帮你总结导数题型(共12类)
- 格式:doc
- 大小:360.50 KB
- 文档页数:20
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。
在高中数学中,导数是一个常考的内容。
为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。
一、常数函数求导常数函数的导数始终为零。
这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。
二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。
设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。
例如,对于y=x^2,求导后得到dy/dx=2x。
对于y=x^3,求导后得到dy/dx=3x^2。
这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。
三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。
即dy/dx = e^x。
这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。
四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。
根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。
这个公式对于解决对数函数的导数问题非常有用。
五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。
我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。
这些公式可以根据求导的定义进行推导,同学们需要牢记。
六、复合函数求导复合函数指的是由多个函数复合而成的函数。
对于复合函数的导数求解,我们可以利用链式法则。
链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。
通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。
导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。
掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。
下面将对导数的20种主要题型进行总结并给出解题方法。
1.求函数在某点的导数。
对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。
导数的定义是取极限,计算函数在这一点的变化率。
基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。
2.求函数的导数表达式。
已知函数表达式,要求其导数表达式。
可以使用基本求导法则,并注意链式法则和乘积法则的应用。
3.求高阶导数。
如果已知函数的导数表达式,要求其高阶导数表达式。
可以反复应用求导法则,每次对函数求导一次得到导数表达式。
4.求导数的导函数。
导数的导函数是指对导数再进行求导的过程。
要求导函数时,可以反复应用求导法则,迭代求取导数的导数。
5.利用导数计算函数极值。
当函数的导数为0或不存在时,可能是函数的极值点。
可以利用导数求函数的极值。
6.利用导数判定函数的增减性。
根据函数的导数正负性可以判定函数的增减性。
如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。
7.利用导数求函数的最大最小值。
当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。
要求函数全局最大最小值时,可以使用导数判定。
当导数从正数变为负数时,可能是函数取得最大值的点。
8.利用导数求函数的拐点。
如果函数的导数在某一点发生变号,该点可能是函数的拐点。
可以使用导数的二阶导数判定。
9.利用导数求函数的弧长。
曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。
通过导数求取弧长元素,并积累求和得到曲线的弧长。
10.利用导数求函数的曲率。
曲率表示曲线弯曲程度的大小,可以通过导数求取。
曲率的求取公式是曲线的二阶导数与一阶导数的比值。
11.利用导数求函数的速度和加速度。
导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。
题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。
例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。
题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。
求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。
导数压轴题12类常考题型导数是微积分中的重要概念,常常在各种数学问题中应用。
下面我将列举12类常考的导数题型,并从多角度进行解析。
1. 基本函数的导数:常数函数的导数,常数的导数为0。
幂函数的导数,幂函数的导数可以使用幂函数的导数公式进行求解。
指数函数的导数,指数函数的导数等于函数本身乘以底数的自然对数。
对数函数的导数,对数函数的导数可以使用对数函数的导数公式进行求解。
三角函数的导数,三角函数的导数可以使用三角函数的导数公式进行求解。
2. 反函数的导数:如果函数f(x)和g(x)互为反函数,则f'(x)和g'(x)互为相反数。
3. 复合函数的导数(链式法则):如果y=f(u)和u=g(x)是可导函数,则复合函数y=f(g(x))的导数可以使用链式法则进行求解。
4. 隐函数的导数:如果有一个方程F(x, y) = 0定义了y作为x的函数,则可以使用隐函数定理和求导法则求解隐函数的导数。
5. 参数方程的导数:如果有一个参数方程x=f(t)和y=g(t),则可以使用导数的定义求解参数方程的导数。
6. 反常导数:如果函数在某些点上不可导,但在其他点上可导,则称这个函数具有反常导数。
7. 高阶导数:如果一个函数的导数仍然可导,则可以计算其高阶导数。
8. 导数在几何中的应用:导数可以用来求函数的切线和法线方程,以及判定函数的极值和拐点。
9. 导数在物理中的应用:导数可以用来描述物体的速度、加速度等物理量。
10. 导数在经济学中的应用:导数可以用来分析经济学模型中的边际效应和弹性。
11. 导数在生物学中的应用:导数可以用来描述生物学模型中的生长速率和变化率。
12. 导数在工程中的应用:导数可以用来优化工程问题,如最小化成本、最大化效益等。
以上是导数常考题型的一些分类和解析,希望能帮助到你。
如果你有具体的导数问题,欢迎继续提问。
高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
高考压轴题:导数题型及解题方法
(自己总结供参考)
一.切线问题
题型1 求曲线在处的切线方程。
)(x f y =0x x =方法:为在处的切线的斜率。
)(0x f '0x x =题型2 过点的直线与曲线的相切问题。
),(b a )(x f y =方法:设曲线的切点,由求出,进而)(x f y =))(,(00x f x b x f x f a x -='-)()()(0000x 解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x.
