+)=________.三、解答题11.在ABC中,tan B+tan C+tan Btan C=,且tan A+tan B+1=tan Atan B,试判断ABC的形状.12.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角,,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为,.求tan(+)的值;能力提升13.已知tan(-)=,tan =-,且,(0,),求2-的值.14.已知锐角三角形ABC中,sin(A+B)=,sin(A-B)=.(1)求证:tan A=2tan B;(2)设AB=3,求AB边上的高.1.公式T()的适用范围由正切函数的定义可知、、+(或-)的终边不能落在y轴上,即不为k+(kZ).2.公式T()的逆用一方面要熟记公式的结构,另一方面要注意常值代换如tan =1,tan =,tan =等.要特别注意tan(+)=,tan(-)=.3.公式T()的变形应用只要见到tan tan ,tan tan 时,有灵活应用公式T()的意识,就不难想到解题思路.2.3 两角和与差的正切函数知识梳理1.(1) (2)2.(1)tan(+)(1-tan tan ) tan(+) 1-(2)tan(-)(1+tan tan ) tan(-) -1作业设计1.A2.C3.C4.A [tan A+tan B=,tan Atan B=,tan(A+B)=,tan C=-tan(A+B)=-,C为钝角.]5.A [原式=tan 10tan 20+tan 20+ tan 10=(tan 10+tan 20+tan 10tan 20)=tan 30=1.]6.B [tan(A+B)=-tan C=-tan 120=,tan(A+B)==,即=,解得tan Atan B=.]7.-8.解析tan=2,=2,解得tan =.9.-解析=10.1解析tan ==.tan +tan tan =1-tan .tan +tan +tan tan =1.tan +tan =1-tan tan .=1,tan(+)=1.11.解由tan B+tan C+tan Btan C=,得tan B+tan C=(1-tan Btan C).tan(B+C)==,又B+C(0,),B+C=.又tan A+tan B+1=tan Atan B,tan A+tan B=-(1-tan Atan B),tan(A+B)==-,而A+B(0,),A+B=,又A+B+C=,A=,B=C=.ABC为等腰三角形. 12.解由条件得cos =,cos =.,为锐角,sin ==,sin ==.因此tan ==7,tan ==.tan(+)===-3.13.解tan =tan[(-)+]==0.而(0,),故(0,).tan =-,0,.--0.而tan(-0,2-=+(-)(-,0).tan(2-)=tan[+(-)]=1,2-=-.14.(1)证明sin(A+B)=,sin(A-B)=,要练说,得练听。
专题4三角函数测试题命题报告:高频考点:三角函数求值和化简、三角函数的图像和性质,三角函数恒等变换以及解三角形等。
考情分析:本单元再全国卷所占分值约15分左右,如果在客观题出现,一般三题左右,如果出现值解答题中,一般一题,难度不大重点推荐:第22题,是否存在问题,有一定难度。
21题数学文化题。
一.选择题1.若角600°的终边上有一点(﹣1,a),则a的值是()A.B.C.2 D.﹣2【答案】:B【解析】角600°的终边上有一点(﹣1,a),∴tan600°=tan(540°+60°)=tan60°==,∴a=﹣.故选:B2.(2018•贵阳二模)已知sin(π﹣α)=﹣,且α∈(﹣),则tan(2π﹣α)=()A.B.C.D.【答案】:B3.(2018•安徽二模)θ为第三象限角,,则sinθ﹣cosθ=()A.B.C.D.【答案】:B【解析】∵θ为第三象限角, =,∴tanθ==2,再根据sin2θ+cos2θ=1,sinθ<0,cosθ<0,∴sinθ=﹣,cosθ=﹣,∴sinθ﹣cosθ=﹣,故选:B.4.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是()A.B.C.D.【答案】:B【解析】函数f(x)=sin(2x+φ)的图象向右平移个单位后,可得y=sin(2x﹣+φ).∵图象关于原点对称,∴φ﹣=kπ,k∈Z可得:φ=.当k=0时,可得φ=.故选:B.5.(2018•桂林三模)关于函数f(x)=2cos2+sinx(x∈[0,π]),则f(x)的最大值与最小值之差为()A.3 B.2 C.0 D.﹣2【答案】:A【解析】f(x)=2cos2+sinx=cosx+sinx+1=,∵x∈[0,π],∴x+∈[,],可得sin(x+)∈[﹣,1],∴函数f(x)∈[0,3],则f(x)的最大值与最小值之差为3.故选:A.不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?【分析】△PAB中,∠APB=180°-(75°+60°)=45°,由正弦定理得=⇒AP=50.△QAB中,∠ABQ=90°,∴AQ=100,∠PAQ=75°-45°=30°,由余弦定理得PQ2=(50)2+(100)2-2×50×100cos30°=5000,∴PQ==50.因此,P,Q两棵树之间的距离为50 m,A,P两棵树之间的距离为50 m.18.(2018秋•重庆期中)已知函数f(x)=2cos2x+sin(2x﹣).(Ⅰ)求f(x)的最大值;(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=f(B)且A≠B,a=1,c=,求b.【解析】:(Ⅰ) f ( x)=cos 2x+1+sin 2xcos﹣cos2xsin=sin2x+cos2x+1=sin(2x+)+1∴当sin(2x+)=时,可得f ( x)的最大值为 2;(Ⅱ) f ( A)=f (B)⇒sin(2A+)=sin(2B+),且 A≠B,∴2A++2B=π,即 A+B=,那么:C=π﹣A﹣B=,余弦定理:c2=a2+b2﹣2abcosC,即13=1+b2+b,∴b=3.19.