光纤光栅
- 格式:ppt
- 大小:7.26 MB
- 文档页数:50
光纤光栅技术
嘿,朋友们!今天咱来聊聊光纤光栅技术,这可真是个神奇的玩意儿啊!
你想想看,这光纤光栅就好像是一条细细的魔法线,藏着好多奥秘呢!它能感知各种物理量的变化,就像有一双超级敏锐的眼睛。
比如说温度变了,它能知道;压力有了变化,它也能立刻察觉。
这多厉害呀!
它在很多领域都大显身手呢!在通信领域,那就是它的舞台呀,让信息跑得飞快,就像闪电一样。
而且在一些监测工作中,比如桥梁啊、大坝啊这些重要的建筑,光纤光栅就像忠诚的卫士,时刻守护着它们的安全。
咱说个例子吧,要是没有光纤光栅,那些大桥的健康状况咱可就没那么容易知道啦。
万一有点啥问题没及时发现,那后果可不堪设想啊!有了它,就能早早地给我们发出信号,提醒我们该注意啦,该维修啦。
这就好比你身体不舒服了,会咳嗽或者发烧来告诉你一样,光纤光栅就是这些建筑的“信号使者”。
还有啊,在一些科研实验里,它也是个得力的小助手呢!能帮助科学家们获得更准确的数据,就像给科学家们配上了一副超级清晰的眼镜。
你说这光纤光栅是不是特别牛?它虽然小小的,可作用却大得很呢!它就像是隐藏在各种设备和系统中的小英雄,默默地发挥着自己的力量。
而且啊,随着科技的不断进步,光纤光栅技术肯定还会有更多更厉害的应用呢!以后说不定我们生活中的方方面面都离不开它啦。
它会变得越来越重要,就像我们离不开手机一样。
所以啊,大家可别小瞧了这光纤光栅技术,它真的是个宝啊!咱得好好了解它、利用它,让它为我们的生活带来更多的便利和安全。
怎么样,是不是对光纤光栅技术有了新的认识呀?。
光纤光栅(FBG)是一种反射型光纤传感器,其反射光谱的中心波长与光纤光栅的折射率调制深度和写入的光栅长度相关。
光纤光栅的反射光谱具有窄线宽、稳定性好、抗干扰能力强等特点,因此被广泛应用于各种光纤传感和通信系统。
高分辨率(HR)光纤光栅是一种特殊的光纤光栅,其反射光谱具有高分辨率和高精度测量等特点。
HR光纤光栅通常采用高折射率调制深度和高光栅长度的技术实现,其反射光谱的线宽非常窄,可以精确测量和监测光纤中的微小变化。
因此,HR光纤光栅在光纤传感和通信领域具有广泛的应用前景。
除了HR光纤光栅外,还有长周期光纤光栅(LPFG)、全息光纤光栅等不同类型的光纤光栅,每种光纤光栅都具有其独特的特点和应用场景。
光纤光栅结构
光纤光栅结构:光纤纤芯、光纤包层、外包层以及折射率周期变化;它们是构造光纤光栅的主要结构。
光纤光栅的原理:光纤光栅是通过光敏性材料将外界射入光纤内部的光线与内部的纤芯所含有的离子混杂,发生互相作用,使患上光纤线芯产生折射,致使其折射的变化周期有了波动(或者呈规律性波动,或者呈不规律性波动),在光纤光栅的内部构成1个相对于而言的栅位,使其充当1个狭小的滤光器或者者反射器,至于究竟是反射器仍是滤光器,这要取决于这个窄带究竟起的是投射仍是反射的作用。
光纤光栅是1种通过必定法子使光纤纤芯的折射率产生轴向周期性调制而构成的衍射光栅,是1种无源滤波器件。
因为光栅光纤拥有体积小、熔接消耗小、全兼容于光纤、能埋入智能材料等优点,并且其谐振波长对于温度、应变、折射率、浓度等外界环境的变化比较敏感,因而在光纤通讯以及传感领域患上到了广泛的利用。
光纤光栅法
光纤光栅法是一种基于光纤光栅技术的测量方法,主要用于测量物体的位移、应变、温度等物理量。