(1)求曲线y=f (x )在点x=2处的切线方程;(答案:)
0169=--y x (2)若过点A 可作曲线的三条切线,求实数的取值范围、
)2)(,1(-≠m m A )(x f y =m (提示:设曲线上的切点();建立的等式关系。
将问题转化为关
)(x f y =)(,00x f x )(,00x f x 于的方程有三个不同实数根问题。
(答案:的范围是)
m x ,0m ()2,3--练习 1. 已知曲线x
x y 33
-=(1)求过点(1,-3)与曲线相切的直线方程。
答案:(或x x y 33-=03=+y x )
027415=--y x (2)证明:过点(-2,5)与曲线相切的直线有三条。
x x y 33
-=2.若直线与曲线相切,求的值. (答案:1)0122=--+e y x e x
ae y -=1a 题型3 求两个曲线、的公切线。
)(x f y =)(x g y =。
导数题型总结例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,假设在区间D上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数〞,实数m 是常数,4323()1262x mx x f x =-- 〔1〕假设()y f x =在区间[]0,3上为“凸函数〞,求m 的取值围;〔2〕假设对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数〞,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=--2()3g x x mx ∴=-- 〔1〕()y f x =在区间[]0,3上为“凸函数〞,则 2()30g x x mx ∴=--<在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:别离变量法:∵当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值〔03x <≤〕恒成立, 而3()h x x x=-〔03x <≤〕是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数〞则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立〔视为关于m 的一次函数最值问题〕30110x >⇒-<<> 例2),10(32R b a b x a ∈<<+-],2+a 不等式()f x a '≤恒成立,求a 的取值围. 解:〔Ⅰ〕()()22()433f x x ax a x a x a '=-+-=---令,0)(>'x f 得)(x f 的单调递增区间为〔a ,3a 〕令,0)(<'x f 得)(x f 的单调递减区间为〔-∞,a 〕和〔3a ,+∞〕∴当*=a 时,)(x f 极小值=;433b a +- 当*=3a 时,)(x f 极大值=b.〔Ⅱ〕由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立① 则等价于()g x 这个二次函数max min ()()g x ag x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴2x a=01,a <<12a a a a +>+=〔放缩法〕即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。
导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。
2.变更主元:已知谁的范围就把谁作为主元。
3.根分布。
4.判别式法:结合图像分析。
5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。
基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。
2.画两图或列表。
3.由图表可知。
另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。
例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。
已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。
解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。
当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。
根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。
由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。
因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。
导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。
解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。
2.常数函数求导:题目描述:求函数f(x)=c的导数。
解答步骤:常数函数的导数始终为零,即f'(x)=0。
3.指数函数求导:题目描述:求函数f(x)=e^x的导数。
解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。
4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。
解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。
5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。
