重力勘探在油气勘探中的作用
- 格式:doc
- 大小:19.50 KB
- 文档页数:3
地球物理勘探技术在油气勘探中的应用研究地球物理勘探技术是指利用地球物理原理和方法获取地下信息的一种探测技术,它包括地震勘探、电磁勘探、放射性勘探以及重力、磁力勘探等方法。
在油气勘探中,地球物理勘探技术是一项非常重要的探测手段,具有探测深度大、探测精度高、成本低等优势,因此,在实际的油气勘探中,地球物理勘探技术具有非常广泛的应用。
一、地震勘探技术在油气勘探中的应用地震勘探技术是油气勘探中最常用的一种地球物理勘探技术,它是利用地震波在地下的传播规律来探测地下岩石、构造和介质性质的一种方法。
根据地震波的传播路径和特殊性质,综合利用地震数据的反演分析,可以探测到油气藏的分布以及岩石的性质和形态。
在地震勘探中,要通过对地震波产生和传播的模拟及分析,以及地震记录数据的处理和解释,来获得地质构造和地下介质信息。
二、电磁勘探技术在油气勘探中的应用电磁勘探技术是指利用电磁波在地下不同介质中传播时的反射和折射规律来探测地下目标的一种方法。
电磁勘探的主要原理是广泛应用的电磁感应法,它是利用自然电场或人造电场在地下产生电流,从而诱发电磁场并测量地下电磁场数据,进一步计算电阻率和电导率来诊断地下介质的物性。
电磁勘探技术可用于探测油气储层、盐丘潜在地下水资源等。
三、重力勘探技术在油气勘探中的应用重力勘探技术是指利用重力场的变化反映地下不同物质体积密度变化的一种探测技术。
重力勘探利用重力数据反演得到地下物质的密度分布情况,从而揭示地下构造和体积性质的变化规律,以识别油气藏的分布和形态。
四、磁力勘探技术在油气勘探中的应用磁力勘探技术是指利用地球磁场和磁性物质的相互作用反演地下物质的特性和性质的一种探测技术。
通过差磁勘探和磁梯度勘探以及磁法接地阻抗测量和地下磁滞回线追踪等技术,可以获取地下物质的磁性信息,在油气勘探中可用来识别炭氢化合物的迹象、探测盐丘潜在地下水资源等。
总之,地球物理勘探技术在油气勘探中扮演着非常重要的角色,它具有探测深度大、探测精度高、成本低等优势,为油气勘探提供了科学、准确的方法。
石油勘探中的地球物理方法石油勘探是指通过一系列的地质、地球物理、地球化学和工程技术手段,寻找和确定地下存在的石油和天然气资源。
地球物理方法在石油勘探中起着重要的作用,它通过测量和分析地下的物理现象,为勘探人员提供了宝贵的信息。
本文将重点介绍石油勘探中常用的地球物理方法。
一、重力法重力法是石油勘探中最早应用的地球物理方法之一。
它利用地球上的重力场差异来确定地下的密度变化情况,从而推测出潜在的石油和天然气储集区域。
勘探人员会在勘探区域进行测量,记录地面上不同点的重力数值,并进行分析和解释。
重力法对于勘探深度较浅、密度差异较大的油气藏具有较好的适应性。
二、磁法磁法是通过测量地球磁场的方向和大小变化,来寻找地下油气储藏的一种方法。
它基于地球上不同岩石的磁性差异,通过测量地面上的磁场数值,推测出可能存在石油或天然气的区域。
磁法主要用于勘探深度较浅、岩石磁性差异较大的地区。
三、电法电法是通过测量地下电阻率变化来判断地下是否存在石油或天然气储藏的方法。
电法利用地下岩石或含油气层的电导率不同,从而在地面上进行电阻率测量,得到电阻率分布图,推测出可能存在油气的区域。
电法适用于勘探深度较深、岩石导电性有明显差异的地区。
四、地震法地震法是石油勘探中最常用的地球物理方法之一。
它通过人工产生地震波,并观测和分析地下岩石中的波传播情况,以确定地下是否存在石油或天然气储藏。
地震方法适用于勘探深度较大、岩石孔隙性和速度变化较大的地区。
勘探人员会在勘探区域进行地震勘探,收集和处理地震数据,并利用地震剖面图来解释和定位潜在的油气藏。
综上所述,地球物理方法在石油勘探中具有不可替代的作用。
重力法、磁法、电法和地震法都是常用的地球物理勘探手段,通过测量和分析地下的物理现象,为勘探人员提供重要的信息。