函数f(x)=2sin2(+x)﹣cos2x.(1)请把函数f(x)的表达式化成f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<)的形式,并求f(x)的最小正周期;(2)求函数f(x)在x∈[,]时的值域.【解析】:(1)函数f(x)=2sin2(+x)﹣cos2x=1﹣cos()cos2x=sin2x﹣cos2x+1=2sin (2x﹣)+1,∴f(x)的最小正周期T=.(2)由(1)可知f(x)=2sin(2x﹣)+1∵x∈[,],∴2x﹣∈[,]∴≤sin(2x﹣)≤1,则2≤f(x)≤3故得函数f(x)在x∈[,]时的值域为[2,3].20.(2018春•金华期末)已知函数的最大值为3.(1)求a的值及f(x)的单调递减区间;(2)若,,求cosα的值.【解析】:(1)====.当时,f(x)max=2﹣1+a=3,∴a=2.由,k∈Z.得到,k∈Z.∴f(x)的单调递减区间为,k∈Z;(2)∵,,∴,又,∴,∴,∴==.21.已知函数,(ω>0).(Ⅰ)求函数f(x)的值域;(Ⅱ)若方程f(x)=﹣1在(0,π)上只有三个实数根,求实数ω的取值范围.【思路分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的值域求得函数f(x)的值域.(Ⅱ)求出方程f(x)=﹣1在(0,π)上从小到大的4个实数根,再根据只有三个实数根,求出实数ω的取值范围.【解析】:(Ⅰ)函数=sinωx+2cos(﹣)sin(﹣)=sinωx+2cos(﹣)sin(﹣)=sinωx+sin(ωx﹣)=sinωx﹣cosωx=2sin (ωx﹣),故函数f(x)的值域为[﹣2,2].(Ⅱ)若方程f(x)=﹣1,即sin(ωx﹣)=﹣,∴ωx﹣=2kπ﹣,或ωx﹣=2kπ﹣,k∈Z.即x=,或 x=,(0,π)上,由小到大的四个正解依次为:x=,或x=,或x=,或x=,∵方程f(x)=﹣1在(0,π)上只有三个实数根,∴,解得<ω≤.22.已知函数f(x)=sinωx(sinωx+co sωx)﹣(ω>0)的图象相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;(Ⅱ)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;(Ⅲ)是否存在锐角α,β,使a+2β=,f()•f(2)=同时成立?若存在,求出角α,β的值;若不存在,请说明理由.【思路分析】(Ⅰ)由已知利用三角函数恒等变换的应用可得函数解析式f(x)=sin(2ωx﹣),利用正弦函数的周期公式可求ω的值.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,可求范围﹣≤﹣≤,根据正弦函数的图象和性质即可计算得解.(Ⅲ)由已知利用三角函数恒等变换的应用可求tan2β=,结合范围β为锐角,0<2β<π,可得β=,α=﹣2β=,即可得解.(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,得:﹣≤﹣≤,∴﹣1≤sin(x﹣)≤,∴f(x)min=﹣,此时x﹣=﹣,解得x=﹣;f(x)min=,此时x﹣=,解得x=π.………………………(7分)(Ⅲ)存在,理由如下:存在,理由如下:∵f(α+)=sin,f(2β+)=sin(β+)=cosβ,∴f(α+)•f(2β+)=sin cosβ=,∴sin cosβ=,………………………(9分)又a+2β=,a=﹣2β,∴sin cosβ=sin(﹣β)cosβ=,∴(cosβ﹣sinβ)cosβ=,∴cos2β﹣sinβcosβ=,∴×﹣sin2β=,即:cos2β﹣sin2β=0,∴tan2β=,又β为锐角,0<2β<π,∴2β=,β=,从而α=﹣2β=.………………………(12分)。
专题四 三角函数与三角形1.【2018高考新课标1,理2】o o o o sin 20cos10cos160sin10- =( )(A ) (B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin 30=12,故选D. 【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20°与160°之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.2.【2018高考山东,理3】要得到函数sin 43y x π⎛⎫=-⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( ) (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin 4sin 4312y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x = 的图象向右平移12π个单位.故选B.【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.3.【2018高考新课标1,理8】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A)13(,),44k k k Z ππ-+∈ (B)13(2,2),44k k k Z ππ-+∈ (C)13(,),44k k k Z -+∈ (D)13(2,2),44k k k Z -+∈【答案】D【考点定位】三角函数图像与性质【名师点睛】本题考查函数cos()y A x ωϕ=+的图像与性质,先利用五点作图法列出关于ωϕ,方程,求出ωϕ,,或利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,再利用复合函数单调性求其单调递减区间,是中档题,正确求ωϕ,使解题的关键.4.