解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。
6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。
解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。
7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。
解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。
对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。
8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。
解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。
对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。
9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。
解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。
10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。
解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。
导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。
- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。
- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。
- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。
2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。
- 解析:- 设u = 2x+1,则y = u^5。
- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。
- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。
- 所以y^′ = 5u^4·2=10(2x + 1)^4。
二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。
- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。
- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。
2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。
- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。
- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。
- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。
2. 给出函数解析式和区间,求函数在区间内的单调性。
二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。
4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。
三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。
6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。
四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。
8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。
五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。
10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。
六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。
12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。
七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。
14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。
八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。
导数大题20种题型导数是微积分中非常重要的概念,它用于描述函数在某一点处的变化率。
在求解导数的过程中,我们会遇到各种不同的题型。
下面是导数大题的20种题型。
1. 基本函数的导数:求解常见函数(如多项式函数、指数函数、对数函数、三角函数等)在给定点处的导数。
2. 复合函数的导数:根据链式法则,求解复合函数在给定点处的导数。
3. 反函数的导数:利用反函数的性质,求解反函数在给定点处的导数。
4. 参数方程的导数:对参数方程中的x和y分别求导,得到x和y 关于另一个参数的导数。
5. 隐函数的导数:根据隐函数的定义,利用全微分的性质,求解隐函数在给定点处的导数。
6. 对数导数:利用对数函数的导数性质,求解函数的对数导数。