光纤光栅是一种在光纤中通过光栅刻蚀技术形成的周期性结构,具有对光的相位和强度敏感的特性。
通过测量光栅反射光强度随外界物理量的变化,可以实现对被测量的位移、应变、温度等参数的测量。
光纤光栅法的主要应用领域包括航空航天、土木建筑、能源电力、交通运输、生物医学等。
在航空航天领域,光纤光栅法可以用于飞机结构的在线监测,以检测飞机结构的位移、应变、温度等参数;在土木建筑领域,光纤光栅法可以用于桥梁、隧道、高层建筑等结构的在线监测,以检测结构的位移、应变、温度等参数;在能源电力领域,光纤光栅法可以用于发电机、变压器、输电线路等设备的在线监测,以检测设备的位移、应变、温度等参数;在交通运输领域,光纤光栅法可以用于汽车、火车、飞机等交通工具的在线监测,以检测交通工具的位移、应变、温度等参数;在生物医学领域,光纤光栅法可以用于人体组织的位移、应变、温度等参数的测量,以实现对疾病的早期诊断和治疗。
光纤光栅131978年,加拿大Hill 等人使用如左图所示的实验装置将488nm(后来他人用514.5nm)的氩离子激光注入到掺锗光纤中,首次观察到入射光与反射光在光纤纤芯内形成的干涉条纹场而导致的纤芯折射率沿光纤轴向的周期性调制,从而发现了光纤的光敏特性,并制成了世界上第一个光纤布拉格光栅(FBG )。
FBG是在光纤纤芯内形成的空间相位光栅,通过光栅前向传输的模式与后向传输的模式之间发生耦合,而使前向传输的模式的能量传递给后向传输的模式,形成对入射光波的反射。
其反射波长即布拉格波长为λB=2n effΛ,其中,Λ为光栅周期,neff为纤芯等效折射率。
输入谱传输谱反射谱应变引起波长移动I I I4二、光纤光栅的写入方法用掺杂光纤制作光栅的方法主要有内写入法和外写入法。
内写入技术是一个全息制作过程,它利用光在纤芯内传播时形成驻波所产生的双光子吸收的原理。
外写入技术则主要有相位掩模法、逐点写入法、干涉法、成栅技术等。
内写入法利用菲涅尔反射,使得反射光与入射光在适当条件下干涉,在纤芯内部形成驻波。
由于光致折射效应,在沿光纤长度的方向通过曝光可以诱导出周期性的折射率变化形成光栅。
这样制作的光栅,曝光时对装置的稳定性要求很高,得到的折射率的变化较小,仅为10-6,而且Bragg波长不易改变。
由于该技术的写入效率低,写入的Bragg波长受激光写入波长限制等原因,制作的光栅性能太差,所以该方法已较少使用。
89四、应变和温度的同时测量1、温度减敏和补偿封装①由于光纤光栅对应力和温度的交叉敏感性,在实际应用中,经常在应力传感光栅附近串联或并联一个参考光栅(只感受温度变化),用于消除温度变化的影响。
这种方法需要消耗更多的光栅,增加了传感系统的成本。
②采用热膨胀系数极小,且对温度不敏感的材料对光纤光栅进行封装,将很大程度上减小温度对应力测量精确性的影响。
③采用具有负温度系数的材料进行封装或设计反馈机构,可以对光纤光栅施加一定的(反向)应力,以补偿温度导致的布喇格波长的漂移,使ΔλT/λ的值趋近于0。
光纤上产生光栅的方法光栅是一种具有周期性折射率变化的光学器件,可以在光纤中产生一系列的衍射点或波阵面,被广泛应用于光纤通信、光纤传感、光纤激光器等领域。
本文将介绍光纤上产生光栅的几种方法。
1. 激光干涉法激光干涉法是一种常用的产生光纤光栅的方法。
它基于干涉原理,在光纤上通过两束相干光的干涉,形成周期性的折射率变化。
具体操作时,将一束激光经过分束器分为两束,分别通过两根光纤,再通过反射镜聚焦后重新合成。