【2018高考四川,理4】下列函数中,最小正周期为且图象关于原点对称的函数是( )()cos(2)2A y x π=+ ()sin(2)2B y x π=+ ()sin 2cos 2C y x x =+ ()sin cos D y x x =+【答案】A【解析】对于选项A ,因为2sin 2,2y x T ππ=-==,且图象关于原点对称,故选A. 【考点定位】三角函数的性质.【名师点睛】本题不是直接据条件求结果,而是从4个选项中找出符合条件的一项,故一般是逐项检验,但这类题常常可采用排除法.很明显,C 、D 选项中的函数既不是奇函数也不是偶函数,而B 选项中的函数是偶函数,故均可排除,所以选A.5.【2018高考重庆,理9】若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( )A 、1B 、2C 、3D 、4 【答案】C 【解析】由已知,3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C. 【考点定位】两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换.【名师点晴】三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简,求解过程中注意公式的顺用和逆用.6.【2018高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C【解析】由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C . 【考点定位】三角函数的图象与性质.【名师点晴】本题主要考查的是三角函数的图象与性质,属于容易题.解题时一定要抓住重要字眼“最大值”,否则很容易出现错误.解三角函数求最值的试题时,我们经常使用的是整体法.本题从图象中可知sin 16x πϕ⎛⎫+=- ⎪⎝⎭时,y 取得最小值,进而求出k 的值,当sin 16x πϕ⎛⎫+= ⎪⎝⎭时,y 取得最大值. 7.【2018高考安徽,理10】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出ω,通过最值判断出ϕ,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.【2018高考湖南,理9】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π 【答案】D. 【解析】试题分析:向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min 3x x π-=,∴632πϕπϕπ=⇒=-,故选D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以)sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.【2018高考上海,理13】已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【解析】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质【名师点睛】三角函数最值与绝对值的综合,可结合数形结合解决.极端位置的考虑方法是解决非常规题的一个行之有效的方法.8.【2018高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8【解析】因为0A π<<,所以sin A ==又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【考点定位】同角三角函数关系、三角形面积公式、余弦定理.【名师点睛】本题主要考查同角三角函数关系、三角形面积公式、余弦定理.解三角形是实际应用问题之一,先根据同角三角关系求角A 的正弦值,再由三角形面积公式求出24bc =,解方程组求出,b c 的值,用余弦定理可求边a 有值.体现了综合运用三角知识、正余弦定理的能力与运算能力,是数学重要思想方法的体现. 【2018高考上海,理14】在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E ⋅= . 【答案】1615-【考点定位】向量数量积,解三角形【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos<a ,b>.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2.向量夹角与三角形内角的关系,可利用三角形解决;向量的模与三角形的边的关系,可利用面积解决.9.【2018高考广东,理11】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若a = 1sin 2B =,6C =π,则b = . 【答案】1. 【解析】因为1sin 2B =且()0,B π∈,所以6B π=或56B π=,又6C π=,所以6B π=,23A B C ππ=--=,又a =sin sin a b A B =sin 36bπ=解得1b =,故应填入1. 【考点定位】三角形的内角和定理,正弦定理应用.【名师点睛】本题主要考查三角形的内角和定理、运用正弦定理解三角形,属于容易题,解答此题要注意由1sin 2B =得出6B π=或56B π=时,结合三角形内角和定理舍去56B π=. 10.【2018高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc+-==⋅2425361616256⨯+-=⋅=⨯⨯ 考点定位:本题考点为正弦定理、余弦定理的应用及二倍角公式,灵活使用正弦定理、余弦定理进行边化角、角化边.【名师点睛】本题考查二倍角公式及正弦定理和余弦定理,本题属于基础题,题目所求分式的分子为二倍角正弦,应用二倍角的正弦公式进行恒等变形,变形后为角的正弦、余弦式,灵活运用正弦定理和余弦定理进行角化边,再把边长代入求值.11.【2018高考湖北,理12】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 .【答案】2【解析】因为2π()4cos cos()2sin |ln(1)|22x f x x x x =---+ |)1ln(|sin 2sin )cos 1(2+--+=x x x x |)1ln(|2sin +-=x x所以函数)(x f 的零点个数为函数x y 2sin =与|)1ln(|+=x y 图象的交点的个数, 函数x y 2sin =与|)1ln(|+=x y 图象如图,由图知,两函数图象有2个交点, 所以函数)(x f 有2个零点.【考点定位】二倍角的正弦、余弦公式,诱导公式,函数的零点.【名师点睛】数形结合思想方法是高考考查的重点. 已知函数的零点个数,一般利用数形结合转化为两个图象的交点个数,这时图形一定要准确。
