2018版高中数学第三章三角恒等变换导学案新人教A版必修4
- 格式:doc
- 大小:378.50 KB
- 文档页数:18
第三章 三角恒等变换知识④思维导图专题④综合串讲专题1三角函数式的求值【例1】已知0<α<π4,0<β<π4,且3sin β=sin (2α+β),4tan α2=1-tan 2α2,求α+β的值. 【分析】 本题主要考查三角函数式的恒等变换及已知三角函数值求角,因为2α+β=α+(α+β),β=(α+β)-α,可先将条件式3sin β=sin (2α+β)展开后求α+β的正切值.【解】∵3sin β=sin (2α+β),即3sin (α+β-α)=sin (α+β+α),整理得2sin (α+β)cos α=4cos (α+β)sin α.即tan (α+β)=2tan α.又4tan α2=1-tan 2α2, ∴tan α=2tan α21-tan 2α2=12, tan (α+β)=2tan α=2×12=1. 又0<α<π4,0<β<π4, ∴α+β∈⎝⎛⎭⎫0,π2, ∴α+β=π4. 【方法总结】三角函数式求值的类型与方法三角函数式的求值主要有三种类型:一是给角求值;二是给值求值;三是给值求角.1. 给角求值:这类题目的解法相对简单,主要是利用所学的诱导公式、同角三角函数的基本关系式、两角和与差的正弦、余弦、正切公式及二倍角公式等,化非特殊角为特殊角,在转化过程中要注意上述公式的正用及逆用.2. 给值求值:这类题目的解法较上类题目灵活、多变,主要解答方法是利用三角恒等变形中的拆角变形及同角三角函数的基本关系式,和、差、倍、半角公式的综合应用.由于此类题目在解答过程中涉及的数学方法及数学思想相对较多,因此也是平时乃至高考考查的一个热点.3. 已知三角函数值求角问题,通常分两步:(1)先求角的某个三角函数值(由题中已知名称和范围确定),确定求所求角的哪种三角函数值,要根据具体题目,结合所给角的范围确定;(2)根据角的范围确定角及角的范围.必要时,可利用值缩小角的范围.几种形式的题目本质上都是“给值求值”,只不过往往求出的值是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.【变式训练1】已知cos ⎝⎛⎭⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎫2α+π4的值. 【解】 ∵π2≤α<3π2,∴3π4≤α+π4<7π4. ∵cos ⎝⎛⎭⎫α+π4>0,∴3π2<α+π4<7π4. ∴sin ⎝⎛⎭⎫α+π4=-1-cos 2⎝⎛⎭⎫α+π4 =-1-⎝⎛⎭⎫352=-45. ∴cos 2α=sin ⎝⎛⎭⎫2α+π2=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×⎝⎛⎭⎫-45×35=-2425, sin 2α=-cos ⎝⎛⎭⎫2α+π2=1-2cos 2⎝⎛⎭⎫α+π4 =1-2×⎝⎛⎭⎫352=725. ∴cos ⎝⎛⎭⎫2α+π4=22cos 2α-22sin 2α =22×⎝⎛⎭⎫-2425-725=-31250. 专题2三角函数式的化简【例2】化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α. 【分析】本题主要考查二倍角公式,同角三角函数的基本关系及角的变换,从角的特点及内在联系上探求.π4-α与π4+α互余,可先用诱导公式减少角的种类.或π4-α与π4+α均化为α的三角函数. 【解】解法一:原式=2cos 2α-12sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·sin 2⎝⎛⎭⎫π4+α =2cos 2α-12·sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α·cos 2⎝⎛⎭⎫π4-α=2cos 2α-1sin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1. 解法二:原式=cos 2α2·1-tan α1+tan α(22sin α+22cos α)2 =cos 2αcos α-sin αcos α+sin α·(sin α+cos α)2=cos 2α(cos α-sin α)(cos α+sin α)=cos 2αcos 2α-sin 2α=cos 2αcos 2α=1. ,【方法总结】三角函数式化简的分类与解题技巧1.三角函数式的化简,主要有以下几类:(1)三角的和式,基本思路是降幂、消项和逆用公式;(2)三角的分式,基本思路是分子与分母的约分和逆用公式,最终变成整式或较简式子;(3)二次根式,则需要运用倍角公式的变形形式.在具体过程中体现的则是化归的思想,是一个“化异为同”的过程,涉及切弦互化,即“函数名”的“化同”;角的变换,即“单角化倍角”“单角化复角”“复角化复角”等具体手段,以实现三角函数式的化简.2. 化简三角函数式时:(1)若切函数、弦函数共存时,可利用切化弦;(2)若含分式三角函数的问题,一般需分子、分母化简后出现公因式,以便于约分.【变式训练2】化简sin ⎝⎛⎭⎫α+π42cos 2α2+2sin α2cos α2-1. 【解】原式=sin αcosπ4+cos αsin π4cos α+sin α=22(sin α+cos α)cos α+sin α=22. 专题3三角恒等式的证明【例3】求证:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=tan x 2. 【分析】本题主要考查二倍角公式及其变形应用,因等式右端为tan x 2,故可将左边的角4x ,2x ,x 化为x 2的形式. 【解】∵左边=2sin 2xcos 2x 2cos 22x ·cos 2x 2cos 2x ·cos x 2cos 2x 2=2sin 2x·cos 22x·cos x 2cos 22x·2cos 2x·2cos 2x 2=sin 2x 2cos x·2cos 2x 2=2sin x 2cos x 22cos 2x 2=sin x 2cos x 2=tan x 2=右边, ∴等式成立.【方法总结】三角函数等式的证明策略三角函数等式的证明包括无条件三角函数等式的证明和有条件三角函数等式的证明.对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口.对于有条件三角函数等式的证明,要认真观察条件式与被证式的区别与联系,灵活使用条件等式,通过代入法、消元法等方法进行证明.【变式训练3】求证:3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A .【证明】∵左边=3-4cos 2A +2cos 2 2A -13+4cos 2A +2cos 2 2A -1=⎝⎛⎭⎫1-cos 2A 1+cos 2A 2=⎝⎛⎭⎫2sin 2 A 2cos 2 A 2=(tan 2 A )2 =tan 4 A =右边.∴3-4cos 2A +cos 4A 3+4cos 2A +cos 4A=tan 4 A . 专题4三角函数与平面向量的综合应用【例4】设a =(1+cos α,sin α),b =(1-cos β,sin β),c =(1,0),α∈(0,π),β∈(π,2π),a 与c 的夹角为θ1,b 与c 的夹角为θ2,且θ1-θ2=π6,求sin α-β4的值. 【分析】 利用向量的夹角公式得三角函数式,然后利用三角函数知识得出角之间的关系.【解】 由题意知|a |=(1+cos α)2+sin 2α=2cos α2, |b |=(1-cos β)2+sin 2β=2sin β2,|c |=1. 又a·c =1+cos α=2cos 2α2,b·c =1-cos β=2sin 2β2, ∴cos θ1=a·c |a||c|=cos α2,cos θ2=b·c |b||c|=sin β2. ∵α∈(0,π),∴α2∈⎝⎛⎭⎫0,π2,∴θ1=α2. 又β∈(π,2π),∴β2∈⎝⎛⎭⎫π2,π,即0<β2-π2<π2. 由cos θ2=sin β2=cos ⎝⎛⎭⎫β2-π2,得θ2=β2-π2. 由θ1-θ2=π6,得α2-⎝⎛⎭⎫β2-π2=π6, ∴α-β2=-π3,∴α-β4=-π6. ∴sin α-β4=sin ⎝⎛⎭⎫-π6=-12. 【方法总结】三角函数与平面向量的解题策略三角函数与平面向量相结合包括向量与三角函数化简、求值与证明的结合,向量与三角函数的图象与性质的结合等几个方面.此类题目所涉及向量的知识往往比较基础,所涉及的三角函数往往是讨论三角函数的图象与性质,以及三角函数的化简、求值.【变式训练4】在平面直角坐标系xOy 中,已知向量m =(22,-22),n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 【解】(1)∵m =(22,-22),n =(sin x ,cos x ),且m ⊥n , ∴m ·n =(22,-22)·(sin x ,cos x )=22sin x -22cos x =sin ⎝⎛⎭⎫x -π4=0. 又x ∈⎝⎛⎭⎫0,π2,∴x -π4∈⎝⎛⎭⎫-π4,π4, ∴x -π4=0,即x =π4,∴tan x =tan π4=1. (2)由(1)知cos π3=m ·n |m |·|n |=sin ⎝⎛⎭⎫x -π4(22)2+(-22)2·sin 2x +cos 2x =sin ⎝⎛⎭⎫x -π4,∴sin ⎝⎛⎭⎫x -π4=12. 又x -π4∈⎝⎛⎭⎫-π4,π4,∴x -π4=π6,即x =5π12.。
3.1.3 二倍角的正弦、余弦、正切公式1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[基础·初探]教材整理 二倍角的正弦、余弦、正切公式 阅读教材P 132~P 133例5以上内容,完成下列问题. 1.二倍角的正弦、余弦、正切公式2.3.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin α±cos α)2.1.判断(正确的打“√”,错误的打“×”)(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )【解析】 (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.【答案】 (1)× (2)√ (3)×2.已知cos α=13,则cos 2α等于________.【解析】 由cos α=13,得cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 -79[小组合作型]利用二倍角公式化简三角函数式化简求值.(1)cos 4 α2-sin 4 α2;(2)sin π24·cos π24·cos π12;(3)1-2sin 2750°;(4)tan 150°+1-3tan 2150°2tan 150°.【精彩点拨】 灵活运用倍角公式转化为特殊角或产生相消项,然后求得.【自主解答】 (1)cos 4 α2-sin 4 α2=⎝⎛⎭⎪⎫cos 2 α2-sin 2 α2⎝ ⎛⎭⎪⎫cos 2 α2+sin 2 α2=cos α.(2)原式=12⎝ ⎛⎭⎪⎫2sin π24cos π24·cos π12=12sin π12·cos π12=14⎝ ⎛⎭⎪⎫2sin π12·cos π12=14sin π6=18.∴原式=18.(3)原式=cos(2×750°)=cos 1 500° =cos(4×360°+60°)=cos 60°=12.∴原式=12.(4)原式=2tan 2150°+1-3tan 2150°2tan 150°=1-tan 2150°2tan 150°=1tan 2×150°=1tan 300°=1tan360°-60°=-1tan 60°=-33.∴原式=-33.二倍角公式的灵活运用:(1)公式的逆用:逆用公式,这种在原有基础上的变通是创新意识的体现.