光纤光学-光纤损耗
- 格式:ppt
- 大小:204.50 KB
- 文档页数:22
光纤损耗有哪些光纤传输相比电缆传输和无线传输而言有众多优势。
光纤比电缆更轻、更小、更灵活,而且在长距离传输中,光纤比电缆的传播速度更快。
然而,影响光纤传输性能的因素很多,为了确保光纤的性能更好更稳定,这些因素不容忽视。
光纤的损耗就是其中之一,它已成为许多工程师在选择和使用光纤时最优先考虑的一个因素。
这篇教程将为您详细介绍光纤传输中的光损耗。
光信号经光纤传输后,光的强度会逐渐减弱,与此同时,光信号也会逐渐减弱。
光纤传输过程中,光信号的损失就叫做光纤损耗或者光的衰减。
所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。
为了确保光信号安全有效的传输,就要尽可能地降低光纤的损耗。
引起光纤损耗的因素主要有两个:内部因素和外部因素,亦即本征光纤损耗和非本征光纤损耗。
本征光纤损耗本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的吸收和光的散射。
光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。
实际上,光的吸收是光在传播过程中以热能的形式消耗于光纤中,这是由于分子的共振和波长的掺杂不均匀引起的。
完全纯净的的原子只吸收特定波长的光,但是绝对纯净的光纤材料几乎不可能生产出来,所以,光纤制造厂商选择掺杂锗这类含有纯硅的材料来优化光纤的性能。
光的散射是光纤损耗的另一个重要原因。
光纤的散射损耗是指在玻璃结构中分子水平上的不规则所造成的光的散射。
在光纤线路中,当发生散射时,光能量会向各个方向分散,其中一部分能量沿着线路方向继续前行,而其它方向分散的光能量则会丢失,如下图所示。
因此,为了减少散射而引起的光纤损耗,必须消除光纤芯的不完善,并对光纤涂层和挤压进行严格控制。
非本征光纤损耗本征光纤损耗,包括光的吸收和散射,只是光纤损耗的一方面原因。
非本征光纤损耗是光纤损耗的另一方面重要原因,通常是由光纤的不当处理引起的。
非本征光纤损耗主要有两种类型:弯曲损耗和对接损耗。
光纤损耗大存在的因素光纤熔接包处损耗变大,是常见的故障,原因通常有3个:1、光纤熔接处开裂,可能的原因有:当初熔接时存在缺陷;光缆遭受外力拉伸;熔接点塑料护套、固定金属棒与光纤热膨胀系数差异,反复的温度变化引起伸缩。
显然排除故障时必须重新熔接光纤。
2、熔接包内盘纤变形失园而出现角度,导致损耗变大。
可能的原因有:光缆遭受外力拉伸;因温度变化热涨冷缩引起。
排除故障时只需重新整理盘纤,保证圆形、消除角度。
3、熔接包内进水并侵入熔接处的裸纤,导致光信号散射损失。
排除故障时要打开熔接包清除积水,并晒干熔接处,尽量散尽水分,或者重新熔接。
光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗光纤使用中引起的传输损耗主要有1接续损耗2光纤本质造成的损耗、3熔接不当所报造成的损耗和4活动接头(光纤适配器及光纤跳线)造成的损耗和5非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)接续损耗(1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳等原因;其中影响最大的是模场直径不一致。
(2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。
(3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。
解决接续损耗的方案(1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质品牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。
(2)光缆施工时应严格按规程和要求进行挑选经验丰富的施工人员光缆配盘时尽量做到整盘配置(单盘≥500-800米),以尽量减少接头数量。
光纤损耗系数的表达式光纤损耗系数是指光信号经过光纤传输时,由于材料吸收、散射、弯曲等原因而造成的信号强度降低。