2019年高考数学试题分项版——三角函数(解析版)一、选择题1.(2019·全国Ⅰ文,7)tan 255°等于()A.-2-B.-2+C.2-D.2+答案 D解析tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)===2+.2.(2019·全国Ⅰ文,11)△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-,则等于()A.6 B.5 C.4 D.3答案 A解析∵a sin A-b sin B=4c sin C,∴由正弦定理得a2-b2=4c2,即a2=4c2+b2.由余弦定理得cos A====-,∴=6.3.(2019·全国Ⅱ文,8)若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B.C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.4.(2019·全国Ⅱ文,11)已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.5.(2019·全国Ⅲ文,5)函数f(x)=2sin x-sin 2x在[0,2π]上的零点个数为()A.2 B.3 C.4 D.5答案 B解析令f(x)=0,得2sin x-sin 2x=0,即2sin x-2sin x cos x=0,∴2sin x(1-cos x)=0,∴sin x=0或cos x=1.又x∈[0,2π],∴由sin x=0得x=0,π或2π,由cos x=1得x=0或2π.故函数f(x)的零点为0,π,2π,共3个.6.(2019·北京文,6)设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析∵f(x)=cos x+b sin x为偶函数,∴对任意的x∈R,都有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,∴2b sin x=0.由x的任意性,得b=0.故f(x)为偶函数⇒b=0.必要性成立.反过来,若b=0,则f(x)=cos x是偶函数,充分性成立.∴“b=0”是“f(x)为偶函数”的充分必要条件.7.(2019·北京文,8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为()A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β答案 B解析方法一如图①,图①设圆心为O,连接OA,OB,OP.∵∠APB=β,∴∠AOB=2β,∴S阴影=S△AOP+S△BOP+S扇形AOB=×2×2sin∠AOP+×2×2sin∠BOP+×2β×22=2sin∠AOP+2sin∠BOP+4β=2sin∠AOP+2sin(2π-2β-∠AOP)+4β=2sin∠AOP-2sin(2β+∠AOP)+4β=2sin∠AOP-2(sin 2β·cos∠AOP+cos 2β·sin∠AOP)+4β=2sin∠AOP-2sin 2β·cos∠AOP-2cos 2β·sin∠AOP+4β=2(1-cos 2β)sin∠AOP-2sin 2β·cos∠AOP+4β=2×2sin2β·sin∠AOP-2×2sin β·cos β·cos∠AOP+4β=4sin β(sin β·sin∠AOP-cos β·cos∠AOP)+4β=4β-4sin β·cos(β+∠AOP).∵β为锐角,∴sin β>0.∴当cos(β+∠AOP)=-1,即β+∠AOP=π时,阴影区域面积最大,为4β+4sin β. 方法二如图②,图②设圆心为O,连接OA,OB,OP,AB,则阴影区域被分成弓形AmB和△ABP.∵∠APB=β,∴∠AOB=2β.∵弓形AmB的面积是定值,∴要使阴影区域面积最大,则只需△ABP面积最大.∵△ABP底边AB长固定,∴只要△ABP的底边AB上的高最大即可.由图可知,当AP=BP时,满足条件,此时S阴影=S扇形AOB+S△AOP+S△BOP=×2β·22+2××22·sin-=4β+4sin β.即为阴影区域面积的最大值.8.(2019·天津文,7)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g=,则f 等于()A.-2 B.- C.D.2答案 C解析∵函数f(x)为奇函数,且|φ|<π,∴φ=0.又f(x)的最小正周期为π,∴=π,解得ω=2,∴f(x)=A sin 2x.由题意可得g(x)=A sin x,g=,即A sin =,解得A=2.故f(x)=2sin 2x.∴f =2sin =.9.(2019·全国Ⅰ理,11)关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.10.(2019·全国Ⅱ理,9)下列函数中,以为周期且在区间上单调递增的是() A.f(x)=|cos 2x| B.f(x)=|sin 2x|C.f(x)=cos|x| D.f(x)=sin|x|答案 A解析A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故A正确;B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的周期为2π,故C不正确;D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故D不正确.