7. 高阶导数:求解函数的二阶、三阶或更高阶导数。
8. 反复函数的导数:对反复函数进行多次求导,得到各阶导数。
9. 参数曲线的切线与法线:利用导数的定义,求解参数曲线在给定点处的切线和法线方程。
10. 极限定义的导数:利用导数的极限定义,求解函数在给定点处的导数。
11. 极值问题:利用导数的性质,求解函数的极大值和极小值点。
12. 函数的单调性:根据导数的正负性,判断函数在给定区间上的单调性。
13. 曲线的凹凸性:根据导数的增减性,判断函数在给定区间上的凹凸性。
14. 弧长问题:利用导数的定义,求解曲线弧长。
15. 曲率问题:利用导数的定义,求解曲线在给定点处的曲率。
16. 泰勒展开:利用导数的性质,对函数进行泰勒展开。
17. 函数的积分:利用导数和积分的关系,求解函数的积分。
18. 参数方程的弧长:利用导数的定义,求解参数方程表示的曲线的弧长。
19. 高阶导数的应用:利用高阶导数的性质,求解函数的拐点、极值点等特殊点。
20. 物理问题的应用:利用导数的物理意义,求解物理问题中的速度、加速度等相关概念。
这些题型覆盖了导数的基本概念及其在不同问题中的应用。
通过解答这些题型,我们可以更好地理解导数的性质及其在数学和物理中的重要作用。
导数题型目录1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y=f(x)在点x=x0处的导数f′(x0)(3)根据直线点斜式方程,得切线方程:y-y0=f′(x0)(x-x0).②点(x0,y0)不是切点求切线:(1)设曲线上的切点为(x1,y1);(2)根据切点写出切线方程y-y1=f′(x1)(x-x1) (3)利用点(x0,y0)在切线上求出(x1,y1);(4)把(x1,y1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f′(x0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=f(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B.1C.2D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=6.(2012新课标全国)设点P 在曲线y=21e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为A. 2B.827 C. 22 D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围.11. 已知函数f (x )=4x-x 4,x ∈R.(1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证:对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a +431.导数专题二 利用导数四则运算构造新函数一.知识点睛导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x) [ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
方法一1:移项,对含有导数的不等式进行移项处理,使不等式右边归0(因为导数与0的大小决定函数单调性)2:观察,①若不等式左边是只含有f ′(x)的式子,可以用和差函数求导法则构造②若不等式左边含有f ′(x)和f(x),并且中间是+,可以用积函数求导法则构造 ③若不等式左边含有f ′(x)和f(x),并且中间是-,可以用商函数求导法则构造方法二:根据题目所给出的抽象不等式,或者要比较大小的两个式子进行构造,在进行构造时要看结构,把抽象不等式两边或者要比较大小的式子结构相同化,根据相同结构构造以x为主元的新函数。
三.常考题型:构造新函数解不等式或比较大小四.跟踪练习1. (2015广东调研)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R,f ’(x )>2,则f (x )>2x+4的解集为 (和差)2.(2016贵州遵义)设函数f ’(x )是函数f (x )的导函数,对任意x ∈R ,有f (x )+f ’(x )>0,则x 1 <x 2时,结论正确的是(积)A: e x2f (x 1)>e x1f (x 2) B: e x2f (x 1)<e x1f (x 2)C: e x1f (x 1)>e x2f (x 2) D: e x1f (x 1)<e x2f (x 2)3.若定义在R 上的函数f (x )满足f (x )+f ’(x )>1,f (0)=4,则不等式f (x )>x e3+1的解集为 (积与差)4.若函数y=f (x )在R 上可导且满足不等式xf ’(x )>﹣f (x )恒成立,且常数a ,b 满足a>b ,则下列不等式一定成立的是(积)A: af (b )>bf(a) B:af(a)>b(b) C: af(a)<bf(b) D: a(b)<b(a)5.(2015济南)已知函数f (x )的定义域为(0,+∞),f ’(x )为f (x )的导函数,且满足f (x )<﹣xf ’(x ),则不等式f (x+1)>(x ﹣1)f (x 2﹣1)的解集是 (积)6.(2015新课标全国卷Ⅱ)设函数f ’(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x>0时,xf ’(x )- f (x )<0,则使得f (x )>0成立的x 的取值范围是(商)A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)7.设函数是R 上的奇函数,且f (-1)=0,当x >0时,(x 2+1)f ’(x )-2xf(x)<0,则不等式f(x )>0的解集为 (商)8.已知定义在R 上的函数f (x ),满足3f (x )>f ’(x )恒成立,且f (1)=e 3,则下列结论正确的是(商)A.f (0)=1B.f(0)<1C.f(2)<e 6D.f(2)>e 69.已知定义在R 上的奇函数f (x )满足2016f (-x )<f ’(x )恒成立,且f (1)=e -2016,则下列结论正确的是(商)A.f(2016)<0B.f(2016)<22016 eC.f(2)<0 D 。
