成型缺陷以及形成原因
- 格式:doc
- 大小:84.50 KB
- 文档页数:11
注塑成型缺陷及解决方法注塑成型是一种常见的塑料加工方法,广泛应用于各行各业。
然而,在注塑成型过程中,可能会出现一些缺陷。
本文将介绍一些常见的注塑成型缺陷,并提供一些常用的解决方法。
1.短-shot(短充)短-shot指的是注塑件的一部分或全部体积没有完全填满模具腔体的现象。
短-shot的原因可能有:-温度不足:熔融塑料的温度不够高,使得塑料的流动性不佳。
-压力不足:注塑机的射出压力不足,无法将足够的塑料材料推入模具中。
解决方法:-提高温度:提高熔融塑料的温度,以增加其流动性。
-增加压力:增加注塑机的射出压力,以确保足够的塑料材料填充模具腔体。
2. Flash(闪边)Flash是指在注塑成型过程中,塑料溢出模具腔体形成的薄膜或边缘。
Flash的原因主要包括:-模具不平整:模具表面存在间隙或损坏,导致塑料从模具表面溢出。
-压力过高:注塑机的射出压力过高,使得塑料在模具闭合时被挤出。
解决方法:-检查模具:检查模具表面是否平整,并修复损坏的部分。
-调整压力:调整注塑机的射出压力,使其在模具闭合时不会挤出塑料。
3. Sink mark(沉痕)Sink mark是指注塑件表面出现的凹陷或不平整的现象。
Sink mark的原因可能有:-塑料收缩:在注塑件冷却过程中,熔融塑料由于收缩而导致表面出现凹陷。
-总量不足:注塑机注入的塑料总量不足,无法填满模具腔体。
解决方法:-调整冷却时间:延长注塑件的冷却时间,使塑料充分收缩并填满模具腔体。
-增加注塑量:增加注塑机的注塑量,确保塑料充分填充模具腔体。
4. Weld line(焊痕)Weld line是指注塑件表面出现的一条或多条由于不同流动方向的熔融塑料相遇而形成的线缝。
Weld line的原因主要包括:-塑料温度不一致:在注塑过程中,熔融塑料的温度不一致,导致相遇处出现冷凝。
-流动路径过长:塑料在流动过程中,由于流动路径过长而冷却,形成焊痕。
解决方法:-调整温度:调整注塑机的温度控制系统,使塑料熔融温度均匀一致。
塑性成型中缺陷工艺分析----飞边1:锁模力不足时,模板有可能被模穴内的高压撑开,熔胶溢出,产生毛边2:塑料计量过多,过量的熔胶被挤入模穴,模板有可能被模穴内的高压撑开,熔胶溢出,产生毛边。
3:料管温度太高,熔胶太稀,容易渗入模穴各处的间隙,产生毛边4:4.射压过高保压压力太大解决方法1.确认锁模力是否足够。
2.确认计量位置是否正确。
3.降低树脂温度和模具温度。
4.检查射出压力是否适当。
5.调整射速。
6.变更保压压力或转换位置以上问题都解决了,还有飞边(1)钳工研配没到位(2)钳工研合没法到位,因为此分型面处加工时缺肉太多(程序原因,刀具原因,操做者原因及磕碰等等),须烧焊钳工最喜欢ABS等塑料的活PP则反之塑性成型中缺陷工艺分析----翘曲射出时,模具内树脂受到高压而产生内部应力,脱模后,成品两旁出现变形弯曲,薄壳成型的产品容易产生变形。
1 成型品还没有充分冷却时,进行顶出,通过顶针对表面施加压力,所以会造成翘曲或变形。
2 成型品各部冷却速度不均匀时,冷却慢收缩量加大,薄壁部分的原料冷却迅速,粘度提高,引起翘曲。
3 模具冷却水路位置分配不均匀,须变更温度或使用多部模温机调节。
4 模具水路配置较多的模具,最好用模温机分段控制,已过到理想温度。
成型机原料温度低,流动性差,保压高,保压时间长,射出压力高,射出速- 度慢,冷却时间短模具模具温度低,模具上有温差,模具冷却不均匀不充分,脱模不良原料原料的流动性不夠.塑性成型中缺陷工艺分析----粘模模具:1顶出机构不够完善2 抛光不够(脱模方向太粗糙)3 检查模具是否有倒勾和毛刺。