故选A.11.(2019·全国Ⅱ理,10)已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=2sin α=1-sin2α,解得sin α=,故选B.12.(2019·全国Ⅲ理,12)设函数f(x)=sin(ω>0),已知f(x)在[0,2π]上有且仅有5个零点.下述四个结论:①f(x)在(0,2π)上有且仅有3个极大值点;②f(x)在(0,2π)上有且仅有2个极小值点;③f(x)在上单调递增;④ω的取值范围是.其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④答案 D解析如图,根据题意知,x A≤2π<x B,根据图象可知函数f(x)在(0,2π)有且仅有3个极大值点,所以①正确;但可能会有3个极小值点,所以②错误;根据x A≤2π<x B,有≤2π<,得≤ω<,所以④正确;当x∈时,<ωx+<+,因为≤ω<,所以+<<,所以函数f(x)在上单调递增,所以③正确.13.(2019·天津理,7)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g=,则f 等于()A.-2 B.- C.D.2答案 C解析由f(x)为奇函数可得φ=kπ(k∈Z),又|φ|<π,所以φ=0,所以g(x)=A sin .由g(x)的最小正周期为2π,可得=2π,故ω=2,g(x)=A sin x,g=A sin =,所以A=2,所以f(x)=2sin 2x,故f =2sin =.二、填空题1.(2019·全国Ⅰ文,15)函数f(x)=sin-3cos x的最小值为________.答案-4解析∵f(x)=sin-3cos x=-cos 2x-3cos x=-2cos2x-3cos x+1,令t=cos x,则t∈[-1,1],∴f(t)=-2t2-3t+1.又函数f(t)图象的对称轴t=-∈[-1,1],且开口向下,∴当t=1时,f(t)有最小值-4.综上,f(x)的最小值为-4.2.(2019·全国Ⅱ文,15)△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B =0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.3.(2019·天津文,14)在四边形ABCD中,AD∥BC,AB=2,AD=5,∠A=30°,点E 在线段CB的延长线上,且AE=BE,则·=________.答案-1解析方法一在等腰△ABE中,易得∠BAE=∠ABE=30°,故BE=2,则·=(-)·(+)A=·+·-2-·=5×2×cos 30°+5×2×cos 180°-12-2×2×cos 150°=15-10-12+6=-1.方法二在△ABD中,由余弦定理可得BD==,所以cos∠ABD==-,则sin ∠ABD=.设与的夹角为θ,则cos θ=cos(180°-∠ABD+30°)=-cos(∠ABD-30°)=-cos∠ABD·cos 30°-sin∠ABD·sin 30°=-,在△ABE中,易得AE=BE=2,故·=×2×=-1.4.(2019·浙江,14)在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上.若∠BDC=45°,则BD=________,cos∠ABD=________.答案解析在Rt△ABC中,易得AC=5,sin C==.在△BCD中,由正弦定理得BD=×sin∠BCD×=,sin∠DBC=sin [π-(∠BCD+∠BDC)]=sin(∠BCD+∠BDC)=sin∠BCD·cos∠BDC+cos∠BCD·sin∠BDC=×+×=.又∠ABD+∠DBC =,所以cos∠ABD=sin∠DBC=.5.(2019·江苏,13)已知=-,则sin的值是____________________.答案解析===-,解得tan α=2或tan α=-,当tan α=2时,sin 2α===,cos 2α===-,此时sin 2α+cos 2α=,同理当tan α=-时,sin 2α=-,cos 2α=,此时sin 2α+cos 2α=,所以sin=(sin 2α+cos 2α)=.6.(2019·全国Ⅱ理,15)△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B =,则△ABC的面积为________.答案6解析 方法一 因为a =2c ,b =6,B =,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos,得c =2 ,所以a =4 ,所以△ABC 的面积S =ac sin B =×4 ×2 ×sin=6 .方法二 因为a =2c ,b =6,B =,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos,得c =2 ,所以a =4 ,所以a 2=b 2+c 2,所以A =,所以△ABC 的面积S =×2 ×6=6 .7.(2019·北京理,9)函数2()sin 2f x x =的最小正周期是 .【思路分析】用二倍角公式可得11()cos(4)22f x x =-+,然后用周期公式求出周期即可.【解析】:2()sin (2)f x x =,11()cos(4)22f x x ∴=-+,()f x ∴的周期2T π=,故答案为:2π.【归纳与总结】本题考查了三角函数的图象与性质,关键是合理使用二倍角公式,属基础题. 三、解答题1.(2019·全国Ⅲ文,18)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin=b sinA . (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 解 (1)由题设及正弦定理, 得sin A sin=sin B sin A .