f (2)> e -403210.已知定义在(0,+∞)上的函数f (x )的导函数f ’(x )满足xf ’(x )+f (x )=xx ln ,且f (e )=e 1,其中e 为自然对数的底数,则不等式f (x )+e >x+e1的解集是() A.(0,e 1) B. (0,e ) C.(e 1,e ) D.(e 1,+∞) 11.已知函数F (x )=lnx (x >1)的图像与G (x ) 的图像关于直线y=x 对称,设函数f (x )的导函数 f ’(x )=x x f x x G )(34)( (x >0) ,且 f ’(3)=0,则当x >0 时,f (x ) A.有极大值,无极小值 B.有极小值,无极大值 C.既无极大值,也无极小值 D.既有极大值,也有极小值导数专题三 利用导数研究函数单调性一.知识点睛1.函数的导数与单调性之间的联系:①一般地,设函数y=f (x )在某个区间内可导,如果在这个区间内有f ′(x)>0,那么函数y=f (x )为这个区间内的增函数;如果在这个区间内f ′(x)<0,那么函数y=f (x )为这个区间内的减函数。
②反过来,如果可导函数y=f (x )在某个区间内单调递增,则在这个区间内f ′(x)≥0恒成立;如单调递减,则在这个区间内f ′(x)≤0恒成立2.利用导数研究函数的单调性步骤:1.求定义域2.求导3.令f ′(x)>0,解不等式得增区间;令f ′(x)<0解不等式求得减区间,注意函数如果有几个单调增(减)区间,中间只能用,不能用∪连接。
二.方法点拨1.已知具体的函数确定它的单调区间,直接求导解不等式,确定单调区间2.已知含参数的函数单调性,求参数的值或参数范围,处理方法有:①分离参数,转化为f ′(x)≥(≤0)恒成立问题②导数含参分类讨论3.已知含参数的函数,确定单调性,需要对参数范围进行分类讨论,分类讨论的4个标准:①二次项系数的正负②f ′(x)=0根的个数③f ′(x)=0根的大小④f ′(x)=0的根与给定区间的位置关系,另外需要优先判断能否利用因式分解法求出根4.已知函数有n 个单调区间,求参数范围,等同于方程f ′(x)=0在此区间上有n-1个根,并且根不是重根。
5.已知函数在给定区间上不单调 f ′(x)在此区间上有异号零点f ′(x)=0有根(且根不是重根)6.已知函数在给定区间上有单调区间,等同于f ′(x) >0或f ′(x) < 0在给定区间上有解常考题型:⑴利用导数研究已知函数的单调性⑵导数含参求单调区间⑶已知含参函数单调性求参数范围⑷函数有几个单调区间的问题三.跟踪练习1.已知函数f (x )=kx 3+3(k-1)x 2-k 2+1(k >0)的单调减区间是(0,4),则k 的值是 .2.(2016全国卷Ⅰ)若函数f (x )=x-31sin2x+asinx 在(-∞,+∞)单调递增,则a 的取值范围是A.[-1,1]B.[-1,31]C.[-31,31]D.[-1,-31] 3.(2015四川)如果函数f (x )=21(m-2)x 2+(n-8)x+1(m ≥0,n ≥0)在区间[21,2]上单调递减,那么mn 的最大值为A.16B.18C.25D.281 4.(2014新课标全国Ⅱ)若函数f (x )=kx-lnx 在区间(1,+∞)单调递增,则k 的取值范围是A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞]5.(2016全国卷⒈第一小题)已知函数f (x )=(x-2)e x +a (x-1)2,讨论函数f (x )的单调性.6.设函数f (x)=ax 2+bx+k(k >0)在x=0处取得极值,且曲线y=f (x )在点(1,f (1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a ,b 的值(Ⅱ)若函数g (x )=)(x f xe ,讨论g (x )的单调性. 7.已知函数f (x )=x 3+(1-a )x 2-a (a+2)x+b (a ,b ∈R )(Ⅰ)若函数f (x )的图像过原点,且在原点处的切线斜率是-3,求a ,b 的值.(Ⅱ)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.8.设a 为实数,函数f (x )=ax 3-ax 2+(a 2-1)x 在(-∞,0)和(1,+∞)都是增函数,求a的取值范围.9. 设f (x )=ax 3+x 恰有三个单调区间,试确定a 的取值范围,并求出这3个单调区间.10.已知函数f (x )=x+alnx 在x=1处的切线与直线x+2y=0垂直,函数g (x )=f(x)+21x 2-bx (1).求实数a 的值(2).若函数g(x)存在单调递减区间,求实数b 的取值范围(3).设x 1,x 2(x 1< x 2)是函数g (x )的两个极值点,若b ≥27,求g (x 1)-g (x 2)的最小值导数专题四 利用导数研究函数的极值和最值一.知识点睛1.可导函数的极值:①如果函数y=f(x)在点x=a 的函数值f(a)比它在点x=a 附近其他点的函数值都小,f ′(a)=0;而且在点x=a 附近的左侧f ′(x)<0,右侧f ′(x)>0,我们就把a 叫做函数的极小值点,f(a)叫做函数的极小值.②如果函数y=f(x)在点x=b 的函数值f(b)比它在点x=b 附近其他点的函数值都大,f ′(b)=0;而且在点x=b 附近的左侧f ′(x)>0,右侧f ′(x)<0,我们就把b 叫做函数的极大值点,f(b)叫做函数的极大值.注意:①.可导函数y=f (x )在点x 0取得极值的充要条件是f ′(x 0)=0,且在点x 0左侧和右侧,f ′(x)异号②.导数为0的点不一定是极值点,比如y=x 3即导数为0的点是该点为极值点的必要条件,而不是充分条件。