11
第十一页,共101页。
时间序列(xùliè)分析
• 商业组织积累了大量的交易历史信息,企业 的各级管理人员希望从这些数据(shùjù)中 分析出一些模式,以便从中发现商业时机,通 过趋势分析,甚至预先发现一些正在涌现出 来的时机.
12
第十二页,共101页。
时间序列(xùliè)分析
– 比方在金融效劳行业,分析人员可以开发针对性 的分析软件,对时间序列数据进行(jìnxíng)分析, 寻找有利可图的交易模式(profitable trading pattern),经过进一步验证之后,操作人员可以使 用这些交易模式进行(jìnxíng)实际的交易,获得 利润
分布在不同地理位置上的传感器,对所处环 境进行感知,不断生成数据.即便对这些数据 进行过滤(guòlǜ),仅保存局部有效数据,长时 间累积的数据量也是非常惊人的
4
第四页,共101页。
大数据(shùjù)时代
大规模数据(shùjù)主要来源2: 网站点击流数 据(shùjù)
为了进行有效的市场营销和推广,用户在网 上的每个点击及其时间都被记录下来;利用 这些数据(shùjù),效劳提供商可以对用户存 取模式进行仔细的分析,从而提供更加具有 针对性的效劳
19
第十九页,共101页。
关系数据库技术(jìshù)
• 关系数据库技术经过了将近 40 年的开展, 成为一门成熟的、同时仍在不断演进的主 流数据管理和分析技术.
• 关系数据管理技术的主流应用包括 (bāokuò)OLTP 应用、OLAP 应用以及数据 仓库等.
• SQL 语言作为存取关系数据库系统的语言 得到了标准化,经过不断扩充,其功能和表达 能力不断增强.
36
第三十六页,共101页。