4 检查脱模机构动作先后顺序。
成形:1注射压力太大致使撑模。
2 保压太大致使撑模。
3 料温太高致使塑料变脆。
4 模温太低。
5 射料不足塑性成型中缺陷工艺分析----注塑不满注塑不满的主要原因是计量不够及熔体因冷却或流动性(熔融指数低)的原因。
解决主要是从以下方面着手:材料提高材料的流动性,根据流动比选择适当的熔融指数材料模具1.浇口加大及抛光流道,减小进胶阻力。
注塑缺陷原因分析与解决方案引言概述:注塑工艺是一种常见的塑料成型工艺,但在实际生产中常常会出现一些缺陷,如翘曲、气泡等。
本文将分析注塑缺陷的原因,并提供解决方案。
一、材料选择不当1.1. 材料质量不合格:材料质量是影响注塑成型的关键因素之一。
如果选择的材料质量不合格,如杂质含量过高、熔体流动性不佳等,就容易导致注塑缺陷。
解决方案:选择质量可靠的供应商,进行材料质量检测,确保材料符合要求。
1.2. 材料配比不当:材料的配比不合理也会导致注塑缺陷。
例如,过多的填充剂可能会导致产品强度不足,而过多的添加剂可能会影响材料的流动性。
解决方案:进行材料配比的试验和优化,确保配比合理。
1.3. 材料储存不当:材料在储存过程中容易吸湿,吸湿后的材料会导致注塑过程中产生气泡等缺陷。
解决方案:储存材料时应采取密封防潮的措施,避免材料吸湿。
二、模具设计问题2.1. 模具结构不合理:模具结构不合理是引起注塑缺陷的常见原因之一。
例如,模具中存在死角或过于复杂的结构,会导致材料流动不畅,产生翘曲等缺陷。
解决方案:优化模具结构,确保材料流动畅通。
2.2. 模具温度控制不当:模具温度对注塑成型过程有着重要影响。
如果模具温度不均匀或温度过高,会导致产品表面糊化或变形等缺陷。
解决方案:采用合适的冷却系统,确保模具温度均匀稳定。
2.3. 模具磨损严重:模具长时间使用后会出现磨损,磨损严重的模具会导致产品尺寸不准确或表面粗糙等缺陷。
解决方案:定期检查和维护模具,及时更换磨损严重的模具部件。
三、注塑工艺参数设置不当3.1. 注射压力过高或过低:注射压力是影响注塑成型的关键参数之一。
如果注射压力过高,会导致产品变形或开裂,而注射压力过低则会导致产品表面光洁度不高。
解决方案:根据产品要求和材料特性,合理设置注射压力。
3.2. 注射速度不合理:注射速度对产品的充填和冷却过程有着重要影响。
如果注射速度过快,会导致产品内部产生气泡或短射,而注射速度过慢则会导致产品表面瑕疵。
注射成型缺陷、原因及解决办法一、飞边(1)何谓飞边(外观)?虽然制作模具时精度很高(μm级),而且成型时采用高压合模,但由于树脂的填充压力也很高,所以实际上留有很小的缝隙。
飞边就是因树脂进入这种缝隙而形成的。
在PL面、套管、滑芯界面和排气口等处都会出现飞边。
飞边就是树脂挤入模具PL面(模具的分型面),并使制品带上了多余的薄膜这样一种现象。
当PL面不敌树脂压力而分开,或PL面有缝隙时就会出现这种情况。
图1. 平板PL面上出现的飞边(2)飞边的生成原因(2-1) 树脂压力偏高树脂压力过高时,模具分开并产生飞边。
相反,模具压力偏低时,同样也容易产生飞边。
树脂压力增高的主要原因如下:(1)注射速度偏快(2)注射压力偏高(3)保压力偏高(4)V-P切换偏慢一般来说,当希望获得良好的外观时,有时会将保压设定的过高,特别是为了防止出现凹痕而采用高于标准的设定。
这样一来有时就会产生飞边。
图2. 树脂压力偏高时容易出现飞边(2-2) 树脂流动性好流动性越好,树脂就越容易进入缝隙,因此飞边也就越大。