由于两束光的路径差与波长的关系,可以在光纤中形成一定的折射率变化,从而产生光栅。
2. 光子法光子法是一种通过高能量光子对光纤进行直接作用的方法。
其原理是利用高能量光子的能量传递和聚焦作用,使光纤内部发生局部折射率变化。
通过光子法可以制作出非常复杂的光栅结构,并且具有较高的可调谐性。
3. 激光光纤拉伸法激光光纤拉伸法是一种通过拉伸光纤来产生光栅的方法。
通过在光纤两端施加拉力,使光纤发生形变,从而改变其折射率分布。
在拉伸的过程中,可以产生周期性的折射率变化,形成光纤光栅。
这种方法制备的光栅具有较高的稳定性和可重复性。
4. 电子束曝光法电子束曝光法是一种利用电子束对光纤进行局部曝光的方法。
在光纤表面涂覆一层感光胶片,然后利用电子束在感光胶片上进行局部曝光,通过显影和腐蚀等工艺步骤,可以在光纤上形成周期性的折射率变化,从而制备光栅。
5. 光纤拉伸压纹法光纤拉伸压纹法是一种通过在光纤表面施加压力来产生光栅的方法。
具体操作时,将光纤置于两个金属滚轮之间,通过调节滚轮的距离和转速,施加不同的压力和速度,可以在光纤表面形成周期性的压纹,从而产生光栅。
总结起来,光纤上产生光栅的方法包括激光干涉法、光子法、激光光纤拉伸法、电子束曝光法和光纤拉伸压纹法等。
每种方法都有其特点和适用范围,可以根据实际需求选择合适的方法来制备光纤光栅。
随着光纤技术的不断发展,相信在未来会有更多更高效的方法用于光纤光栅的制备。
光纤光栅光纤光栅是利用光纤材料的光敏性,通过紫外光曝光的方法将入射光相干场图样写入纤芯,在纤芯内产生沿纤芯轴向的折射率周期性变化,从而形成永久性空间的相位光栅,其作用实质上是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。
当一束宽光谱光经过光纤光栅时,满足光纤光栅布拉格条件的波长将产生反射,其余的波长透过光纤光栅继续传输。
定义光纤光栅是利用光纤材料的光敏性(外界入射光子和纤芯内锗离子相互作用引起的折射率永久性变化),在纤芯内形成空间相位光栅,其作用的实质是在纤芯内形成(利用空间相位光栅的布拉格散射的波长特性)一个窄带的(投射或反射)滤光器或反射镜。
主要特点光纤光栅具有体积小、波长选择性好、不受非线性效应影响、极化不敏感、易于与光纤系统连接、便于使用和维护、带宽范围大、附加损耗小、器件微型化、耦合性好、可与其他光纤器件融成一体等特性,而且光纤光栅制作工艺比较成熟,易于形成规模生产,成本低,因此它具有良好的实用性,其优越性是其他许多器件无法替代的。
这使得光纤光栅以及基于光纤光栅的器件成为全光网中理想的关键器件。
1978年K.O.Hill等人首先在掺锗光纤中采用驻波写入法制成第一只光纤光栅,经过二十多年来的发展,在光纤通信、光纤传感等领域均有广阔的应用前景。
随着光纤光栅制造技术的不断完善,光纤光敏性逐渐提高;各种特种光栅相继问世,光纤光栅某些应用已达到商用化程度。
应用成果日益增多,使得光纤光栅成为最有发展前途、最具代表性和发展最为迅速的光纤无源器件之一。
分类随着光纤光栅应用范围的日益扩大,光纤光栅的种类也日趋增多。
根据折射率沿光栅轴向分布的形式,可将紫外写入的光纤光栅分为均匀光纤光栅和非均匀光纤光栅。