主要形式有: 2sin αcos α=sin 2α,sin αcos α=12sin 2α,cos α=sin 2α2sin α,cos 2 α-sin 2α=cos 2α,2tan α1-tan α=tan 2α. (2)公式的变形:公式间有着密切的联系,这就要求思考时要融会贯通,有目的地活用公式.主要形式有:1±sin 2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,1+cos 2α=2cos 2α,cos 2 α=1+cos 2α2,sin 2α=1-cos 2α2.[再练一题] 1.求下列各式的值: (1)sin π12cos π12;(2)2tan 150°1-tan 2150°;(3)1sin 10°-3cos 10°; (4)cos 20°cos 40°cos 80°.【解】 (1)原式=2sin π12cos π122=sinπ62=14.(2)原式=tan(2×150°)=tan 300°=tan(360°-60°) =-tan 60°=- 3.(3)原式=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=-2sin 10°cos 10°=4sin 20°sin 20°=4.(4)原式=2sin 20°·cos 20°·cos 40°·cos 80°2sin 20°=2sin 40°·cos 40°·cos 80°4sin 20°=2sin 80°·cos 80°8sin 20°=sin 160°8sin 20°=18.利用二倍角公式解决求值问题(1)已知sin α=3cos α,那么tan 2α的值为( ) A.2 B.-2 C.34D.-34(2)已知sin ⎝ ⎛⎭⎪⎫π6+α=13,则cos ⎝ ⎛⎭⎪⎫2π3-2α的值等于( ) A.79 B.13 C.-79D.-13(3)已知cos α=-34,sin β=23,α是第三象限角,β∈⎝ ⎛⎭⎪⎫π2,π. ①求sin 2α的值;②求cos(2α+β)的值.【精彩点拨】 (1)可先求tan α,再求tan 2α;(2)可利用23π-2α=2⎝ ⎛⎭⎪⎫π3-α及π3-α=π2-⎝ ⎛⎭⎪⎫π6+α求值; (3)可先求sin 2α,cos 2α,cos β,再利用两角和的余弦公式求cos(2α+β). 【自主解答】 (1)因为sin α=3cos α, 所以tan α=3,所以tan 2α=2tan α1-tan 2 α=2×31-32=-34. (2)因为cos ⎝ ⎛⎭⎪⎫π3-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π6+α=13,所以cos ⎝⎛⎭⎪⎫2π3-2α=2cos 2⎝ ⎛⎭⎪⎫π3-α-1=2×⎝ ⎛⎭⎪⎫132-1=-79.【答案】 (1)D (2)C(3)①因为α是第三象限角,cos α=-34,所以sin α=-1-cos 2α=-74, 所以sin 2α=2sin αcos α=2×⎝ ⎛⎭⎪⎫-74×⎝ ⎛⎭⎪⎫-34=378. ②因为β∈⎝ ⎛⎭⎪⎫π2,π,sin β=23, 所以cos β=-1-sin 2β=-53, cos 2α=2cos 2α-1=2×916-1=18, 所以cos(2α+β)=cos 2αcos β-sin 2αsin β=18×⎝ ⎛⎭⎪⎫-53-378×23=-5+6724.直接应用二倍角公式求值的三种类型(1)sin α(或cos α)――→同角三角函数的关系cos α(或sin α)――→二倍角公式sin 2α(或cos 2α).(2)sin α(或cos α)――→二倍角公式cos 2α=1-2sin 2 α(或2cos 2α-1). (3)sin α(或cos α)――→同角三角函数的关系⎩⎨⎧cos α或sin α,tan α――→二倍角公式tan 2α.[再练一题] 2.(1)已知α∈⎝ ⎛⎭⎪⎫π2,π,sinα=55,则sin 2α=______,cos 2α=________,tan 2α=________.(2)已知sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-α=16,且α∈⎝ ⎛⎭⎪⎫π2,π,求tan 4α的值. 【导学号:70512043】【解析】 (1)因为α∈⎝ ⎛⎭⎪⎫π2,π,sin α=55,所以cos α=-255,所以sin 2α=2sin αcos α=2×55×⎝ ⎛⎭⎪⎫-255=-45,cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫552=35,tan 2α=sin 2αcos 2α=-43.【答案】 -45 35 -43(2)因为sin ⎝ ⎛⎭⎪⎫π4-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫π4+α, 则已知条件可化为sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=16,即12sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+α=16, 所以sin ⎝ ⎛⎭⎪⎫π2+2α=13,所以cos 2α=13.因为α∈⎝ ⎛⎭⎪⎫π2,π,所以2α∈(π,2π),从而sin 2α=-1-cos 22α=-223,所以tan 2α=sin 2αcos 2α=-22,故tan 4α=2tan 2α1-tan 22α=-421--222=427.利用二倍角公式证明求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.【精彩点拨】 (1)可考虑从左向右证的思路:先把左边降幂扩角,再用余弦的和、差角公式转化为右边形式.(2)证法一:从左向右:切化弦降幂扩角化为右边形式; 证法二:从右向左:利用余弦二倍角公式升幂后向左边形式转化. 【自主解答】 (1)左边=1+A +2B2-1-A -2B2=cos2A +2B +cos 2A -2B2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.(2)法一:左边=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.证明问题的原则及一般步骤:观察式子两端的结构形式,一般是从复杂到简单,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.证明的一般步骤是:先观察,找出角、函数名称、式子结构等方面的差异,然后本着“复角化单角”、“异名化同名”、“变量集中”等原则,设法消除差异,达到证明的目的.[再练一题]3.证明:1+sin 2α2cos 2α+sin 2α=12tan α+12. 【导学号:00680072】 【证明】 左边=sin 2α+cos 2α+2sin αcos α2cos 2α+2sin αcos α=α+cos α22cos αα+cos α=sin α+cos α2cos α=12tan α+12=右边.所以1+sin 2α2cos 2α+sin 2α =12tan α+12成立. [探究共研型]倍角公式的灵活运用探究1 请利用倍角公式化简:2+2+2cos α(2π<α<3π). 【提示】 ∵2π<α<3π, ∴π<α2<3π2,π2<α4<3π4,∴2+2+2cos α=2+4cos2α2=2-2cos α2=4sin2α4=2sin α4. 探究2 如何求函数f (x )=2cos 2x -1-23·sin x cos x (x ∈R )的最小正周期? 【提示】 求函数f (x )的最小正周期,可由f (x )=(2cos 2x -1)-3×(2sin x cos x )=cos 2x -3sin 2x =2sin ⎝ ⎛⎭⎪⎫π6-2x ,知其最小正周期为π.求函数f (x )=53cos 2x +3sin 2x -4sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π4,7π24的最小值,并求其单调减区间.【精彩点拨】 化简f x 的解析式→f x =A ωx +φ+B→ωx +φ的范围→求最小值,单调减区间【自主解答】 f (x )=53·1+cos 2x 2+3·1-cos 2x2-2sin 2x=33+23cos 2x -2sin 2x =33+4⎝⎛⎭⎪⎫32cos 2x -12sin 2x=33+4⎝ ⎛⎭⎪⎫sin π3cos 2x -cos π3sin 2x =33+4sin ⎝⎛⎭⎪⎫π3-2x =33-4sin ⎝⎛⎭⎪⎫2x -π3.∵π4≤x ≤7π24,∴π6≤2x -π3≤π4, ∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤12,22,∴当2x -π3=π4,即x =7π24时,f (x )取最小值为33-2 2.∵y =sin ⎝⎛⎭⎪⎫2x -π3在⎣⎢⎡⎦⎥⎤π4,7π24上单调递增,∴f (x )在⎣⎢⎡⎦⎥⎤π4,7π24上单调递减.本题考查二倍角公式,辅助角公式及三角函数的性质.解决这类问题经常是先利用公式将函数表达式化成形如y =Aωx +φ的形式,再利用函数图象解决问题.[再练一题]4.求函数y =sin 4x +23sin x cos x -cos 4x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递减区间.【解】 y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )(sin 2x -cos 2x )+23sin x cos x =-cos 2x +3sin 2x =2⎝⎛⎭⎪⎫32sin 2x -12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,所以T =2π2=π,y min =-2.由2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,得k π+π3≤x ≤k π+5π6,k ∈Z ,又x ∈[0,π],所以令k =0,得函数的单调递减区间为⎣⎢⎡⎦⎥⎤π3,5π6.1.sin 22°30′·cos 22°30′的值为( ) A.22 B.24C.-22D.12【解析】 原式=12sin 45°=24.【答案】 B2.已知sin x =14,则cos 2x 的值为( )A.78B.18C.12D.22【解析】 因为sin x =14,所以cos 2x =1-2sin 2x =1-2×⎝ ⎛⎭⎪⎫142=78.【答案】 A3.⎝ ⎛⎭⎪⎫cos π12-sin π12⎝ ⎛⎭⎪⎫cos π12+sin π12的值为( ) 【导学号:00680073】 A.-32B.-12C.12D.32【解析】 原式=cos 2π12-sin 2π12=cos π6=32. 【答案】 D4.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.【解析】 sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1=2sin αcos α-cos 2α2cos 2α=tan α-12=-56.小中高 精品 教案 试卷制作不易 推荐下载 11 【答案】 -565.求下列各式的值:(1)cos π5cos 2π5; (2)12-cos 2π8. 【解】 (1)原式=2sin π5cos π5cos 2π52sin π5=sin 2π5cos 2π52sin π5=sin 4π54sin π5=sin π54sin π5=14. (2)原式=1-2cos 2π82=-2cos 2π8-12=-12cos π4=-24.。