在实际勘探中,常常会综合运用多种地球物理方法,以提高勘探效果。
地球物理方法的不断发展和创新,为石油勘探带来了更高的效率和准确性,为石油行业的发展做出了重要贡献。
重力勘探在石油勘探中的应用重力勘探是一种重要的地球物理勘探方法,它在石油勘探中发挥着重要的作用。
通过测量地球重力场的变化,可以揭示地下构造、岩性、储层性质等信息,为石油勘探和开发提供重要的参考。
本文将探讨重力勘探在石油勘探中的应用。
一、重力勘探原理重力勘探利用地球重力场的变化来推断地下的构造和岩石性质。
地球重力场是指地球表面上任意一点的重力加速度大小和方向。
地表下的不同密度分布会引起地球重力场的变化,从而反映出地下的构造。
重力勘探的关键是通过测量地球重力场的变化来推断地下构造。
在重力勘探中,测量的基本单位是重力加速度的变化量,通常以重力异常值表示。
地下不同密度的岩石会引起重力异常,密度越大的岩石引起的重力异常越大。
二、重力勘探在石油勘探中的应用1. 揭示油气圈闭重力勘探可以揭示油气圈闭的存在和分布情况。
油气圈闭是指地下成藏岩石中形成的油气聚集空间,是石油勘探的关键目标。
由于油气圈闭的密度通常较低,所以在地球重力场中会引起重力异常。
通过重力勘探可以识别出油气圈闭的位置和形态,为油气勘探提供重要线索。
2. 确定构造形态重力勘探可以帮助准确揭示地下的构造形态,包括断层、隆起、坳陷等。
地下构造形态与油气的分布关系密切,通过重力勘探可以分析不同构造形态下的油气聚集规律。
例如,在坳陷区域往往会形成有利的油气聚集条件,重力勘探可以帮助确定坳陷的边界和内部构造。
3. 识别储层性质重力勘探可以帮助识别地下储层的性质,包括厚度、密度和孔隙度等。
储层是油气聚集的重要储存空间,了解储层的性质对勘探和开发具有重要意义。
通过重力勘探可以推断出储层的厚度、密度和孔隙度,为储层评价和开发提供重要依据。
4. 辅助勘探决策重力勘探可以为勘探决策提供重要的辅助信息。
通过分析重力异常的分布规律,可以评价勘探的前景和风险,判断勘探区域的可行性。
重力勘探还可以为选择钻井点位和确定钻探方案提供参考,提高勘探效率和成功率。
三、重力勘探的局限性及发展趋势尽管重力勘探在石油勘探中具有重要的应用价值,但也存在一定的局限性。
地球物理学技术在油气勘探中的应用在当今社会,油气资源的开发和利用一直是全球各国经济发展的关键。
为了更有效地发现储量丰富的油气田,地球物理学技术被广泛应用于油气勘探领域。
本文将探讨地球物理学技术在油气勘探中的应用,并分析其在提高勘探效率、减少勘探风险和优化勘探方案方面的作用。
一、地震勘探技术地震勘探技术是基于地震波传播原理,通过对地下介质反射和折射特性的解读,获得地下结构信息的一种技术。
在油气勘探中,地震勘探技术被广泛用于确定油气藏的位置、形态、厚度和性质等。
通过布设感应器并记录地震波的传播和反射情况,地球物理学家可以在计算机中生成地震剖面图,从而揭示地下岩石、油气层的分布情况。
地震勘探技术的应用使得油气勘探方案的设计更加精确和有效。
通过分析地震剖面图中的地质构造,可以确定最有可能存在油气储集层的区域,从而减少勘探区域范围,降低勘探风险。
与传统方法相比,地震勘探技术不仅能够提高油气勘探的准确性和效率,还能降低勘探成本,节约时间和资源。
二、重力勘探技术重力勘探技术是利用地球重力场的变化来研究地下物性和地质构造的一种技术。
油气储层通常密度较高,而包围储层的地层密度较低,因此在地下存在密度的差异。
重力勘探技术通过检测重力场的微小变化,可以确定地下油气储藏的可能位置。
重力勘探技术在油气勘探中的应用主要包括确定油气储集层的形状、大小、密度和厚度等参数。
通过收集和分析不同位置的重力数据,地球物理学家可以绘制出反映地下油气分布的重力异常地图。
这些地图可以为勘探人员提供重要的参考,以确定最有利的勘探区域,提高勘探成功率。
三、电磁勘探技术电磁勘探技术是利用电磁场在地下传播的特性,探测地下岩石和油气层的一种技术。