光纤损耗系数是衡量光纤传输质量的重要指标之一。
下面详细介绍一下光纤损耗系数的表达式及相关知识。
一、光纤损耗系数的定义光纤损耗系数指的是光纤单位长度内,光信号通过传输过程中消耗的信号功率占初始信号功率的比例。
光纤损耗系数通常用分贝(dB)表示,其计算公式为:αdB = -10log(P1/P0)其中,P0为初始信号功率,P1为洛德衰减后的信号功率。
光纤损耗系数越小,表示信号强度在传输过程中降低的越少,代表着光纤的传输质量越好。
二、光纤损耗系数的分类光纤损耗系数可分为单模光纤损耗系数和多模光纤损耗系数两种。
1. 单模光纤损耗系数:单模光纤损耗系数是指单模光纤在波长为1310nm和1550nm条件下的损耗系数。
通常在20km以内的短距离传输中使用,其损耗系数范围约在0.3~0.5dB/km。
2. 多模光纤损耗系数:多模光纤损耗系数是指多模光纤在波长为850nm和1300nm条件下的损耗系数。
多用于较短距离地址传输和局域网中,其损耗系数范围约在2~7dB/km。
三、影响光纤损耗系数的因素光纤的损耗系数与多种因素有关。
以下是几个主要的因素:1. 光纤本身的质量:光纤的材料、折射率不同,对光的吸收、散射也不同,从而导致不同的损耗系数。
2. 光纤长度:光纤的长度对损耗系数有一定的影响,长度越长,损耗系数通常越大。
3. 连接件质量:连接件的设计和制作精度,直接影响损耗系数的大小。
4. 环境温度:光纤在不同环境下,其损耗系数不同,一般来说,温度越高,损耗系数越大。
四、优化光纤损耗系数的方法为了提高光纤传输的质量,需要采取一系列措施来降低光纤的损耗系数。
以下是几个常用的方法:1. 选用优质的光纤材料,并且在制造过程中严格控制质量,确保光纤本身的质量。
2. 降低光纤长度,减少信号传输过程中对信号功率的消耗。
3. 使用高品质的连接件,保证连接的精度。
光纤的损耗:损耗指光信号功率传输每单位长度衰减的程度,用分贝/公里(dB/km)表示为什么衰减造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。
本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。
弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成损耗。
挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。
杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。
不均匀:光纤材料的折射率不均匀造成的损耗。
对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。
当光从光纤的一端射入,从另一端射出时,光的强度会减弱。
这意味着光信号通过光纤传播后,光能量衰减了一部分。
这说明光纤中有某些物质或因某种原因,阻挡光信号通过。
这就是光纤的传输损耗。
只有降低光纤损耗,才能使光信号畅通无阻。
光纤损耗的分类光纤损耗大致可分为光纤具有的固有损耗以及光纤制成后由使用条件造成的附加损耗。
具体细分如下:光纤损耗可分为固有损耗和附加损耗。
固有损耗包括散射损耗、吸收损耗和因光纤结构不完善引起的损耗。
附加损耗则包括微弯损耗、弯曲损耗和接续损耗。
其中,附加损耗是在光纤的铺设过程中人为造成的。
在实际应用中,不可避免地要将光纤一根接一根地接起来,光纤连接会产生损耗。
光纤微小弯曲、挤压、拉伸受力也会引起损耗。
这些都是光纤使用条件引起的损耗。
究其主要原因是在这些条件下,光纤纤芯中的传输模式发生了变化。
附加损耗是可以尽量避免的。
下面,我们只讨论光纤的固有损耗。
固有损耗中,散射损耗和吸收损耗是由光纤材料本身的特性决定的,在不同的工作波长下引起的固有损耗也不同。
搞清楚产生损耗的机理,定量地分析各种因素引起的损耗的大小,对于研制低损耗光纤,合理使用光纤有着极其重要的意义。
材料的吸收损耗制造光纤的材料能够吸收光能。
光纤材料中的粒子吸收光能以后,产生振动、发热,而将能量散失掉,这样就产生了吸收损耗。