一般来说,树脂温度和模具温度越高,飞边也就越大;反之,温度越低,飞边也就越小。
(2-3) 模具的PL面有间隙即使在简单的2块式模具中,模具有时也会因成型品顶出不当而受损,并在损伤处出现飞边。
使用滑芯时,必须特别注意吻合以及滑动面的缝隙。
另外,模具是钢制的,合模压属于高压,而树脂压也是与其相当的高压,所以在几乎所有的注射成型中,模具一般都会发生变形。
特别是在大型成型品的情况下尤为显著。
此时,有无支柱对飞边也有影响(如果没有支柱,变形→缝隙就会增大,飞边也会增多)。
图3. PL面的细微间隙中产生飞边(2-4) Fortron PPS(聚苯硫醚)PSS树脂在低剪切区的流动性很强,因此该树脂就其本身的性质而言就具有容易产生飞边的缺点。
因此,与使用其他材料时相比,使用PPS树脂时必须更加注意防止出现飞边。
此时对模具精度等级的要求也比使用其他材料时更加严格。
复合材料成型缺陷分析与控制在现代工业领域中,复合材料因其优异的性能,如高强度、高刚度、良好的耐腐蚀性等,被广泛应用于航空航天、汽车、船舶、体育器材等众多领域。
然而,复合材料的成型过程并非一帆风顺,常常会出现各种缺陷,这些缺陷不仅影响产品的外观质量,更可能严重削弱其性能和可靠性,甚至导致产品报废。
因此,对复合材料成型缺陷进行深入分析,并采取有效的控制措施,具有至关重要的意义。
一、复合材料成型缺陷的类型及成因(一)孔隙孔隙是复合材料成型中最常见的缺陷之一。
它表现为材料内部存在的微小空洞,其成因较为复杂。
树脂浸润纤维不充分、固化过程中产生的挥发物无法及时排出、成型压力不足等都可能导致孔隙的产生。
孔隙的存在会降低材料的强度和刚度,影响其耐疲劳性能和耐腐蚀性。
(二)分层分层指的是复合材料层间的分离现象。
通常是由于层间结合力不足、成型过程中的冲击或振动、树脂固化不均匀等原因引起的。
分层会显著降低复合材料的层间强度,使其承载能力大幅下降。
(三)纤维弯曲和断裂在成型过程中,纤维可能会发生弯曲和断裂。
这可能是由于纤维在铺放过程中受到不当的张力或压力,或者在模具中流动的树脂对纤维产生了剪切作用。
纤维的弯曲和断裂会直接影响复合材料的力学性能,使其强度和刚度达不到设计要求。
(四)树脂富脂和贫脂区树脂分布不均匀会导致富脂区和贫脂区的出现。
富脂区树脂含量过高,会增加材料的重量和成本,同时降低其强度;贫脂区则由于树脂不足,无法充分浸润和保护纤维,影响复合材料的性能和耐久性。
(五)表面缺陷表面缺陷包括表面粗糙、凹坑、鼓包等。
这可能是由于模具表面不光滑、脱模剂使用不当、树脂固化收缩不均等原因造成的。
表面缺陷不仅影响产品的外观质量,还可能成为应力集中点,降低材料的使用寿命。
二、复合材料成型缺陷的影响(一)力学性能下降孔隙、分层、纤维弯曲和断裂等缺陷都会导致复合材料的力学性能,如强度、刚度、韧性等下降。
这使得复合材料在使用过程中无法承受预期的载荷,增加了失效的风险。
成型缺陷原因分析制品缺陷注塑机及成型条件模具(原料)问题填充不足(缺胶)1:注塑机注塑能力不够 1:浇口不平衡(一模多腔)2:加料量不够2:模具温度太低3:注塑压力太低3:排气不良4:料温太低使塑料容体不好4:流道浇口太小5:注射速度太低5:流道,浇口有异物阻塞6:注塑机喷嘴有异物6:塑料原料的流动性不好毛边1:注塑压力太低 1:模具配合面不严2:锁模力太低2:成型期间塑胶原料黏度太低3:加料量过大4:料温过高5:保压时间太长缩水1:注塑压力太低1:模具温度偏高或不均2:保压时间太短2:浇口偏小3:注塑时间太短 