第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.3 二倍角的正弦、余弦、正切公式1.理解并掌握二倍角的正弦、余弦、正切公式及其推导过程.2.灵活运用二倍角公式及其不同变形,能正用、逆用公式,进一步学习化归思想方法.基础梳理一、二倍角的正弦、余弦、正切公式α+β=sin αcos β+cos αsin β中,令β=α,在公式sin()得到sin 2α=2sin_αcos_α,这就是二倍角的正弦公式;α+β=cos αcos β-sin αsin β中,令β=α,在公式cos()得到cos 2α=cos2α-sin2α,这就是二倍角的余弦公式,其变形形式有:cos 2α=2cos 2α-1=1-2sin 2α; 在公式tan ()α+β=tan α+tan β1-tan αtan β中,令β=α,得到tan 2α=2tan α1-tan α,这就是二倍角的正切公式.练习1:2sin 15°cos 15°=12.练习2:cos 2α2-sin 2α2=cos_α.练习3:2tan 2α1-tan 22α=tan_4α. 思考应用1. 二倍角的正弦、余弦、正切公式中的角是否为任意角?解析:注意 tan 2α=2tan α1-tan 2α这个公式,因为要使tan 2α,tan α有意义,即2α≠π2+k π且α≠π2+k π(k ∈Z)还有1-tan 2α≠0即tan α≠±1从而推出α≠π4+k π(k ∈Z)综上所述α≠π4+k π2且α≠π2+k π(k ∈Z)而公式S 2α、C 2α中,角α可以是任意角.二、二倍角公式中应注意的问题(1)对“二倍角”公式应该有广泛的理解.如8α是4α的二倍角,α是α2的二倍角,α3是α6的二倍角等等.又如α=2×α2,α2=2×α4,…,α2n =2×α2n +1等等.(2)当α=k π+π2()k ∈Z 时,tan α的值不存在,这时求tan 2α的值可用诱导公式求得.(3)一般情况下,sin 2α≠2sin α,例如sin π3≠2sin π6.(4)公式的逆用变形. 升幂公式: 1+cos α=2cos 2α2,1-cos α=2sin2α2,1±sin 2α=()sin α±cos α2.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.思考应用2.试应用二倍角的正弦、余弦公式化简并讨论函数y =2cos 2⎝⎛⎭⎪⎫x -π4-1的奇偶性与周期性.解析:∵y =2cos 2⎝ ⎛⎭⎪⎪⎫x -π4-1=cos ⎝⎛⎭⎪⎪⎫2x -π2 =cos ⎝⎛⎭⎪⎪⎫π2-2x =sin 2x ,∴函数y =2cos 2⎝⎛⎭⎪⎪⎫x -π4-1为奇函数, 且其最小正周期T =2π2=π.自测自评1.若sin α2=45,cos α2=-35,则角α是(C )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角 解析:∵sin α=2sin α2cos α2=2×45×⎝ ⎛⎭⎪⎫-35=-2425<0,cos α=cos 2α2-sin 2α2=⎝ ⎛⎭⎪⎫-352-⎝ ⎛⎭⎪⎫452=-725<0,∴角α是第三象限角.故选C.2.设sin 2α=-sin α,α∈⎝⎛⎭⎪⎪⎫π2,π,则tan 2α分析:由sin 2α=2sin αcos α及sin 2α=-sin α,α∈⎝⎛⎭⎪⎪⎫π2,π解出α,进而求得tan 2α的值.解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈⎝⎛⎭⎪⎪⎫π2,π,sin α≠0,∴cos α=-12,∴α=23π, ∴tan 2α=tan 43π=tan ⎝⎛⎭⎪⎪⎫π+π3=tan π3= 3.3.sin 20°cos 20°cos 2155°-sin 2155°的值是(A ) A.12 B .-12 C.32 D .-32解析:原式=12sin 40°cos 310°=sin 40°2cos ⎝⎛⎭⎫270°+40° =sin 40°2sin 40°=12.故选A. 4.已知x ∈⎝⎛⎭⎪⎪⎫-π2,0,cos x =45,则tan 2x =-247. 解析:∵x ∈⎝⎛⎭⎪⎪⎫-π2,0,cos x =45, ∴sin x =-35,tan x =-34,∴tan 2x =2tan x 1-tan 2 x=-247.基础提升1.函数y =cos 2x -sin 2x 的最小正周期是(A ) A .π B.π2 C.π4D .2π解析:∵y =cos 2x ,∴函数的最小正周期T =π.故选A. 2.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果是(B )A .tan αB .tan 2αC .1 D.12解析:原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.故选B. 3.化简sin ⎝ ⎛⎭⎪⎫π4+x sin ⎝ ⎛⎭⎪⎫π4-x 的结果是(B ) A.12sin 2x B.12cos 2x C .-12cos 2x D .-12sin 2x解析:原式=⎝ ⎛⎭⎪⎪⎫sin π4cos x +cos π4sin x ⎝ ⎛⎭⎪⎪⎫sin π4cos x -cos π4sin x =⎝ ⎛⎭⎪⎫22cos x +22sin x ⎝ ⎛⎭⎪⎫22cos x -22sin x=12(cos 2x -sin 2x )=12cos 2x .故选B. 4.已知cos α=-35,且π<α<3π2,则cos α2= (B )A.55 B .-55 C.255 D .-255解析:∵cos α=2cos2α2-1,∴cos2α2=1+cos α2=15. ∵π<α<3π2,∴π2<α2<3π4,∴cos α2=-15=-55.故选B. 5.当3π<α<4π时,化简1+cos α2- 1-cos α2(A ) A.2sin ⎝ ⎛⎭⎪⎫α2+π4 B .-2sin ⎝ ⎛⎭⎪⎫α2+π4C.2sin ⎝ ⎛⎭⎪⎫α2-π4 D .-2sin ⎝ ⎛⎭⎪⎫α2-π4解析:1+cos α2-1-cos α2=cos2α2-sin 2α2=⎪⎪⎪⎪⎪⎪⎪⎪cos α2-⎪⎪⎪⎪⎪⎪⎪⎪sin α2,∵3π<α<4π, ∴3π2<α2<2π, ∴sin α2<0,cos α2>0.∴原式=sin α2+cos α2=2sin ⎝ ⎛⎭⎪⎪⎫α2+π4.故选A. 巩固提高6.已知三角形的一个内角α满足sin α+cos α=34,则三角形的形状是(B )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 解析:∵sin α+cos α=34,且sin 2α+cos 2α=1, ∴1+sin 2α=916,∴sin 2α=-716<0,又α是三角形的一个内角,故α是钝角. 故选B.7.已知cos ⎝ ⎛⎭⎪⎫α+π4=35,π2≤α<3π2,求cos ⎝⎛⎭⎪⎫2α+π4的值.解析:∵π2≤α<3π2,∴3π4≤α+π4<7π4, 又cos ⎝⎛⎭⎪⎪⎫α+π4=35 ∴sin ⎝⎛⎭⎪⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45.∴cos 2α=sin ⎝ ⎛⎭⎪⎪⎫2α+π2=2sin ⎝⎛⎭⎪⎪⎫α+π4cos ⎝ ⎛⎭⎪⎪⎫α+π4=2⎝ ⎛⎭⎪⎫-45×35=-2425.又由cos ⎝ ⎛⎭⎪⎪⎫α+π4=35,得2cos 2⎝⎛⎭⎪⎪⎫α+π4-1=-725,即cos 2⎝⎛⎭⎪⎪⎫α+π4=-725,∴sin 2α=725. ∴cos ⎝⎛⎭⎪⎪⎫2α+π4=cos 2αcos π4-sin 2αsin π4=-2425×22-725×22=-31250. 8.已知sin α+cos α=33(0<α<π),求cos 2α的值.解析:∵sin α+cos α=33,∴(sin α+cos α)2=13, 2sin αcos α=-23,又0<α<π,∴sin α>0,cos α<0.∵(sin α-cos α)2=1-2sin αcos α=53,∴sin α-cos α=153.∴cos 2α=(cos α+sin α)(cos α-sin α)=-153×33=-53. 9.已知函数y =12cos 2x +32sin x cos x +1()x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x ()x ∈R 的图象经过怎样的平移和伸缩变换得到?解析:(1)y =12cos 2x +32sin x cos x +1=14⎝⎛⎭⎫2cos 2x -1+14+34·()2sin x cos x +1 =14cos 2x +34sin 2x +54 =12⎝ ⎛⎭⎪⎪⎫cos 2x sin π6+sin 2x cos π6+54 =12sin ⎝⎛⎭⎪⎪⎫2x +π6+54. 所以y 取最大值时,只需2x +π6=π2+2k π⎝⎛⎭⎫k ∈Z , 即x =π6+k π⎝⎛⎭⎫k ∈Z . 所以当函数y 取最大值时,自变量x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =π6+k π,k ∈Z.(2)将函数y =sin x 依次进行如下变换:①把函数y =sin x 的图象向左平移π6个单位长度,得到函数y =sin ⎝⎛⎭⎪⎪⎫x +π6的图象; ②把得到的图象上各点横坐标缩短到原来的12倍(纵坐标不变),得到函数y =sin ⎝⎛⎭⎪⎪⎫2x +π6的图象; ③把得到的图象上各点纵坐标缩短到原来的12倍(横坐标不变),得到函数y =12sin ⎝ ⎛⎭⎪⎪⎫2x +π6的图象; ④把得到的图象向上平移54个单位长度,得到函数 y =12sin ⎝ ⎛⎭⎪⎪⎫2x +π6+54的图象. 综上得到y =12cos 2x +32sin x cos x +1⎝⎛⎭⎫x ∈R 的图象.1.利用同角三角函数基本关系式求值常有两类题:一类是已知角α的某个三角函数值,求其他三角函数值.解法是直接利用三角函数基本关系式求解.另一类是已知tan α的值,求关于sin α,cos α的齐次分式的值的问题,比如求sin α+cos αsin α-cos α的值,因为cos α≠0,所以用cos α除之,将待求式化为关于tan α的表达式,可整体代入tan α=m 的值,从而完成待求式的求值.2.关于化简与证明:(1)sin 2α+cos 2α=1及()sin α+cos α2=1+2sin αcos α是常用的技巧;同时应注意正切化两弦.(2)利用同角三角函数关系式证明时,要熟悉公式,方法有从左至右或从右至左或从两侧同时证明.。