其中均匀光纤光栅是指纤芯折射率变化幅度和折射率变化的周期(也称光纤光栅的周期)均沿光纤轴向保持不变的光纤光栅,如均匀光纤Brag光栅(折射率变化的周期一般为0.1um量级)和均匀长周期光纤光栅(折射率变化的周期一般为100um量级);非均匀光纤光栅是指纤芯折射率变化幅度或折射率变化的周期沿光纤轴向变化的光纤光栅,如chirped 光纤光栅(其周期一般与光纤Bragg光栅周期处同一量级)、切趾光纤光栅、相移光纤光栅和取样光纤光栅等。
第1篇一、前言光栅光纤作为一种新型的通信传输介质,具有传输速率高、带宽宽、抗干扰能力强等优点,被广泛应用于通信、电力、石油、交通等领域。
为确保光栅光纤施工质量,提高施工效率,特制定本方案。
二、施工准备1. 施工队伍组织一支具有丰富光栅光纤施工经验的专业施工队伍,包括项目经理、技术负责人、施工人员等。
2. 施工材料(1)光栅光纤:根据工程需求,选择符合国家标准的光栅光纤。
(2)光纤接头:根据光栅光纤的型号,选择相应的光纤接头。
(3)光纤熔接机:用于连接光纤。
(4)光纤测试仪:用于测试光纤的传输性能。
(5)光纤铺设工具:如光纤切割机、光纤剥皮机、光纤敷设机等。
3. 施工设备(1)工程车辆:用于运输施工材料及设备。
(2)安全防护用品:如安全帽、手套、防护眼镜等。
(3)通信设备:如对讲机、电话等。
4. 施工图纸及技术文件熟悉施工图纸,了解工程特点、施工要求及注意事项。
同时,熟悉相关技术文件,如光栅光纤施工规范、验收标准等。
三、施工工艺1. 光纤铺设(1)根据设计图纸,确定光栅光纤的路径。
(2)在路径上确定光纤敷设位置,并对敷设位置进行标记。
(3)使用光纤敷设机将光栅光纤铺设到预定位置。
(4)对敷设好的光纤进行检查,确保其位置、长度符合设计要求。
2. 光纤连接(1)根据光栅光纤的型号,选择相应的光纤接头。
(2)使用光纤熔接机将光纤接头与光栅光纤熔接。
(3)检查熔接质量,确保接头牢固、无气泡。
(4)对熔接后的光纤进行测试,确保其传输性能符合要求。
3. 光纤保护(1)对敷设好的光纤进行保护,防止其受到外力损伤。
(2)在光纤敷设过程中,注意保护光纤的弯曲半径,避免光纤损坏。
(3)对敷设好的光纤进行固定,防止其脱落。
四、施工质量控制1. 施工过程质量控制(1)严格按照施工图纸及技术文件进行施工,确保施工质量。
(2)加强施工现场管理,确保施工安全。
(3)对施工人员进行培训,提高施工技能。
2. 施工质量验收(1)对敷设好的光纤进行外观检查,确保其无损伤、无弯曲。
光纤光栅的种类很多,主要分两大类:一是Bragg光栅(也称为反射或短周期光栅),二是透射光栅(也称为长周期光栅)。
光纤光栅从结构上可分为周期性结构和非周期性结构,从功能上还可分为滤波型光栅和色散补偿型光栅;其中,色散补偿型光栅是非周期光栅,又称为啁啾光栅(chirp光栅)。
目前光纤光栅的应用主要集中在光纤通信领域和光纤传感器领域。
1)短周期光纤光栅的制作a)内部写入法内部写入法又称驻波法。
将波长488nm的基模氛离子激光从一个端面耦合到错掺杂光纤中,经过光纤另一端面反射镜的反射,使光纤中的入射和反射激光相干涉形成驻波。
由于纤芯材料具有光敏性,其折射率发生相应的周期变化,于是形成了与干涉周期一样的立体折射率光栅,它起到了Bragg反射器的作用。
已测得其反射率可达90%以上,反射带宽小于200MHZ。
此方法是早期使用的,由于实验要求在特制锗掺杂光纤中进行,要求锗含量很高,芯径很小,并且上述方法只能够制作布拉格波长与写入波长相同的光纤光栅,因此,这种光栅几乎无法获得任何有价值的应用,现在很少被采用。
