《工程电磁场基础及应用》教学课件第3章
- 格式:ppt
- 大小:2.69 MB
- 文档页数:44
第3章 电磁场分析的数学模型3.1 电磁场控制方程的表述电磁场数值分析的具体任务,就是要求解一个与特定问题相联系的偏微分方程定解问题。
根据数学物理方程的理论,所谓定解问题指的是在某一确定区域内成立的微分方程加上定解条件。
对于静态电磁场问题,或者可化为复数计算的正弦稳态电磁场问题,定解条件就是微分方程中的未知函数在该区域边界上所满足的条件,亦即边界条件;对于时变电磁场问题,则定解条件除了边界条件以外,还包括整个区域未知函数在初始时刻的值,亦即初始条件。
针对这一定解问题的求解,发展了如上节所述的各种解算方法。
因此,为了得到正确的解答,第一步工作就是要写出定解问题的表达式,也就是建立特定电磁场问题的恰当的数学模型。
定解问题中的偏微分方程通常称为控制方程。
选择哪种物理量作为控制方程中的未知函数,建立什么形式的微分方程,将影响问题求解的难易程度。
本节将从麦克斯韦方程组出发,介绍各种情况下电磁场控制方程的表述方式。
3.1.1 麦克斯韦方程组[54] 100多年前,麦克斯韦对前人在实验中得出的电磁场的基本定律进行了数学上的总结和提升,引入了位移电流的概念,创立了后来以其命名的方程组,完善了电磁场理论。
其著作《Treatise on Electricity and Magnetism 》成书于1873年。
从理论框架上看,麦克斯韦方程组加上洛仑兹力的计算公式,合起来构成了静止及运动媒质中电动力学的基础,概括了发电机、电动机和其它电磁装置的工作原理,也概括了电磁波的发射、传播和接收的原理。
科学技术发展的实践证明,描述电磁场宏观性质的麦克斯韦方程组正确反映了电磁场中各物理量之间的相互关系,是电磁场的基本方程。
在大学普通物理和电类专业的电工原理课程中,都对麦克斯韦方程组作了基本的介绍。
本节主要从电磁场数值计算的需要出发来加以说明。
麦克斯韦方程组的微分形式可以表述为:t∂∂+=⨯∇D J H (3-1) t∂∂-=⨯∇B E (3-2) 0=⋅∇B (3-3)ρ=⋅∇D (3-4)式中,H 、B 、D 、E 、J 、ρ 分别为磁场强度(A/m )、磁感应强度(或称磁通密度,T )、电位移(或称电通密度,C/m 2)、电场强度(V/m )、电流密度(A/ m 2)和电荷密度(C/ m 3)。