第三章 三角恒等变换1 三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1 已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析 将π6+α看作一个整体,观察π6+α与5π6-α的关系.解 ∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2 设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析 要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α.解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ), ∴2α可能在第三、四象限,又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案 -34三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析 转化为已知角⎝⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝ ⎛⎭⎪⎫π4-x 这个角的三角函数. 解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2³1213=2413.四、观察式子结构特征,灵活凑出特殊角例4 求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析 观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解 f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°), 当x -65°=k ²360°+90°,即x =k ²360°+155°(k ∈Z )时,f (x )有最大值22.2 三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解 因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2³(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2³(-12)=3414=3. 答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1²α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12²sin10π1124sinπ11=sinπ1125sinπ11=132.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x 的最值.解 原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解 原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3 求函数y =2sin x +12sin x -1的值域.解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4 求函数y =sin x +3cos x -4的值域.解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解 y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 试求函数y =sin x +cos x +2sin x cos x +2的最值.解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cosx =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2).四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0; 当t =3,即sin x =1时,y max =83.例8 在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求PQ的最小值.解 AC =a tan θ,P =12AB ²AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC边上的高h =a sin θ, ∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ²(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评 一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4 行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β =55³31010+255³1010=22.因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255³31010-55³1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π.又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x1+sin x +cos x 的奇偶性.[错解] f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评 判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错. 五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值.[错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析] ∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解] ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5 平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析 由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案 π点评 解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析 因为a ⊥b ,所以4³3+5cos α³(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案 -17250点评 解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理.三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析 由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ²n =2sin θ,于是由平面向量的夹角公式得cos π3=m ²n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案2π3点评 解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析 由条件可得|a |=1,|b |=2,a ²b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ²b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案 4点评 解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)²OA →等于( ) A.-32 B.-16 C.16D.32解析 由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)²OA →=2OA →²OA →=2|OA →|2=2³42=32,答案 D点评 平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6 单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1 已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解 设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评 借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值.二、单位圆与恒等变换的交汇例2 已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析 如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案 -43点评 若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3 如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解 (1)由三角函数定义可知,A ⎝⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32,由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评 借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7 教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2²sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1 求函数y =2sin x (sin x -cos x )的最小值. 解 y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ²22+cos 2x ²22 =1-2⎝ ⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2 求函数y =12cos 2x +32sin x cos x +1的单调区间.解 y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3 函数y =cos 22x +4cos 2x sin 2x 的最小正周期是( ) A.2π B.π C.π2 D.π4答案 C解析 y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4 如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为( )A. 2B.- 2C.1D.-1 答案 D解析 y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。
第三章 三角恒等变换1.三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1.已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析.将π6+α看作一个整体,观察π6+α与5π6-α的关系.解.∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2.设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan2α.解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案.-34三、注意发现互余角、互补角,利用诱导公式转化角 例3.已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析.转化为已知角⎝ ⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝ ⎛⎭⎪⎫π4-x 这个角的三角函数. 解.原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4.求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析.观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解.f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°),当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2.三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析.3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案.2点评.常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解.