3:浇道过窄小,产生较大阻力4:加料量不够4:制品壁过厚或不均5:料温偏高5:塑料原料收缩率太大成型常见缺陷解答1:充填不足原因A:计量不足B止逆阀故障C漏胶D射嘴堵塞2:毛边A:模具分型面配合不良B:射出速度太快,压力过大C机台锁模力不足3:喷痕A模具表面温度太低B射出速度太快C模具进胶口设计不当4结合线A模具表面温度太低B射出速度太慢C模具排气不良5料花A材料含水量过高B料桶内原料结块单边下料C原料在料管滞留时间过长产生热分解6烧焦原因A射速太快B模具排气不良C模具进胶口设计不当7剥离A两种原料物性不一样,混合在一起造成。
8应力痕A模具进胶口设计不当B射出速度慢,压力大9黑点A料管内塑胶之炭化物B非塑胶之杂质10色纹A不同色号之原料B原料滞留料管时间过久C模腔油污11拉丝A模具进胶口直径过大B射嘴温度太高C背压过高,松退太短12顶白A局部射出压力过大B肋骨处侧壁粗糙C脱模斜度不足13粘模A顶针分布不均B肋骨处侧壁粗糙C脱模斜度不足14变形A公模与母模温差过大B成品表面压力分布不均C模具进胶口设计不当D压力积中,分布不均产生应力残留15气泡A射出压力不足B模具进胶口设计不当C保持压力时间不足16段差A模具分型面配合不良B滑块分型面配合不良常用塑料原料识别方法名称英文燃烧情况燃烧火焰状态离火后情况气味烟少石油味聚丙烯PP容易熔融滴落,上黄下蓝继续燃烧聚乙烯PE容易熔融滴落,上黄下蓝继续燃烧石蜡燃烧气味聚氯乙烯PVC难软化上黄下绿有烟离火熄灭刺激性酸味聚甲醛POM容易熔融滴落上黄下蓝,无烟继续燃烧强烈刺激甲醛味聚苯乙烯PS容易软化起泡橙黄色,浓黑烟,炭末继续燃烧表面油性光亮特殊乙烯气味尼龙PA慢熔融滴落,起泡慢慢熄灭特殊羊毛,指甲气味聚甲基丙烯酸甲酯PMMA容易熔化起泡,浅蓝色,质白,无烟继续燃烧强烈花果臭味,腐烂蔬菜味聚碳酸酯PC容易,软化起泡有小量黑烟离火熄灭熄火后有花果臭味聚四氟乙烯PTFE不燃烧在烈火中分解出刺鼻的氟化氢气味聚对苯二甲酸乙二酯PET容易软化起泡橙色,有小量黑烟离火慢慢熄灭酸味丙烯晴-丁二烯-苯乙烯共聚物ABS缓慢软化燃烧,无滴落黄色,黑烟继续燃烧特殊气味。
注塑成型中常见的缺陷及改善方法一评价塑料制品质量的三个指标1. 外观质量:包括完整性、颜色和光泽;;2. 尺寸及相对位置的准确性;3. 与用途相关的机械性能,化学性能 .二造成制品缺陷的原因:1.塑料问题:包括塑料质量配料及烘料等;2.调机问题:包括注射压力、温度和周期等;3.模具问题:包括模具设计,制造及磨损。
模具问题往往是主要问题,而且是最难解决的问题三制品常见缺陷分析及解决办法1.填充不足(啤不满):所啤胶件残缺不全,或多型腔时个别型腔啤不满。
(1)进料调节不当,缺料或多料;(2)注射压力、温度及时间不够;(3)料温不够;(4)模温偏低或分布不均,运水设计不合理;(5)塑料流动性差;(6) 模具设计不合理(包括流道转折多,阻力大;胶件局部过薄;排气系统不良;流道无冷料井或冷料井不够;多型腔模具型腔数量过多,非平衡进料或浇口位置、形式不对或数量不足等)。
2.飞边(披锋):塑料制品边缘、镶件接合处及顶针位出现多余薄翅。
(1)模具制造精度差:包括FIT模不良,镶件配合精度差,顶针孔间隙大等;(2) 模具设计不合理:---排位不合理,导致压力不平衡;---浇口位置不当,出现偏向性流动,造成一边缺料,一边出披锋;---侧向分型机构设计不合理,锁模力不够,或因行位与镶件直身配合引起磨损;---模具排气不良,在高压下分型面被撑开等。
(3)啤机锁模力不够;(4)注射工艺条件(调机)不当:压力过大,温度过高及加料量过大等。