油气层与周围地层的电磁特性不同,因此通过研究地下电磁场的响应,可以揭示油气储层的存在和性质。
电磁勘探技术在油气勘探中的应用包括电磁测井和电磁地层测深。
电磁测井可以用于确定地下岩石的导电性,通过测量电磁波在地下传播的衰减情况,可以定量计算出地下岩石和油气层的含油饱和度。
地球物理相关文献地球物理研究中的重力勘探方法引言:地球物理学是研究地球内部结构、地球物质的物理特性和地球各层之间的相互关系的学科。
而地球物理勘探作为地球物理学的一个分支,是通过测量和分析地球的物理场,来了解地球内部结构和地下资源分布的方法。
本文将重点介绍地球物理勘探中的重力勘探方法。
重力勘探原理:重力勘探是通过测量地球表面的重力场,来推断地下物质的分布和性质。
重力勘探的基本原理是根据万有引力定律来测量地球表面上的重力加速度。
根据牛顿定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
因此,在地球表面上,由于地下不同物质的分布和密度不同,引起的重力场也会有所变化。
重力勘探利用这种重力场的变化来推断地下物质的分布和性质。
重力勘探应用:重力勘探在地球科学研究和资源勘探中有着广泛的应用。
在地质勘探中,重力勘探可以用来识别地下构造的边界和异常,如断裂带、褶皱带等。
在石油勘探中,重力勘探可以用来确定油气藏的边界和储量。
在矿产勘探中,重力勘探可以用来寻找金属矿床、煤炭矿床和地下水资源等。
此外,重力勘探还可以用于地震预测、地质灾害监测和环境地球物理研究等领域。
重力勘探仪器:重力勘探主要使用的仪器是重力仪。
重力仪是一种测量重力加速度的仪器,通常采用弹簧测力计或震荡体测重仪原理。
重力仪测量的是地球表面上的重力加速度,需要进行一系列的校正,如地形校正、大气校正和仪器漂移校正等。
校正后得到的重力数据可以通过数字处理和解释,得到地下物质的分布和性质。
重力勘探数据处理与解释:重力勘探数据处理与解释是重力勘探中的关键步骤。
数据处理包括数据滤波、数据平差和数据反演等过程,旨在去除噪声和提取地下信息。
数据解释则是根据重力异常的形态、大小和分布等特征,来推断地下物质的性质和分布。
在数据解释中,常用的方法有重力异常剖面解释、重力异常异常解释和重力异常反演等。
结论:重力勘探作为地球物理勘探的重要方法之一,具有广泛的应用前景。
地球物理探测技术在石油勘探中的应用石油是目前全球能源消费的主要来源之一,对人类社会的发展起到至关重要的作用。
为了寻找更多的石油储量,石油勘探成为了一个永恒的话题。
而在石油勘探中,地球物理探测技术无疑是最为有效和广泛应用的技术之一。
一、地球物理勘探技术概述地球物理勘探技术是一种利用地球物理现象探查地下地质构造和找寻矿产资源的方法。
它主要包括地震勘探、电磁勘探、重力勘探、磁力勘探、地热勘探等多种手段。
其中,地震勘探是最为常用的一种。
地震勘探主要是利用地震波的传播规律以及地球物质对地震波的响应来推断地下地质构造的情况,这种探测方式凭借着它所占有的“突变性”和“非线性”这些特点,使得勘探性质相当优异。
电磁勘探则是利用地球物质在不同电磁场下获得的电磁信号来探测地下物质结构。
重力勘探则是通过观测地球重力场的变化,了解地下不同岩性、密度变化的情况。
磁力勘探则是利用地球磁场与地下矿体磁性相互作用的效应进行探测。
总而言之,地球物理勘探技术是通过观测地球物质状态、性质变化及其与物理场的相互作用等现象,综合解释和判断形成地下构造和物质质量的科学技术。
二、地球物理探测技术在石油勘探中的应用地球物理探测技术在石油勘探中具有广泛的应用,主要应用在以下方面。
1.地震勘探地震勘探是石油勘探中最广泛和最有效的地球物理勘探技术。
它通过地震波的释放、传播和反射等现象,综合运用地球物理、数学、计算机等学科的知识和技术,来研究地下地质构造,判断储油性和确定勘探方案。
在地震勘探中,人们将地震波源放在地面或井口上,利用探测设备记录地震波在不同深度下的反射、折射等现象,并通过计算机模拟、绘画等理论和实验方法,构建出地下地质模型,从而判断储层的状况和区位,并制定合适的勘探方案。