因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评.一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析.cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案.-79点评.正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析.cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案.3点评.解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解.原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin10π1124sinπ11=sinπ1125sinπ11=132.点评.这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3.聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1.求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x的最值.解.原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2.求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解.原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评.形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3.求函数y =2sin x +12sin x -1的值域.解.原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4.求函数y =sin x +3cos x -4的值域.解.原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评.对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5.设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解.y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评.形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6.试求函数y =sin x +cos x +2sin x cos x +2的最值.解.设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评.一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2). 四、利用函数的单调性求解例7.求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解.y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0;当t =3,即sin x =1时,y max =83.例8.在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.解.AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评.一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4.行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1.已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析].由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解].因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例2.已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解].由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析].由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解].由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3.在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解].由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析].在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解].由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4.判断函数f (x )=1+sin x -cos x 1+sin x +cos x 的奇偶性.[错解].f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析].运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解].事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评.判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5.若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解].∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析].∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解].∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5.平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析.由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案.π点评.解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析.因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案.-17250点评.解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析.由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案.2π3点评.解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析.由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ·b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案.4点评.解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于(..) A.-32 B.-16 C.16D.32解析.由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案.D点评.平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6.单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1.已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解.设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评.借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2.已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析.如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案.-43点评.若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3.如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解.(1)由三角函数定义可知,A ⎝ ⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评.借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7.教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1.求函数y =2sin x (sin x -cos x )的最小值. 解.y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ·22+cos 2x ·22 =1-2⎝ ⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4 =1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2.求函数y =12cos 2x +32sin x cos x +1的单调区间.解.y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3.函数y =cos 22x +4cos 2x sin 2x 的最小正周期是(..) A.2π B.π C.π2 D.π4答案.C解析.y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4.如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为(..)A. 2B.- 2C.1D.-1 答案.D解析.y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。