3.银纹(俗称水花,包括表面气泡和内部气泡):当塑料内充满过多水汽,分解气,溶剂气及空气时,制品表面沿料流方向形成一连串有银色光泽的如针条状或云母片状斑纹,这部分气体若只留在胶件壁内,则形成气泡。
(1)水汽:水汽若来自塑料则应烘料(吸湿性大的塑料如PA、PC、ABS、PPO 及PSF等必须烘料),有时水汽也来自型腔。
(2)料温高,塑料质量差以及剪切力过大都易产生分解气。
(3)当塑料中混入异种塑料时,有时也会产生银纹。
注塑产品成型缺陷分析——产品成型变形,翘曲分析
A.图例
产品变形翘曲偏大
如上图所示,制件变形翘曲约5mm,该产品为汽车立柱,
变形翘曲偏大严重影响组装,达不到客户品质标准,客户确
认不合格质
B.材料主要工艺参数
名称:大众汽车内饰立柱
材料:PP-H1323
模具温度:65℃
成型温度:200-225℃
C..可能原因分析及改善措施
1.模具顶出数量,面积,斜销脱模角度偏大或偏小,导致制件脱模不顺
2.成型工艺条件设定不当,保压偏大或偏小,引起制件残余应力导致制件变形翘曲
3.冷却方法不合适,导致冷却效果不均匀或冷却时间不足时,模具冷却水循环不顺畅,杜塞不通,导致模具温度偏高
D.改善关键控制点.
1.模具冷却水路调整,之前模具前模接模温65℃,且前模两组水路不通畅,将前模模温更改为常温水,控制前模模温偏高导致制件收缩产生的变形
3.成型工艺优化调整,保压压力由之前压力80降低到60.降低保压偏大,导致制件变形产生,产品外观确认合格
3.改善效果:
产品变形改善合格
模具水路不顺畅调整,前模模温调整为常温水,优化成型工
艺后,产品变形翘曲改善,产品变形翘曲检具检测在标准范
围内,客户确认合格!
4.关键点:模具模温是导致此产品变形翘曲主要原因。
成型缺陷以及形成原因料头附近有暗区1、表观在料头周围有可辨别的环形—如使用中心式浇口则为中心圆,如使用侧浇口则为同心圆,这是因为环形尺寸小,看上去像黯晕。
这主要是加工高粘性(低流动性)材料时会发生这种现象,如PC、PMMA和ABS等。
物理原因如果注射速度太高,熔料流动速度过快且粘性高,料头附近表层部分材料容易被错位和渗入。
这些错位就会在外层显现出黯晕。
在料头附近,流动速度特别高,然后逐步降低,随着注射速度变为常数,流动体前端扩展为一个逐渐加宽的圆形。
同时在料头附近为获得低的流体前流速度,必须采用多级注射,例如:慢—较快—快。
目的是在整个充模循环种获得均一的熔体前流速度。
通常以为黯晕是在保压阶段熔料错位而产生的。
实际上,前流效应的作用是在保压阶段将熔料移入了制品部。
与加工参数有关的原因与改良措施见下表:1、流速太高采用多级注射:慢-较快-快2、熔料温度太低增加料筒温度,增加螺杆背压3、模壁温度太低增加模壁温度与设计有关的原因与改良措施见下表:1、浇口与制品成锐角在浇口和制品间成弧形2、浇口直径太小增加浇口直径3、浇口位置错误浇口重新定位注塑成型缺陷之二:锐边料流区有黯区1、表观成型后制品表面非常好,直到锐边。
锐边以后表面出现黯区并且粗糙。
物理原因如果注射速度太快,即流速太高,尤其是对高粘性(流动性差)的熔体,表面层容易在斜面和锐边后面发生移位和渗入。
这些移位的外层冷料就表现为黯区和粗糙的表面。
与加工参数有关的原因与改良措施见下表:1、流体前端速度太快采用多级注射:快-慢,在流体前端到达锐边之前降低注射速度与设计有关的原因与改良措施见下表:1、模具锐角过渡提供光滑过渡注塑成型缺陷之三:表面光泽不均1、表观虽然模具具有均一的表面材质,制品表面还是表现为灰黯和光泽不均匀。
物理原因注射成型生产的制品表面多少是模具表面的翻版。
表面粗糙取决于热塑性材料本身,它的粘性、速度设置以及成型参数如注射速度、保压和模温。
