谐振功率放大器的工作原理负载特性
- 格式:ppt
- 大小:439.50 KB
- 文档页数:4
高频谐振功率放大器的基本工作原理高频谐振功率放大器是一种常用于无线通信和射频系统中的放大器,其基本工作原理是通过谐振电路和功率放大器的相互配合来实现信号的放大。
本文将介绍高频谐振功率放大器的基本构成和工作原理。
一、高频谐振功率放大器的构成高频谐振功率放大器主要由三个部分组成:输入谐振电路、功率放大电路和输出谐振电路。
输入谐振电路是用来接收输入信号并将其滤波、匹配到功率放大器的。
它通常由电容和电感组成的谐振回路构成,能够选择性地传输特定频率的信号。
功率放大电路是用来放大输入信号的。
它通常采用晶体管或管子放大器等器件,通过输入电压的调节来实现信号的放大,同时也可以调节放大器的增益和输出功率。
输出谐振电路是用来匹配和传输已放大的信号到输出负载的。
它通常也由谐振回路组成,能够将功率放大后的信号传输到负载上。
二、高频谐振功率放大器的工作原理高频谐振功率放大器的工作原理基于谐振电路的特性和功率放大器的线性放大特性。
首先,输入信号经过输入谐振电路后,可以选择性地通过特定频率的谐振回路,其他频率的信号会被滤波掉。
这样就能保证只有特定频率的信号能够进入功率放大器进行放大。
然后,经过谐振回路的输入信号进入功率放大电路。
功率放大电路通常采用线性放大器,其输入电压的大小决定了输出信号的放大倍数。
通过调节输入电压的大小,就可以实现对输出信号的放大程度的控制。
最后,放大后的信号经过输出谐振电路,并传输到输出负载上。
输出谐振回路起到了匹配和传输的作用,能够将功率放大后的信号有效地传输给负载。
三、高频谐振功率放大器的优势高频谐振功率放大器具有以下优势:1. 高效性:通过谐振电路的匹配和能量传输,以及功率放大器的线性放大特性,高频谐振功率放大器能够实现高效率的信号放大,提高系统的整体效能。
2. 稳定性:谐振回路能够选择性地传输特定频率的信号,并且能够稳定地工作在谐振状态下,使得输出信号的幅度和频率更加稳定。
3. 可调性:通过调节输入信号的电压,可以实现对输出信号的放大倍数和功率的可调。
四、丙类谐振功率放大器的特性前述可知,丙类谐振功率放大器的特性受集电极回路谐振电阻R、集电极直流电源电压V CC、基极电源电压V BB和基极激励电压振幅U bm影响,下面我们通过分析某一物理量的变化对放大器工作状态和输出信号的影响来分析放大器的特性。
为了简单起见,这里仅介绍其影响,而不介绍具体的分析过程。
1.负载特性负载特性是指在V BB、V CC和U bm不变时,放大器随R变化的特性。
(1)工作状态的变化随着R由小变大,放大器将由欠压状态向临界状态、过压状态依次变化,即先后经历欠压、临界、过压状态。
(2)i C波形的变化随着R由小变大,i C的变化如图2-3-6所示,i C波形的宽度基本不变。
ωtωtωtR增大图2-3-6 i C随R变化的特性(3)U cm、I C0、I Cm1的变化特性随着R由小变大,U cm、I C0、I Cm1的变化特性如图2-3-7所示。
U cmI cm1,临界图2-3-7 U cm、I C0、I Cm1随R的变化(4)P O、P V、P T、η的变化特性随着R由小变大,P O、P V、P T、η的变化特性如图2-3-8所示。
图2-3-8 P O 、P V 、P T 、η的变化特性根据以上分析可得,当R =R opt 时,即放大器处于临界状态时,P O 达到最大值,η也较大,故临界状态为谐振功率放大器的最佳工作状态,与之相应的R opt 称为谐振功放的最佳负载或匹配负载。
欠压状态的P O 与η都较小,而P T 大,因此除个别场合外,一般很少采用。
不难理解,为了保证功放管的安全,在调试谐振功率放大器时应避免其工作在强欠压工作状态(R =0,管耗P T 最大)。
opt临界 η, P P v ,。
5.2 丙类谐振功放的结构与基本原理5.2.1 谐振功率放大器的特点谐振功率放大器工作原理电路如图5-1所示。
从电路结构来看,它是由基极回路和集电极回路两部分组成,基极回路由晶体管基极、发射极、偏置电源BB U 和外加激励信号i u 组成。
集电极回路由晶体管集电极、发射极、集电极直流电源CC U 和集电极负载组成。
同基本放大电路相比,具有以下特点:(1) 放大管是高频大功率晶体管,能承受高电压和大电流。
(2) 输出端负载回路为LC 调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
(3) 基极偏置电路为晶体管发射结提供负偏压(-BB U ),使电路工作在丙类状态。
(4) 输入余弦波()i u t 时,经过放大,集电极输出电压()C u t 是余弦脉冲波形。
-5.2.2 丙类谐振功放的工作原理设输入信号为余弦电压,即t Cos U u im i ω= (5-1)则管子基极、发射极间电压BE u 为B E BB i mu U U C o s t ω=+ (5-2)图5-1所示电路中,晶体管发射结为负偏压(-BB U ),静态时基极电压BB U <on U ,晶体管处截止状态,集电极无电流流过。