3.1.3 二倍角的正弦、余弦、正切公式学习目标 1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一 二倍角公式的推导思考1 二倍角的正弦、余弦、正切公式就是用α的三角函数表示2α的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?答案 sin 2α=sin(α+α)=sin αcos α+cos αsin α=2sin αcos α;cos 2α=cos(α+α)=cos αcos α-sin αsin α=cos 2α-sin 2α;tan 2α=tan(α+α)=.2tan α1-tan2α思考2 根据同角三角函数的基本关系式sin 2α+cos 2α=1,你能否只用sin α或cos α表示cos 2α?答案 cos 2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1;或cos 2α=cos 2α-sin 2α=(1-sin 2α)-sin 2α=1-2sin 2α.知识点二 二倍角公式的变形1.公式的逆用2sin αcos α=sin 2α,sin αcos α=sin 2α,12cos 2α-sin 2α=cos 2α,=tan 2α.2tan α1-tan2α2.二倍角公式的重要变形——升幂公式和降幂公式升幂公式1+cos 2α=2cos 2α,1-cos 2α=2sin 2α,1+cos α=2cos 2,1-cos α=2sin 2 .α2α2降幂公式cos 2α=,sin 2α=.1+cos 2α21-cos 2α2类型一 给角求值例1 求下列各式的值:(1)cos 72°cos 36°;(2)-cos 215°;1323(3);(4)-.1-tan275°tan 75°1sin 10°3cos 10°解 (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°===.2sin 72°cos 72°4sin 36°sin 144°4sin 36°14(2)-cos 215°=-(2cos 215°-1)=-cos 30°=-.1323131336(3)=2·=2·=-2.1-tan275°tan 75°1-tan275°2tan 75°1tan 150°3(4)-=1sin 10°3cos 10°cos 10°-3sin 10°sin 10°cos 10°=2(12cos 10°-32sin 10°)sin 10°cos 10°=4(sin 30°cos 10°-cos 30°sin 10°)2sin 10° cos 10°==4.4sin 20°sin 20°反思与感悟 对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1 求下列各式的值:(1)cos cos cos ;2π74π76π7(2)+.1sin 50°3cos 50°解 (1)原式=2sin 2π7cos 2π7cos 4π7cos 6π72sin 2π7==sin4π7cos 4π7cos 6π72sin 2π7sin 8π7cos 6π74sin 2π7===.sin π7cos π74sin 2π7sin 2π78sin 2π718(2)原式=====4.cos 50°+3sin 50°sin 50°cos 50°2(12cos 50°+32sin 50°)12×2sin 50°cos 50°2sin 80°12sin 100°2sin 80°12sin 80°类型二 给值求值例2 (1)若sin α-cos α=,则sin 2α= .13答案 89解析 (sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-sin 2α=2⇒sin 2α=1-2=.(13)(13)89(2)若tan α=,则cos 2α+2sin 2α等于( )34A. B.64254825C.1D.1625答案 A解析 cos 2α+2sin 2α==.cos2α+4sin αcos αcos2α+sin2α1+4tan α1+tan2α把tan α=代入,得34cos 2α+2sin 2α===.1+4×341+(34)2425166425故选A.引申探究在本例(1)中,若改为sin α+cos α=,求sin 2α.13解 由题意,得(sin α+cos α)2=,19∴1+2sin αcos α=,19即1+sin 2α=,19∴sin 2α=-.89反思与感悟 (1)条件求值问题常有两种解题途径:①对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢;②对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练2 已知tan α=2.(1)求tan 的值;(α+π4)(2)求的值.sin 2αsin2α+sin αcos α-cos 2α-1解 (1)tan ===-3.(α+π4)tan α+tan π41-tan αtan π42+11-2×1(2)sin 2αsin2α+sin αcos α-cos 2α-1=2sin αcos αsin2α+sin αcos α-2cos2α===1.2tan αtan2α+tan α-22×24+2-2类型三 利用倍角公式化简例3 化简.2cos2α-12tan (π4-α)sin2(π4+α)解 方法一 原式=2cos2α-12·sin (π4-α)cos (π4-α)sin2(π4+α)==2cos2α-12·sin (π4-α)cos (π4-α)cos2(π4-α)2cos2α-1sin (π2-2α)==1.cos 2αcos 2α方法二 原式=cos 2α2·1-tan α1+tan α(22sin α+22cos α)2=cos 2αcos α-sin αcos α+sin α(sin α+cos α)2===1.cos 2α(cos α-sin α)(cos α+sin α)cos 2αcos2α-sin2α反思与感悟 (1)对于三角函数式的化简有下面的要求:①能求出值的应求出值;②使三角函数种数尽量少;③使三角函数式中的项数尽量少;④尽量使分母不含有三角函数;⑤尽量使被开方数不含三角函数.(2)化简的方法:①弦切互化,异名化同名,异角化同角.②降幂或升幂.③一个重要结论:(sin θ±cos θ)2=1±sin 2θ.跟踪训练3 化简下列各式:(1)<α<,则= ;π4π21-sin 2α(2)α为第三象限角,则-= .1+cos 2αcos α1-cos 2αsin α答案 (1)sin α-cos α (2)0解析 (1)∵α∈(,),∴sin α>cos α,π4π2∴=1-sin 2α1-2sin αcos α=sin2α-2sin αcos α+cos2α==sin α-cos α.(sin α-cos α)2(2)∵α为第三象限角,∴cos α<0,sin α<0,∴- 1+cos 2αcos α1-cos 2αsin α=-2cos2αcos α2sin2αsin α=-=0.-2cos αcos α-2sin αsin α1.sin cos 的值等于( )12π12π12A.B. 1418C.D.11612答案 B 解析 原式=sin =.14π6182.sin 4-cos 4等于( )π12π12A.- B.- C. D.12321232答案 B解析 原式=·(sin2π12+cos2π12)(sin2π12-cos2π12)=-=-cos =-.(cos2π12-sin2π12)π6323.= .tan 7.5°1-tan27.5°答案 1-32解析 =·tan 7.5°1-tan27.5°122tan 7.5°1-tan27.5°=tan 15°=1-.12324.设sin 2α=-sin α,α∈,则tan 2α的值是 .(π2,π)答案 3解析 ∵sin 2α=-sin α,∴sin α(2cos α+1)=0,又α∈,(π2,π)∴sin α≠0,2cos α+1=0即cos α=-,12sin α=,tan α=-,323∴tan 2α===.2tan α1-tan2α-231-(-3)235.已知sin =,0<x <,求的值.(π4-x )513π4cos 2xcos (π4+x )解 原式=sin (π2+2x )cos (π4+x )==2sin .2sin (π4+x )cos (π4+x )cos (π4+x )(π4+x )∵sin =cos =,且0<x <,(π4-x )(π4+x )513π4∴+x ∈,π4(π4,π2)∴sin = =,(π4+x)1-cos2(π4+x )1213∴原式=2×=.121324131.对于“二倍角”应该有广义上的理解,如:8α是4α的二倍;6α是3α的二倍;4α是2α的二倍;3α是α的二倍;是的二32α2α4倍;是的二倍;=(n ∈N *).α3α6α2n 2·α2n +12.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:①1+cos 2α=2cos 2α;②cos 2α=;1+cos 2α2③1-cos 2α=2sin 2α;④sin 2α=.1-cos 2α2课时作业一、选择题1.已知α是第三象限角,cos α=-,则sin 2α等于( )513 A.-B.12131213C.-D.120169120169答案 D解析 由α是第三象限角,且cos α=-,513得sin α=-,所以sin 2α=2sin αcos α=2××=,故选D.1213(-1213)(-513)1201692.若tan θ=-,则cos 2θ等于( )13A.- B.- C. D.45151545答案 D解析 tan θ=-,则cos 2θ=cos 2θ-sin 2θ13===.cos2θ-sin2θcos2θ+sin2θ1-tan2θ1+tan2θ453.已知x ∈(-,0),cos x =,则tan 2x 等于( )π245A. B.- C. D.-724724247247答案 D解析 由cos x =,x ∈(-,0),得sin x =-,45π235所以tan x =-,34所以tan 2x ===-,故选D.2tan x1-tan2x 2×(-34)1-(-34)22474.已知sin 2α=,则cos 2等于( )23(α+π4)A. B.1613C. D.1223答案 A解析 因为cos 2=(α+π4)1+cos [2(α+π4)]2==,1+cos (2α+π2)21-sin 2α2所以cos 2===,故选A.(α+π4)1-sin 2α21-232165.如果|cos θ|=,<θ<3π,则sin 的值是( )155π2θ2A.- B.105105C.-D.155155答案 C解析 ∵<θ<3π,|cos θ|=,5π215∴cos θ<0,cos θ=-.15又∵<<,∴sin <0.5π4θ23π2θ2∴sin 2==,θ21-cos θ235sin =-.θ21556.已知α为第二象限角,sin α+cos α=,则cos 2α等于( )33A.-B.-5359C.D.5953答案 A解析 由题意得(sin α+cos α)2=,13∴1+sin 2α=,sin 2α=-.1323∵α为第二象限角,∴cos α-sin α<0.又∵sin α+cos α>0,∴cos α<0,sin α>0,且|cos α|<|sin α|,∴cos 2α=cos 2α-sin 2α<0,∴cos 2α=- 1-sin22α=-=- =-,故选A.1-(-23)21-49537.若cos =,则sin 2α等于( )(π4-α)35A.B.72515C.-D.-15725答案 D解析 因为sin 2α=cos (π2-2α)=2cos 2-1,(π4-α)又因为cos =,(π4-α)35所以sin 2α=2×-1=-,故选D.925725二、填空题8.2sin 222.5°-1= .答案 -22解析 原式=-cos 45°=-.229.sin 6°sin 42°sin 66°sin 78°= .答案 116解析 原式=sin 6°cos 48°cos 24°cos 12°=sin 6°cos 6°cos 12°cos 24°cos 48°cos 6°===.sin 96°16cos 6°cos 6°16cos 6°11610.设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=x ,则tan 2α= .15答案 247解析 cos α==,xx 2+42x 5∴x 2=9,x =±3.又∵α是第二象限角,∴x =-3,∴cos α=-,sin α=,3545∴tan α=-,tan 2α===432×(-43)1-(-43)2-831-169-83-79==.722124711.