2.电磁勘探电磁勘探是指通过观测地球物质在不同电磁场下获得的电磁信号来探测地下物质结构。
在石油勘探中,电磁勘探主要应用于地下水和油藏勘探。
其原理是利用电磁波在地下的传播和反射,测定地下介电常数和电阻率等物理参数,推测地下介质的性质和形态,进而圈定有石油资源的潜在区域。
重力勘探在石油勘探中的运用提纲:1. 重力勘探的原理和方法;2. 重力勘探在石油勘探中的应用;3. 重力勘探在石油勘探中的优点和局限;4. 重力勘探技术的发展趋势;5. 重力勘探案例分析。
一、重力勘探的原理和方法重力勘探利用地球引力场的变化来探测地下物质的情况。
地球引力场是由地球质量分布产生的,地球上的岩石和矿物对引力场的影响程度不同,导致显著的局部变化。
重力勘探通过测量这些变化来确定地下物质的存在和分布。
重力勘探的基本方法是通过对地面上点的引力场的测量,将地面上的引力场变化转化为地下物质的分布情况。
常用的测量方法有钻孔测重法、基准重力点测量法和飞机等载重力测量法等。
二、重力勘探在石油勘探中的应用重力勘探在石油勘探中的应用主要是针对地下的盆地结构和沉积物特征进行探测。
盆地结构是地质构造的一个重要部分,对于石油勘探来说,盆地结构的认识和探测是非常关键的。
重力勘探可以通过测定地表重力场的变化来了解盆地结构的形态和分布。
同时,沉积物的特征也可以通过重力勘探来进行探测,例如沉积物的密度和厚度等。
三、重力勘探在石油勘探中的优点和局限重力勘探在石油勘探中的优点是可以较好地反映地下物质的分布情况,对于盆地结构和沉积物特征等方面提供了帮助,能够为石油勘探提供较好的技术支持。
但其局限在于无法提供区域内具体物质的种类和特征信息,且对于特定地质条件下不同的矿物和岩石反应也存在差异性。
四、重力勘探技术的发展趋势随着科技不断发展,重力勘探技术也有了较大的发展。
未来重力勘探技术的发展趋势是:一是在高精度和高分辨率方面的提升;二是将重力勘探技术和其它地球物理勘探技术整合起来,形成多参数综合成像技术,提高地下物质分布信息的准确性和可靠性;三是结合人工智能技术,提高勘探的效率和准确性。
五、重力勘探案例分析1.内蒙古某油田重力勘探:该油田位于塔里木盆地东北缘,是一个含气藏的油气田,该区域地质复杂,为引力异常区,利用重力勘探技术可以较好地反映出地下气藏的分布情况,为该油田的开采提供了科学依据。
石油勘探中的重力测量技术与解释石油勘探是一项复杂而精密的过程,其中重力测量技术被广泛应用。
通过对地球重力场的测量和解释,石油勘探人员可以了解地下油气资源的分布情况、油藏的形状和特征等重要信息。
本文将就石油勘探中的重力测量技术与解释进行详细探讨。
一、重力测量技术概述重力测量技术是利用地球重力场的变化来推断地下物质的分布情况和构造特征的一种方法。
通过测量某个地点的重力加速度值,并与参照点进行比较,可以揭示地下物质分布的差异并推断可能的油气储集区域。
常用的重力测量设备包括重力仪器、测量系统和数据处理软件。
二、重力测量在石油勘探中的应用1. 地质构造解释重力测量可以帮助石油勘探人员对地下构造进行解释和预测。
根据地下岩石密度的变化,可以绘制出重力异常图像,用于判断构造的深度和类型。
在勘探过程中,重力异常图像可以辅助识别断层、褶皱和构造块状变形等地质构造,为油气勘探提供重要参考。
2. 沉积盆地勘探在沉积盆地勘探中,重力测量技术可以确定盆地的边界、补给渠道和沉积源区等重要信息。
重力测量可以揭示盆地内部的密度差异,根据不同岩石的密度变化规律,推断沉积物的类型和厚度,评估石油勘探的潜力。
此外,在盆地勘探过程中,重力测量还可以用于判断断陷带、隆起带和盆地侧限等构造特征。
3. 油气储集区预测重力测量技术在油气储集区预测中起着重要作用。
通过重力测量获得的地下密度差异数据,可以推断潜在的油气储集区位置。
油气的储藏通常具有较高的密度,通过观测重力加速度的变化,可以辨别出潜在的油气富集区域。