当加入信号i u 以后,只有当BE u >on U 时,三极管才导通,基极和集电极才有电流通过。
图5-2(a )、(b)所示为晶体管集电极电流和集电极电压波形图。
图中,max c I 为集电极电流C i 的峰值,CQ U 是集电极静态电压,θ是指一个信号周期内集电极电流导通角2θ的一半,称之为通角。
可见,00≤θ≤1800。
晶体管工作状态可分为:θ=1800,为甲类工作状态;θ=900,为乙类工作状态;θ<900,为丙类工作状态。
由于集电极电压()c u t 与集电极电流()c i t 的关系为c C CQ C R t i U t u )()(-= (5-3)因此,集电极电压()c u t 波形如图5-2(C )所示。
实验三 高频丙类谐振功率放大器实验一、 实验目的1. 进一步掌握高频丙类谐振功率放大器的工作原理。
2. 掌握丙类谐振功率放大器的调谐特性和负载特性。
3. 掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。
4. 掌握测量丙类功放输出功率,效率的方法。
二、实验使用仪器1. 丙类谐振功率放大器实验板2. 200MH 泰克双踪示波器3. FLUKE 万用表4. 高频信号源5. 扫频仪(安泰信) 三、实验基本原理与电路 1.高频谐振功率放大器原理电路高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。
放大器电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。
谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。
iR L高频谐振功率放大器电压和电流关系在集电极电路中,LC 振荡回路得到的高频功率为ecme m c cm m c R U R I U I P 22110212121===集电极电源E C 供给的直流输入功率为0C C E I E P =集电极效率ηC 为输出高频功率P o 与直流输入功率P E 之比,即CC cmm c E C E I U I P P 01021==η静态工作点、输入激励信号幅度、负载电阻,集电极电源电压发生变化,谐振功率放大器的工作状态将发生变化。
如图3-3所示,当C 点落在输出特性(对应u BEmax 的那条)的放大区时,为欠压状态;当C 点正好落在临界点上时,为临界状态;当C 点落在饱和区时,为过压状态。
谐振功率放大器的工作状态必须由集电极电源电压E C 、基极的直流偏置电压E B 、输入激励信号的幅度U bm 、负载电阻R e 四个参量决定,缺一不可,其中任何一个量的变化都会改变C 点所处的位置,工作状态就会相应地发生变化。
丙类高频谐振功率放大器与基极调幅实验报告一. 实验目的1.了解和掌握丙类高频谐振功率放大器的构成及工作原理。
2.了解丙类谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。
3. 掌握丙类谐振功率放大器的输出功率o P 、直流功率D P 、集电极效率C 测量方法。
4. 掌握用频谱仪观测信号频谱、频率及调制度的方法。
二.实验仪器及设备1.调幅与调频接收模块。
2.直流稳压电压GPD-3303D3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器 5.SA1010频谱分析仪三.实验原理1.工作原理高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。
主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。
为了提高效率,晶体管发射结采用负偏置,使放大器工作于丙类状态(导通角θ<90O)。
高频谐振功率放大器基本构成如图1.4.1所示,丙类谐振功率放大器属于大信号非线性放大器,工程上常采用折线分析法,各级电压、电流波形如图1.4.2所示。
(a )原理电路 (b )等效电路图1.4.1 高频功率放大器图1.4.1中,晶体管放大区的转移(内部静态)特性折线方程为:()C C BE BZ i g v U =-1.4.1放大器的外电路关系为:cos BE B b m u E U t ω=+1.4.2cos CE C cm u E U t ω=-1.4.3当输入信号B BZ b u E U <+时,晶体管截止,集电极电流0C i =;当输入信号B BZ b u E U >+时,发射结导通,由式1.4.1、1.4.2和1.4.3得集电极电流C i 为:maxcos cos 1cos C C t i i ωθθ-=- 1.4.4式中,BZ U 为晶体管开启电压,C g 为转移特性的斜率。