已知tan x =2,则tan 2(x -)= .π4答案 3412.若tan α+=,α∈,则sin +2cos cos 2α= .1tan α103(π4,π2)(2α+π4)π4答案 0解析 由tan α+=,1tan α103得tan α=或tan α=3.13又∵α∈,∴tan α=3.(π4,π2)∴sin α=,cos α= .310110∴sin +2cos cos 2α(2α+π4)π4=sin 2αcos +cos 2αsin +2cos cos 2απ4π4π4=×2sin αcos α+(2cos 2α-1)+cos 2α22222=sin αcos α+2cos 2α-2222=××+2×2-23101102(110)22=-=0.521022三、解答题13.已知角α在第一象限且cos α=,求的值.351+2cos (2α-π4)sin (α+π2)解 ∵cos α=且α在第一象限,∴sin α=.3545∴cos 2α=cos 2α-sin 2α=-,725sin 2α=2sin αcos α=,2425∴原式=1+2(cos 2αcosπ4+sin 2αsin π4)cos α==.1+cos 2α+sin 2αcos α145四、探究与拓展14.等腰三角形一个底角的余弦值为,那么这个三角形顶角的正弦值为 .23答案 459解析 设A 是等腰△ABC 的顶角,则cos B =,23sin B ===.1-cos2B 1-(23)253所以sin A =sin(180°-2B )=sin 2B=2sin B cos B =2××=.532345915.已知π<α<π,化简:32+.1+sin α1+cos α-1-cos α1-sin α1+cos α+1-cos α解 ∵π<α<π,∴<<π,32π2α234∴=|cos |=-cos ,1+cos α2α22α2=|sin |=sin .1-cos α2α22α2∴+1+sin α1+cos α-1-cos α1-sin α1+cos α+1-cos α=+1+sin α-2(cosα2+sin α2)1-sin α2(sin α2-cos α2)=+(cos α2+sin α2)2-2(cos α2+sin α2)(sin α2-cos α2)22(sin α2-cos α2)=-cos .2α2。
3.2 简单的三角恒等变换(3个课时)一、课标要求: 本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =的周期,最大值和最小值.解:sin y x x =这种形式我们在前面见过,1sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P -14T T -。
3.2 简单的三角恒等变换1、会用已学公式进行三角函数式的化简、求值和证明。
2、会推导半角公式,积化和差、和差化积公式(公式不要求记忆)。
3、进一步提高运用转化、换元、方程等数学思想解决问题的能力。
(预习教材P139—P142)复习:Cos(α+β)=Cos(α-β)=sin(α+β)=sin(α-β)=tan(α+β)=tan(α-β)=sin2α=tan2α=cos2α=二、新课导学※探索新知探究一:半角公式的推导请同学们阅看p139例1..思考1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。
.思考2、半角公式中的符号如何确定?思考3、二倍角公式和半角公式有什么联系?.思考4、代数变换与三角变换有什么不同?变式训练1:求证sin tan 21cos 1cos tan 2sin αααααα=+-=探究二:积化和差、和差化积公式的推导.请同学们阅看p140例2。
.思考 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?.思考2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?.思考3、在例2证明过程中,体现了什么数学思想方法?点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式.变式训练2:课本p142 2(2)、3(3)探究三:三角函数式的变换。
请同学们阅看p140例3。
.思考1、例3的过程中应用了哪些公式?.思考2、如何将形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx 的周期,最大值和最小值.变式3:已知函数x x x x x f 44sin cos sin 2cos )(--=(1)求)(x f 的最小正周期,(2)当]2,0[π∈x 时,求)(x f 的最小值及取得最小值时x 的集合※ 典型例题例1.已知135sin =α,且α在第二象限,求2tan α的值。
第三章 三角恒等变换1 三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1 已知cos ⎝ ⎛⎭⎪⎫π6+α=33,求cos ⎝ ⎛⎭⎪⎫5π6-α的值.分析 将π6+α看作一个整体,观察π6+α与5π6-α的关系.解 ∵⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫5π6-α=π,∴5π6-α=π-⎝ ⎛⎭⎪⎫π6+α.∴cos ⎝⎛⎭⎪⎫5π6-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6+α=-cos ⎝ ⎛⎭⎪⎫π6+α=-33,即cos ⎝ ⎛⎭⎪⎫5π6-α=-33.二、利用目标中的角表示条件中的角 例2设α为第四象限角,若sin 3αsin α=135,则tan 2α=_______________________________.分析 要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan2α.解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限, 又∵cos 2α=45,∴2α在第四象限,∴sin 2α=-35,tan 2α=-34.答案 -34三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.分析 转化为已知角⎝ ⎛⎭⎪⎫π4-x 的三角函数值,求这个角的其余三角函数值,这样可以将所求式子化简,使其出现⎝⎛⎭⎪⎫π4-x 这个角的三角函数.解 原式=sin ⎝ ⎛⎭⎪⎫π2+2x cos ⎝ ⎛⎭⎪⎫π4+x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x=2sin ⎝⎛⎭⎪⎫π4+x =2cos ⎝ ⎛⎭⎪⎫π4-x , ∵sin ⎝ ⎛⎭⎪⎫π4-x =513,且0<x <π4,∴π4-x ∈⎝⎛⎭⎪⎫0,π4.∴cos ⎝ ⎛⎭⎪⎫π4-x =1-sin 2⎝ ⎛⎭⎪⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4 求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析 观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解 f (x )=1-32sin(x -20°)-cos[(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°),当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2 三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂例1 3-sin 70°2-cos 210°=________. 解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2. 答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值:12-1212+12cos 2α(α∈(3π2,2π)). 解 因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式=12-121+cos 2α2= 12-12cos α= sin2α2=sin α2. 点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现前者和后者的一半互余.四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ =1-tan 2θ1+tan 2θ+2tan θ=1-141+14+2×(-12)=3414=3. 答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cosθ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1·α的值例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值.解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos5π1124sinπ11=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin10π1124sinπ11=sinπ1125sinπ11=132.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.3 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x2-sin 2x的最值.解 原函数变形得f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝ ⎛⎭⎪⎫1+12sin 2x ⎝ ⎛⎭⎪⎫1-12sin 2x 2⎝ ⎛⎭⎪⎫1-12sin 2x =14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解 原函数化简得y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎪⎫2x +π4+2.当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3 求函数y =2sin x +12sin x -1的值域.解 原函数整理得sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.∴函数的值域为{y |y ≤13或y ≥3}.例4 求函数y =sin x +3cos x -4的值域.解 原函数整理得sin x -y cos x =-4y -3,∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y 2. ∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得-12-2615≤y ≤-12+2615. 点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +bc cos x +d的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解 y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝ ⎛⎭⎪⎫cos x -a 22-⎝ ⎛⎭⎪⎫a 22+2a +1. 当a2<-1,即a <-2时,f (a )=y min =1,此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 试求函数y =sin x +cos x +2sin x cos x +2的最值.