因为sin A ≠0,所以sin=sin B .由A +B +C =180°,可得sin=cos,故cos=2sincos.因为cos ≠0,故sin =,因此B =60°. (2)由题设及(1)知△ABC 的面积S △ABC =a . 由正弦定理,得a ===+. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故<a <2, 从而<S △ABC <.因此,△ABC 面积的取值范围是.2.(2019·北京文,15)在△ABC中,a=3,b-c=2,cos B=-.(1)求b,c的值;(2)求sin(B+C)的值.解(1)由余弦定理b2=a2+c2-2ac cos B,得b2=32+c2-2×3×c×.因为b=c+2,所以(c+2)2=32+c2-2×3×c×,解得c=5.所以b=7.(2)由cos B=-,得sin B=.由正弦定理,得sin A=sin B=.在△ABC中,B+C=π-A,所以sin(B+C)=sin A=.3.(2019·天津文,16)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a,3c sin B=4a sin C.(1)求cos B的值;(2)求sin的值.解(1)在△ABC中,由正弦定理=,得b sin C=c sin B,又由3c sin B=4a sin C,得3b sin C=4a sin C,又sin C≠0,所以3b=4a.又因为b+c=2a,所以b=a,c=a,由余弦定理可得cos B===-.(2)由(1)可得sin B==,从而sin 2B=2sin B cos B=-,cos 2B=cos2B-sin2B=-,故sin=sin 2B cos +cos 2B sin =-×-×=-.4.(2019·浙江,18)设函数f(x)=sin x,x∈R.(1)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(2)求函数y=2+2的值域.解(1)因为f(x+θ)=sin(x+θ)是偶函数,所以,对任意实数x都有sin(x+θ)=sin(-x+θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=或.(2)y=2+2=sin2+sin2=+=1-=1-cos.因此,函数的值域是.5.(2019·江苏,15)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin的值.解(1)因为a=3c,b=,cos B=,由余弦定理cos B=,得=,即c2=.所以c=.(2)因为=,由正弦定理=,得=,所以cos B=2sin B.从而cos2B=(2sin B)2,即cos2B=4(1-cos2B),故cos2B=.因为sin B>0,所以cos B=2sin B>0,从而cos B=.因此sin=cos B=.6.(2019·全国Ⅰ理,17)△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.7.(2019·全国Ⅲ理,18)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin =b sinA.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.解(1)由题设及正弦定理,得sin A sin=sin B sin A.因为sin A≠0,所以sin =sin B.由A+B+C=180°,可得sin =cos ,故cos =2sin cos .因为cos ≠0,故sin =,因此B=60°.(2)由题设及(1)知△ABC的面积S△ABC=a.由正弦定理,得a=4==+.由于△ABC为锐角三角形,故0°<A<90°,0°<C<90°.由(1)知A+C=120°,所以30°<C<90°,故<a<2,从而<S△ABC<.因此,△ABC面积的取值范围是.8.(2019·北京理,15)(13分)在ABC∆中,3a=,2b c-=,1 cos2B=-.(Ⅰ)求b,c的值;(Ⅱ)求sin()B C-的值.【思路分析】(Ⅰ)利用余弦定理可得2222cosb ac ac B=+-,代入已知条件即可得到关于b 的方程,解方程即可;(Ⅱ)sin()sin cos cos sin B C B C B C -=-,根据正弦定理可求出sin C ,然后求出cos C ,代入即可得解.【解析】:(Ⅰ)3a =,2b c -=,1cos 2B =-. ∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-, 7b ∴=,25c b ∴=-=;(Ⅱ)在ABC ∆中,1cos 2B =-,sin B ∴=, 由正弦定理有:sin sin c b C B =,∴5sin 2sin 7c B C b === b c >,B C ∴>,C ∴为锐角,11cos 14C ∴=, sin()sin cos cos sin B C B C B C ∴-=-111()142=--=. 【归纳与总结】本题考查了正弦定理余弦定理和两角差的正弦公式,属基础题.9.(2019·天津理,15)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin的值. 解 (1)在△ABC 中,由正弦定理 = ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,又sin C ≠0,所以3b =4a .又因为b +c =2a ,所以b = a ,c = a ,由余弦定理可得cos B = ==- . (2)由(1)可得sin B = =, 从而sin 2B =2sin B cos B =-,cos 2B =cos 2B -sin 2B =- , 故sin =sin 2B cos +cos 2B sin=- × - × =- .。