这对于勘探人员确定钻探目标和优化资源开发具有重要意义。
三、重力测量数据处理与解释重力测量数据处理是重力测量技术中不可或缺的环节。
数据处理的目标是从原始数据中提取出地下油气储集区的信息。
常用的数据处理方法包括重力异常分析、滤波、当前分解和重力反演等。
通过这些处理方法,可以得到重力异常的分布图像,并配合其他地质和地球物理数据进行综合解释,从而辅助决策和勘探工作。
重力勘探名词解释1. 什么是重力勘探?重力勘探是一种地球物理勘探技术,通过测量地球表面上的重力场变化来研究地下的物质分布和结构。
重力场是由于地球质量分布不均匀而引起的,因此通过测量不同位置上的重力加速度变化可以推断出地下的密度分布情况。
2. 为什么要进行重力勘探?进行重力勘探可以帮助我们了解地下的岩石、矿产资源和构造特征等信息,对于石油、天然气、矿产资源等的勘探与开发具有重要意义。
此外,重力勘探还可以应用于地质灾害预测、环境监测和工程建设等领域。
3. 重力勘探常用的仪器设备3.1 重力计重力计是用来测量地球表面上某一点上的重力加速度的仪器。
常见的重力计有绝对式和相对式两种类型。
•绝对式重力计:通过比较被测点与参考点之间的绝对差异来得到精确的重力值。
常见的绝对式重力计有拉卡斯特式重力计和绝对重力仪等。
•相对式重力计:通过比较不同位置上的重力加速度差异来测量相对重力变化。
常见的相对式重力计有斯普林格式重力计和落体仪等。
3.2 野外测量设备在进行野外勘探时,除了使用重力计外,还需要配备一些辅助设备:•全站仪:用于测量勘探点的空间坐标,提供精确的位置信息。
•GPS定位系统:用于确定勘探点的地理坐标,提供全球定位服务。
•数据记录器:用于记录测量数据,如重力值、时间、位置等。
4. 重力勘探数据处理与解释在进行重力勘探后,需要对采集到的数据进行处理与解释,以获取地下结构和物质分布信息。
4.1 数据处理•数据去噪:由于外界因素干扰和仪器误差等原因,采集到的数据可能存在噪音。
需要通过滤波等方法去除噪音,保留有效信号。
•数据纠正:由于地球自转、离心力和海洋潮汐等因素的影响,采集到的重力数据可能存在一些系统性误差。
需要进行纠正,以得到准确的重力场数据。
4.2 数据解释•建立模型:根据采集到的重力数据,可以建立地下密度模型。
通过对模型进行分析和解释,可以推断出地下岩石、矿产资源等的分布情况。
•地质解释:根据地下密度模型和其他地质信息,可以进行地质解释。
重力勘探在油气勘探中的作用
一引言
重力勘探是目前应用非常广泛的一种地球物理方法,在勘查各种地质构造问题和寻找各种地质资源方面效果显著。
它在石油勘探和与开发中也普遍应用,比如圈定油田地层的分布范围,以及油气在地下的各种赋存状态等。
一、重力勘探
地球内部岩石的物理或者化学性质使地下岩石密度不均,致使在地表及其周围空间重力发生变化,这种由于某种地质原因引起的重力变化称为重力异常。
通过研究重力异常的特征就可以得到地下各种地质构造、岩石分布和矿产赋存信息,从而分析、评价、解决各种资源、能源问题。
(一)重力测量仪器
重力仪一般测量的是重力加速度变化时灵敏质量的重量变化:棚=m农。
地壳内部物质密度变化引起地表重力变化在数值上是很微小的。
重力勘探的第一问题就是重力测量仪的精度。
美国生产的拉科斯特重力仪属于高精度重力仪中的一种,它的G型仪器测程大,适于全球测量,它的D型仪器精度高,测量精度可达到0.059·" 以下。
这种仪器的特点是零点漂移小,测量精度高,使用方便简单。
另一种高精度重力测量仪是加拿大CO-3重力测量仪,它的测量精度也远远小于0.059·U,残余长期漂移小于0.19·Ⅳ/天.它的特点是不需要平衡装置和测读装置以及温度补偿。
重力仪不仅要在地表适用,而且在井下也必须在温度、压力等的影响下保证测量读数的准确无变化。
重力仪的精度随着科学技术的发展在逐步提高,它也提高了重力勘探这种方法的应用前景。
(二)井中重力测量