示。
用准分子激光干涉的方法,Meltz等人首次制作了横向侧面曝光的光纤光栅。
用两束相干紫外光束在接错光纤的侧面相干,形成干涉图,利用光纤材料的光敏性形成光纤光栅。
栅距周期由∧=λuv/(2sinθ)给出。
可见,通过改变人射光波长或两相干光束之间的夹角,可以改变光栅常数,获得适宜的光纤光栅。
但是要得到高反射率的光栅,则对所用光源及周围环境有较高的要求。
这种光栅制造方法采用多脉冲曝光技术,光栅性质可以精确控制,但是容易受机械震动或温度漂移的影响,并且不易制作具有复杂截面的光纤光栅,目前这种方法使用不多。
b)光纤光栅的单脉冲写入由于准分子激光具有很高的单脉冲能量,聚焦后每次脉冲可达J•cm-2,近年来又发展了用单个激光脉冲在光纤上形成高反射率光栅。
英国南安普敦大学的Archambanlt等人对此方法进行了研究,他们认为这一过程与二阶和双光子吸收有关。
光纤光栅工作原理
光纤光栅是一种通过周期性的折射率变化来调制和操控光信号的装置。
它通过在光纤中引入一定间隔的折射率变化,使得光信号在光栅区域内发生衍射和干涉,从而实现光的调制和传输。
光纤光栅的工作原理基于光的衍射和干涉效应。
当光信号经过光栅区域时,光波会与光栅的周期性折射率变化发生相互作用。
这种相互作用导致光波被分成多个不同波矢的分波,并且这些分波之间会相互干涉。
光纤光栅中最常见的一种类型是光纤布拉格光栅,它的工作原理是利用布拉格衍射。
在布拉格光栅中,光信号经过光纤表面的周期性折射率变化时,会产生由Brillouin区反射的衍射光。
当输入波长满足波矢的布拉格条件时,光信号会被布拉格光栅反射到特定的角度,从而实现光信号的反射和传输。
另一种常见的光栅类型是光纤长周期光栅。
与布拉格光栅不同,长周期光栅的折射率变化周期较长,通常在几毫米到几厘米的量级。
它通过对光的相位进行调制,从而实现光的传输和调制。
长周期光栅通常用于光纤滤波器、传感器和其他光学器件中。
总结来说,光纤光栅利用光的衍射和干涉效应来调制和操控光信号。
通过调节光栅的折射率变化周期和幅值,可以实现对光信号的控制和调制。
这种特性使得光纤光栅在光通信、光传感和光学器件等领域有着广泛的应用。
光纤光栅的原理
光纤光栅是一种利用光纤中的光学相互作用产生的特殊结构。
它由一系列等间距的折射率变化组成,用于操控光波的传播和耦合。
光纤光栅的原理基于光的干涉效应和光纤的光栅效应。
在光纤中引入一定的折射率变化,可以导致光波的反射、折射和耦合等现象。
这种折射率变化可以通过各种方法实现,如热处理、紫外辐照、光刻等。
当光波传播过光纤光栅时,通过光纤与光栅之间的相互作用,光波与光栅之间产生干涉。
这种干涉效应可使得光波在光栅中发生反射和透射。
反射光波将返回原来的传播方向,而透射光波则继续向前传播。
光纤光栅的关键在于折射率的变化。
通过调整光栅中的折射率和折射率变化的情况,可以控制光波在光栅中的传播特性。
例如,光栅中的折射率变化可以使得某个特定波长的光波发生衍射,即只有这个特定波长的光波会被传播或反射,其余波长的光波则被抑制或衰减。
光纤光栅有着广泛的应用,包括光通信、光传感、光谱分析等领域。
它可以实现对光波的分析、调制、调制和过滤等操作,同时具有体积小、重量轻、灵活性强等优点。
因此,光纤光栅在光纤通信和光学传感等领域中有着重要的应用前景。