2019年高考数学试题分类汇编三角函数一、选择题.1、(2019年高考全国I 卷文理科5)函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .答案:D解析:因为)()(x f x f -=-,所以)(x f 为奇函数又01)(2>-=πππf ,124412)2(22>+=+=πππππf ,故选D 2、(2019年高考全国I 卷理科11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④C .①④D .①③答案:C解析:由)(|sin |||sin |)sin(|||sin )(x f x x x x x f =+=-+-=-,故①正确;),2(ππ∈x 时,x x x x f sin 2sin sin )(=+=,函数递减,故②错误;],0[π∈x 时,x x x x f sin 2sin sin )(=+=,函数有2个零点,0)()0(==πf f ,而],0[π∈x 时0)()0(=-=πf f ,所以函数有且只有3个零点,故③错误;函数为偶函数,只需讨论0>x ,N k k k x ∈+∈),2,2(πππ时,x x x x f sin 2sin sin )(=+=,最大值为2,N k k k x ∈++∈),22,2(ππππ时,0sin sin )(=-=x x x f ,故函数最大值为2,故④正确。
故选C3、(2019年高考全国I 卷文科7)tan255°= A .-2B .-C .2D .答案:D解析:32)4530tan(75tan )75180tan(255tan +=︒+︒=︒=︒+︒=︒故选D4、(2019年高考全国I 卷文科11)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .3答案:A解析:由正弦定理C B b A a sin 4sin sin =-,角化边得2224c b a +=又412)4(cos 2222-=+-+=bc c b c b A ,联立求得6=c b 故选A5、(2019年高考全国II 卷理科4)019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为 ABCD答案:D 解析:Rr=α则R r α=,代入121223()()M M M R r R r r R +=++得12322)1(1)1(M M ααα+-+=即3254322312)1(33)1(1)1(αααααααα≈+++=+-+=M M所以R M M r 3123=.故答案选D 6、(2019年高考全国II 卷理科9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │答案:A解析:将|2cos |)(x x f =的图像变换,“下翻上”,如图可知在区间)2,4(ππ上是增函数.故答案选A 7、(2019年高考全国II 卷理科10,文科11)已知α∈(0,2π),2sin 2α=cos 2α+1,则sin α=A .15B 5C 3D 5答案:B解析:ααα2cos 212cos 2sin 2=+=,与αααcos sin 22sin =联立求得21tan =α 又)2,0(πα∈,所以55sin =α故答案选B 8、(2019年高考全国II 卷文科8)若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .12答案:A 解析:πππ=-=T T ,4432,又ωπ2=T ,所以2=ω。
专题4三角函数测试题
命题报告:
高频考点:三角函数求值和化简、三角函数的图像和性质,三角函数恒等变换以及解三角形等。
考情分析:本单元再全国卷所占分值约15分左右,如果在客观题出现,一般三题左右,如果出现值解答题中,一般一题,难度不大
重点推荐:第22题,是否存在问题,有一定难度。
21题数学文化题。
一.选择题
1.若角600°的终边上有一点(﹣1,a),则a的值是()
A.B.C.2 D.﹣2
【答案】:B
【解析】角600°的终边上有一点(﹣1,a),∴tan600°=tan(540°+60°)=tan60°==,
∴a=﹣.故选:B
2.(2018•贵阳二模)已知sin(π﹣α)=﹣,且α∈(﹣),则tan(2π﹣α)=()A.B.C.D.
【答案】:B
3.(2018•安徽二模)θ为第三象限角,,则sinθ﹣cosθ=()A.B.C.D.
【答案】:B
【解析】∵θ为第三象限角,=,
∴tanθ==2,再根据sin2θ+cos2θ=1,sinθ<0,cosθ<0,
∴sinθ=﹣,cosθ=﹣,∴sinθ﹣cosθ=﹣,故选:B.
4.函数f(x)=sin(2x+φ)的图象向右平移个单位后所得的图象关于原点对称,则φ可以是()A.B.C.D.
【答案】:B
【解析】函数f(x)=sin(2x+φ)的图象向右平移个单位后,可得y=sin(2x﹣+φ).∵图象关于原点对称,∴φ﹣=kπ,k∈Z
可得:φ=.当k=0时,可得φ=.故选:B.
5.(2018•桂林三模)关于函数f(x)=2cos2+sinx(x∈[0,π]),则f(x)的最大值与最小值之差为()
A.3 B.2 C.0 D.﹣2
【答案】:A
【解析】f(x)=2cos2+sinx=cosx+sinx+1=,
∵x∈[0,π],∴x+∈[,],可得sin(x+)∈[﹣,1],
∴函数f(x)∈[0,3],则f(x)的最大值与最小值之差为3.故选:A.不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?
【分析】△PAB中,∠APB=180°-(75°+60°)=45°,
由正弦定理得=⇒AP=50.
△QAB中,∠ABQ=90°,
∴AQ=100,∠PAQ=75°-45°=30°,
由余弦定理得PQ2=(50)2+(100)2-2×50×100cos30°=5000,
∴PQ==50.
因此,P,Q两棵树之间的距离为50 m,A,P两棵树之间的距离为50 m.
18.(2018秋•重庆期中)已知函数f(x)=2cos2x+sin(2x﹣).