重力勘探的基础是牛顿万有引力定律,重力表达式:g=力/M2=kMI/R2。
最新和更为可靠的万有引力常数值是华盛顿大学的冈拉克和默科维兹,利用高技术制作的新型“卡文迪什天平”测出的万有引力常数k=6.67390×10‘11m3/S2.kg.重力仪灵敏元件感受的加速度为:g:km/r2cos矿.沿直圆柱体垂直轴安置的重力’仪所感受的重力加速度为:g;27rk万△z。
井中重力测量是通过在一系列的井中测点停放井中重力仪及读数进行的,这些井下测点是根据测并
图的研究预先选定的,以达到测量目的的需要。
测出一系列重力差(/xg)和深度差(Az),从而得到连续点之间的间隔垂直重力梯度(△g/Az)。
井中重力基本方程:△g=FAz一4xkP/Xz,(P=3.680+11.926(AG,一△ g/△z))。
△g一重力差;
△z一深度增量:
p一横向围岩问隔密度;
k一牛顿万有引力常数;
F-正常自由空气垂直梯度=O.09406mgal/英尺。
重力值向下增大,其增大速率由自由空气垂直梯度(F)和符号相反的梯度之差决定。
正的FAZ项是指向地球质量中心引起的向下增大的重力值。
负的4石kP Az 向是厚度为Az的无限延伸水平层引力的两倍。
层密度的增大与间隔垂直梯度的减小相对应,反之亦然。
测得的间隔梯度(△g/△z)和水平层密度(p)之间的这种简单关系在多数情况下是有效的。
除去基本重力和深度测量结果的简单换算以外,无需分析就能精确地确定不同Az间隔内岩石密度的微小变化。
考虑到实际地球密度扰动和校正,方程可写为:Ag/△z=F-4万kP+AGg,(AGr一异常垂直梯度)。
(三)测量误差
重力测量时,△g和Az的测量误差尽量小,以确保计算间隔密度达到所要求的精度。
根据喏谟图,当Az间隔变得较小时,Ag或△z的给定误差成比例增大,因而所计算的密度的误差就较大。
对较大的△z间隔。
相对地层的深度错位误差很小。
误差仅对4"Az问隔和相临层段之间的密度差较大时(大于 0.29/cma)才可用。
(四)测量结果分析
井中重力仪测量可以有效地估计地层和储集层的空隙度,能够计算出问隔空隙度或间隔空隙流体密度。
井中重力仪测量还可以评价异常构造等。
二.在石油韵探中的应用
大多地球物理工作都是为了寻找有经济价值的资源,并把风险与成本降到最低。
在测得重力各数据后,在结合现有的地面地下资料来进行石油勘探,就能很
好的做到这一点。
地球勘探工作必须从分析预测碳氢化合物构造开始研究构造和地层要素。
然后确定由这些构造引起的地球物理和地质响应。
用理论模型计算这些响应,再同已知构造的地球物理和地质响应比较。
最后得到碳氢化合物构造和地球物理或地质响应间的关系后,在适当的地质条件下,用类似的响应就可以预测石油远景区。
重力资料对于确定地下古生界构造具有很大价值。
目前,可以应用三维重力模拟绘制古生界地层顶部构造图;在模拟时,尽量利用地下地震、物探资料以及现有地震资料施加限制,如此有助于调整用重力法确定的古生界顶部的构造起伏.重力法确定地下古生界岩石顶部形状,由此可以寻找潜在的储油气构造.重力法有助于确定断层位置和古生界构造的顶部位置。
三、螺台分析
重力勘探在石油方面的应用经济价值高,范围广。
在储集层评价、强化开采、油田开发方面都有很多应用。
通过重力勘探可以精确评价储集层孔隙度、裂隙孔隙度、储集层封闭条件、漏过或越过的油气层,可以发现处理矿场水所用的孔隙层,可以为新发现的油气藏的正确评价和生产计划作评价,还可以观察储集层流体状态。
这些都是石油勘探和开发的科学的技术过程.
参考文献
【1】王宝仁.<高精度重力测量',地质出版社,1995年.
【2】D.奎臭,‘重力勘探应用',石油工业出版社,1985年.
【3】L.九拜尔,‘井中重力测量的解释与应用',石油工业出版社, 1985年.【4】冯锐,陶静录,地质-重力联台厦演,中国地球物理学会年刊.P44,1991 【5】刘样重.区域重力渡教域解释压住油效果,石油地球物理勘探.23,11O--118.1988。