光纤损耗1.光纤的衰减的几种因素及光缆的特性:造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。
本征: 是光纤的固有损耗,包括: 瑞利散射,固有吸收等。
弯曲: 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。
挤压: 光纤受到挤压时产生微小的弯曲而造成的损耗。
杂质: 光纤内杂质吸收和散射在光纤中传播的光,造成的损失。
不均匀: 光纤材料的折射率不均匀造成的损耗。
对接: 光纤对接时产生的损耗,如: 不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。
光缆特性1) 拉力特性光缆能承受的最大拉力取决于加强件的材料和横截面积,一般要求大于1km光缆的重量,多数光缆在100~400kg范围。
2) 压力特性光缆能承受的最大侧压力取决于护套的材料和结构,多数光缆能承受的最大侧压力在100~400kg/10cm。
3)弯曲特性弯曲特性主要取决于纤芯与包层的相对折射率差△以及光缆的材料和结构。
实用光纤最小弯曲半径一般为20~50mm,光缆最小弯曲半径一般为200~500mm,等于或大于光纤最小弯曲半径。
在以上条件下,光辐射引起的光纤附加损耗可以忽略,若小于最小弯曲半径,附加损耗则急剧增加。
4)温度特性光纤本身具有良好的温度特性。
光缆温度特性主要取决于光缆材料的选择及结构的设计,采用松套管二次被覆光纤的光缆温度特性较好。
温度变化时,光纤损耗增加,主要是由于光缆材料(塑料)的热膨胀系数比光纤材料(石英)大2~3个数量级,在冷缩或热胀过程中,光纤受到应力作用而产生的。
在我国,对光缆使用温度的要求,一般在低温地区为-40℃~+40℃,在高温地区为-5℃~+60℃。
2.光纤的连接损耗:1.永久性光纤连接(又叫热熔):这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。
一般用在长途接续、永久或半永久固定连接。
其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03db/点。
光纤传输损耗及解决方案光纤传输是一种在信息传输领域中应用广泛的技术,其主要特点是传输速度快、传输距离远、信号稳定等优势。
然而,光纤传输中也存在一些问题,其中最主要的问题之一就是传输中的损耗问题。
光纤传输损耗主要是指在信号传输过程中,由于光信号的衰减导致信号强度减弱而产生的信号损失。
光纤传输损耗是光纤传输中不可避免的问题,一定程度的损耗是正常现象,但如果损耗过大会影响信号传输的质量和距离,从而影响整个网络的性能。
光纤传输损耗主要有两种形式,一种是耦合损耗,即光纤与其它光学器件的连接损耗;另一种是传输损耗,即光信号在光纤传输过程中的信号衰减损耗。
耦合损耗主要由于光纤连接不良、连接部件不良或不匹配导致的,而传输损耗则是由于光纤固有的损耗特性导致的,主要包括光纤本身的吸收损耗、散射损耗、弯曲损耗、不均匀损耗等。
传输损耗是光纤传输中的主要损耗形式,其大小与技术要求、光源功率、波长、光纤长度、光纤材料和制造工艺等因素密切相关。
针对光纤传输中的损耗问题,可以采取一系列措施来解决。
首先,应该选用优质的光纤和光器件,提高光学件的质量,减小传输损耗。
其次,应该采用低损耗的光纤连接器,保证光纤连接的质量,减小耦合损耗。
此外,还可以采用光纤放大器和光纤衰减补偿器来弥补传输损耗,提高信号的传输质量。
同时,也可以通过采用增大光纤端面与光源端面的匹配度,减小耦合损耗。
另外,还可以采取限制光纤曲率半径、提高光纤制造工艺水平、修复磨损光纤等方式来减小光纤传输损耗,提高传输效率。
总的来说,光纤传输损耗是光纤传输中的一大问题,解决这一问题需要采取全方位的措施来减小损耗,提高传输质量。
通过选用优质的光纤和光器件、使用低损耗的光纤连接器、采用光纤放大器和光纤衰减补偿器、提高光纤端面与光源端面的匹配度、限制光纤曲率半径、修复磨损光纤等方式来减小光纤传输损耗,从而提高传输效率和网络性能。
在今后的光纤传输技术发展中,应该不断探索和创新,寻找更加有效的解决方案,进一步提高光纤传输的性能和可靠性。