(Ⅰ)求f(x)的最大值;
(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=f(B)且A≠B,a=1,c=,求b.【解析】:(Ⅰ) f ( x)=cos 2x+1+sin 2xcos﹣cos2xsin
=sin2x+cos2x+1=sin(2x+)+1
∴当sin(2x+)=时,可得f ( x)的最大值为 2;
(Ⅱ) f ( A)=f (B)⇒sin(2A+)=sin(2B+),且 A≠B,
∴2A++2B=π,即 A+B=,那么:C=π﹣A﹣B=,
余弦定理:c2=a2+b2﹣2abcosC,即13=1+b2+b,∴b=3.
19.函数f(x)=2sin2(+x)﹣cos2x.
(1)请把函数f(x)的表达式化成f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<)的形式,并求f(x)的最小正周期;
(2)求函数f(x)在x∈[,]时的值域.
【解析】:(1)函数f(x)=2sin2(+x)﹣cos2x=1﹣cos()cos2x=sin2x﹣cos2x+1=2sin (2x﹣)+1,∴f(x)的最小正周期T=.
(2)由(1)可知f(x)=2sin(2x﹣)+1
∵x∈[,],∴2x﹣∈[,]
∴≤sin(2x﹣)≤1,则2≤f(x)≤3
故得函数f(x)在x∈[,]时的值域为[2,3].
20.(2018春•金华期末)已知函数的最大值为
3.
(1)求a的值及f(x)的单调递减区间;
(2)若,,求cosα的值.
【解析】:(1)
=
==
=.
当时,f(x)max=2﹣1+a=3,∴a=2.
由,k∈Z.得到
,k∈Z.
∴f(x)的单调递减区间为,k∈Z;
(2)∵,,∴
,
又,∴,
∴,
∴
=
=.
21.已知函数
,(ω>0).
(Ⅰ)求函数f(x)的值域;
(Ⅱ)若方程f(x)=﹣1在(0,π)上只有三个实数根,求实数ω的取值范围.
【思路分析】(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的值域求得函数f(x)的值域.(Ⅱ)求出方程f(x)=﹣1在(0,π)上从小到大的4个实数根,再根据只有三个实数根,求出实数ω的取值范围.
【解析】:(Ⅰ)函数
=sinωx+2cos(﹣)sin(﹣)
=sinωx+2cos(﹣)sin(﹣)=sinωx+sin(ωx﹣)=sinωx﹣cosωx=2sin(ωx﹣),故函数f(x)的值域为[﹣2,2].
(Ⅱ)若方程f(x)=﹣1,即sin(ωx﹣)=﹣,∴ωx﹣=2kπ﹣,或ωx﹣=2kπ﹣,k∈Z.即x=,或 x=,
(0,π)上,由小到大的四个正解依次为:x=,或x=,或x=,或x=,
∵方程f(x)=﹣1在(0,π)上只有三个实数根,
∴,解得<ω≤.
22.已知函数f(x)=sinωx(sinωx+cosωx)﹣(ω>0)的图象相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;
(Ⅱ)当x∈[﹣π,π]时,求f(x)最大值与最小值及相应的x的值;
(Ⅲ)是否存在锐角α,β,使a+2β=,f()•f(2)=同时成立?若存在,求出角α,β的值;若不存在,请说明理由.
【思路分析】(Ⅰ)由已知利用三角函数恒等变换的应用可得函数解析式f(x)=sin(2ωx﹣),利用正弦函数的周期公式可求ω的值.
(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),由﹣π≤x≤π,可求范围﹣≤﹣≤,根据正弦函数的图象和性质即可计算得解.
(Ⅲ)由已知利用三角函数恒等变换的应用可求tan2β=,结合范围β为锐角,0<2β<π,可得β=,α=﹣2β=,即可得解.
(Ⅱ)由(Ⅰ)得f(x)=sin(x﹣),
由﹣π≤x≤π,得:﹣≤﹣≤,
∴﹣1≤sin(x﹣)≤,
∴f(x)min=﹣,此时x﹣=﹣,解得x=﹣;
f(x)min=,此时x﹣=,解得x=π.………………………(7分)(Ⅲ)存在,理由如下:存在,理由如下:
∵f(α+)=sin,f(2β+)=sin(β+)=cosβ,
∴f(α+)•f(2β+)=sincosβ=,
∴sincosβ=,………………………(9分)
又a+2β=,a=﹣2β,
∴sincosβ=sin(﹣β)cosβ=,
∴(cosβ﹣sinβ)cosβ=,
∴cos2β﹣sinβcosβ=,
∴×﹣sin2β=,即:cos2β﹣sin2β=0,
∴tan2β=,
又β为锐角,0<2β<π,
∴2β=,β=,从而α=﹣2β=.………………………(12分)。