以上分析可知,晶体管的集电极输出电流c i 为尖顶余弦脉冲,可用傅里叶级数展开为:++++=t I t I t I I t i m C m C m C C c ωωω3cos 2cos cos )(3210 1.4.5其中,0C I 为C i 的直流分量,m C I 1、2C m I 、…分别为c i 的基波分量、二次谐波分量、…。
实验 丙类高频谐振功率放大器利用选频网络作为负载回路的功率放大器称为谐振功率放大器,它是无线电发射机中的重要单元电路。
根据放大器中晶体管工作状态的不同或晶体管集电极电流导通角θ的范围可分为甲类、甲乙类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ越小,放大器的效率η越高。
如甲类功放的θ=1800,效率η最高也只能达到50%,而丙类功放的θ<900,其效率η可达85%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器,丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
本次实验主要研究以甲类谐振功率放大器为推动级,以丙类谐振功率放大器为末级的混合功率放大器。
一、实验目的1、熟悉丙类高频功率放大器的工作原理,初步了解工程估算的方法。
2、学习丙类高频谐振功率放大器的电路调谐及测试技术。
3、研究丙类高频谐振功率放大器的调谐特性和负载特性。
4、理解基极偏置电压、集电极电源电压、激励电压对放大器工作状态的影响。
5、了解丙类高频谐振功率放大器的设计方法。
二、实验仪器1、高频实验箱 1台2、高频信号发生器 1台3、双踪高频示波器 1台4、扫频仪 1台5、万用表 1块6、高频功率放大器实验板 1块 三、预习要求1、复习高频谐振功率的工作原理及四种特性。
2、分析实验电路,理解各元件的作用及各组成部分的工作原理。
四、实验内容1、电路调谐及调整(调谐技术)。
2、静态测试(测试静态工作点)。
3、动态测试(研究负载特性)。
五、实验原理实验电路如图2-1所示,它是由两级小信号谐振放大器组成的推动级和末级丙类谐振功率放大器构成,其中VT1和VT2组成甲类功率放大器,晶体管VT3组成丙类谐振功率放大器,这两类功率放大器的应用十分广泛,下面简要介绍它们的工作原理及基本计算方法。
(一)、甲类功率放大器 1、静态工作点如图2-1所示,晶体管VT1组成甲类功率放大器,工作在线性放大状态。
其中R 1和R 2为基极偏置电阻;R 5为直流负反馈电阻;它们共同组成分压式偏置电路以稳定放大器的静态工作点。
实验二 高频谐振功率放大器在通信系统中, 高频谐振功率放大电路,是无线电发射机的重要组成部分,它的主要功用是实现对高频已调波信号的功率放大, 然后经天线将其转化为电磁波辐射到空间,以实现用无线信道的方式完成信息的远距离传送。
所以研究高频功率放大器的主要任务是怎样以高效率输出最大的高频功率。
因此, 高频功放常采用效率较高的丙类工作状态, 即晶体管集电极电流导通时间小于输入信号半个周期的工作状态,导通角090≤θ。
虽然功率增益比甲类和乙类小,但效率η却比甲类和乙类高。
一般可达到80%。
同时, 为了滤除丙类工作时产生的众多高次谐波分量, 采用LC 谐振回路作为选频网络, 故称为高频谐振功率放大器,显然,谐振功放属于窄带功放电路。
一、实验目的1.掌握高频谐振功率放大器的电路结构特点、基本功能与工作原理。
2.掌握高频谐振功率放大器的调谐方法和掌握高频谐振功率放大器的调谐特性,负载特性以及激励电压、偏置电压、电源电压变化时对其工作状态的影响。
3.了解高频谐振功率放大器的主要性能指标意义,掌握测试方法。
学会电路设计方法。
二、实验设备与仪器高频实验箱 WYGP-3或GP-4 一台 双踪示波器 TDS-1002 一台 高频信号发生器 WY-1052 一台 频率特性测试仪 BT-3C 一台 万用表 一块三、实验任务与要求1、高频谐振功放的基本电路结构高频谐振功率放大器的电路构成,除电源电路外,主要由晶体管、输入激励电路、输出谐振回路三个部分组成,谐振功率放大器原理电路如图2-1所示。
图中b u 为输入交流信号,B E 是基极偏置电压,调整B E ,可改变放大器的导通角,以使放大 图2-1 谐振功率放大器的工作原理 器工作在导通角090≤θ丙类状态。
C E 是集电极电源电压。
集电极外接LC 并联谐振回路的功用是作放大器负载,实现滤波选频和阻抗匹配。
2、高频谐振功率放大器的工作原理与主要性能指标放大器工作时,设输入信号电压:t U u bm b ωcos =则加到晶体管基极,发射级的有效电压为: t U U U u u bm BB BB b BE ωcos +-=-= 由晶体管的转移特性曲线可知,如图2-2所示:当BZ BE U <u 时,管子截止,0=c i 。