解 设sin x +cos x =t ,t ∈[-2, 2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cosx =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2).四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x 的最值.解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t在[1,3]上为增函数.故当t =1,即sin x =-1时,y min =0;当t =3,即sin x =1时,y max =83.例8 在Rt△ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求P Q的最小值.解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形的边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ,∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ =(2+sin 2θ)24sin 2θ=1+⎝ ⎛⎭⎪⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝ ⎛⎭⎪⎫P Q min =94. 点评 一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.4 行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,则α+β∈(0,π).所以α+β=π4或3π4.[剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22. 因为α,β∈⎝⎛⎭⎪⎫0,π2,所以α+β∈(0,π),所以α+β=π4.二、忽视条件中隐含的角的范围而致错例 2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系,得⎩⎪⎨⎪⎧tan α+tan β=-6, ①tan αtan β=7, ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0,角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π),∴π2<α<π,π2<β<π,∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,得B ∈⎝ ⎛⎭⎪⎫0,π2,且sin B =1213.由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12,∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎪⎫0,π2,∴B >π3.故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x1+sin x +cos x 的奇偶性.[错解] f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x2cos x 2-⎝⎛⎭⎪⎫1-2sin 2x 21+2sin x2cos x 2+⎝⎛⎭⎪⎫2cos 2x 2-1=2sin x 2⎝ ⎛⎭⎪⎫cos x2+sin x 22cos x 2⎝⎛⎭⎪⎫sin x 2+cos x 2=tan x 2,由此得f (-x )=tan ⎝ ⎛⎭⎪⎫-x 2=-tan x2=-f (x ),因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解] 事实上,由1+sin x +cos x ≠0可得sin x +cos x ≠-1,即2sin ⎝⎛⎭⎪⎫x +π4≠-1,从而sin ⎝⎛⎭⎪⎫x +π4≠-22,所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评 判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错.五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2.∴f (0)=2sin ⎝ ⎛⎭⎪⎫θ+π4=±2,∴sin ⎝ ⎛⎭⎪⎫θ+π4=±1,∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析] ∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解] ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .5 平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x ,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析 由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期为T =2π2=π.答案 π点评 解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解. 二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________. 解析 因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案 -17250点评 解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________. 解析 由条件得|m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n |m ||n |=2sin θ22-2cos θ=12,整理得2cos 2θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去). 因为0<θ<π,所以θ=2π3.答案2π3点评 解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________. 解析 由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2= 4a 2+b 2-4a ·b =8-4(3cos θ-sin θ)= 8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案 4点评 解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( ) A.-32 B.-16 C.16D.32解析 由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案 D点评 平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.6 单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1 已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫x 1+x 22,⎝ ⎛⎭⎪⎫y 1+y 22解 设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝ ⎛⎭⎪⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝ ⎛⎭⎪⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评 借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交汇例2 已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解析 如图,过O 作OM ⊥AB 于点M ,不妨设α、β∈[0,2π],则∠AOM =∠BOM =12∠AOB=12(β-α), 又因为∠xOM =α+∠AOM =α+β2, 所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.答案 -43点评 若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3 如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎢⎡⎦⎥⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解 (1)由三角函数定义可知,A ⎝ ⎛⎭⎪⎫32,12,B ⎝ ⎛⎭⎪⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫12θ+π6,sin ⎝ ⎛⎭⎪⎫12θ+π6,故m =cos ⎝ ⎛⎭⎪⎫12θ+π6,n =sin ⎝ ⎛⎭⎪⎫12θ+π6,所以y =cos ⎝ ⎛⎭⎪⎫12θ+π6+sin ⎝ ⎛⎭⎪⎫12θ+π6=2sin ⎝ ⎛⎭⎪⎫12θ+5π12,又因为θ∈⎣⎢⎡⎦⎥⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评 借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.7 教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2·sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1 求函数y =2sin x (sin x -cos x )的最小值. 解 y =2sin x (sin x -cos x )=2sin 2x -2sin x cos x =1-cos2x -sin 2x =1-2⎝ ⎛⎭⎪⎫sin 2x ·22+cos 2x ·22 =1-2⎝⎛⎭⎪⎫sin 2x cos π4+cos 2x sin π4=1-2sin ⎝ ⎛⎭⎪⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2 求函数y =12cos 2x +32sin x cos x +1的单调区间.解 y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎪⎫2x +π6+54.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ). 三、求周期例3 函数y =cos 22x +4cos 2x sin 2x 的最小正周期是( ) A.2π B.π C.π2 D.π4答案 C解析 y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期为T =2π4=π2.故选C. 四、求参数的值例4 如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为( )A. 2B.- 2C.1D.-1 答案 D解析 y =1+a 2sin(2x +φ)(其中tan φ=a ).因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即当x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝ ⎛⎭⎪⎫-π4+a cos ⎝ ⎛⎭⎪⎫-π4=±1+a 2.即22(a -1)=±1+a 2.所以a =-1.故选D.。