因而,由于仿制的表面粗糙度的原因,制品表面会出现为灰黯、较黯或光滑。
理论上说,当被点蚀或侵蚀过的模具表面已精确仿制,投射到制品表面的光线会发生漫反射。
因此,表面会出现黯区。
对具有较少精确仿制的表面,漫反射现象就会得到控制进而制品表面出现好的光泽效果与加工参数有关的原因与改良措施见下表:1、保压太低提高保压压力2、保压时间太短提高保压时间4、熔料温度太低提高熔体温度与设计有关的原因与改良措施见下表:1、模壁截面差异太大提供更均一的模壁截面2、材料积留过多或棱边尺寸过大避免材料积留过重或棱边尺寸过大3、料流线处排气不好提高模具在料流线处的排气注塑成型缺陷之四:空隙1、表观制品部的空隙表现为圆形或拉长的气泡形式。
仅仅是透明的制品才可以从外面看出里面的空隙;不透明的制品无法从外面测出。
空隙往往发生在壁相对较厚的制品并且是在最厚的地方。
物理原因当制品有泡产生时,经常认为是气泡,是模具的空气被流入模腔的熔料裹入。
另一个解释是料筒的水气和气泡会想方设法进入到制品的部。
所以说,这样的“泡”的产生有多方面的根源。
一开始,生产的制品会形成一层坚硬的外皮,并且视模具冷却的程度往里或快或慢的发展。
然而在厚壁区域里,中心部分仍继续保持较长时间的粘性。
外皮有足够强度抵抗任何应力收缩。
结果,里面的熔料被往外拉长,在制品仍为塑性的中心部分形成空隙与加工参数有关的原因与改良措施见下表:1、保压太低提高保压压力2、保压时间太短提高保压时间3、模壁温度太低提高模壁温度4、熔料温度太高降低熔体温度与设计有关的原因与改良措施见下表:1、浇口横截面太小增加浇口横截面,缩短浇道2、喷嘴孔太小增大喷嘴孔3、浇口开在薄壁区浇口开在厚壁区注塑成型缺陷之五:气泡1、表观制品表面和部有许多气泡—主要在料头附近。
流道中途和远离料头的地方—不仅是发生在制品壁厚的地方。
气泡有着不同的尺寸和不同的形状。
物理原因气泡主要发生在必须在高温下加工的热敏性材料。
如果必须的成型温度太高,通过分子分裂而导致材料分解,熔料就有发生热降解的危险,成型过程中气泡就容易产生。
如果周期时间长,通常可能是太长的残留时间和行程利用不足的原因。
也可能因为料筒的熔料过热。
与加工参数有关的原因与改良措施见下表:1、熔料温度太高降低料筒温度、螺杆背压和螺杆转速2、熔料在料筒残留时间过长使用较小的料筒直径与设计有关的原因与改良措施见下表:1、不合理的螺杆几何形状使用低压缩螺杆注塑成型缺陷之六:白点1、表观料头附近有未熔化的颗粒。
对薄壁制品来说是不可能获得光滑的表面。
物理原因由于薄壁制品生产成型周期短,因此必须以很高的螺杆转速进行塑化从而使熔料在螺杆料筒残留时间缩短。
在碰到薄壁制品生产时,通常包括PE、PP,模具工会试着降低熔料温度以缩短冷却时间,未完全熔化的颗粒会被注射进模具。
与加工参数有关的原因与改良措施见下表:1、熔料温度太低增加料筒温度2、螺杆转速太高降低螺杆转速3、螺杆背压太低增加螺杆背压4、循环时间短,即熔料在料筒残留时间短延长循环时间与设计有关的原因与改良措施见下表:1、不合理的螺杆几何形状选用适当几何形状的螺杆(含计量切变区)注塑成型缺陷之七:灰黑斑纹1、表观灰黑斑纹可能发生在浇口附近,流道的中间和远离浇口的部分。
只能在透明的零件中可看出,并且往往用PMMA,PC和PS料制成的产品有此现象。
物理原因如果计量过程开始太早,螺杆喂料区里颗粒裹入的空气没有溢出喂料口,空气就会被挤入熔料。
然而,喂料区的压力太低不能将空气移到后面。
料筒熔料中被挤入的空气就会使制品产生灰黑斑纹。
就像压缩点火式柴油发动机里面所发生的情况一样,被料筒挤入的空气所造成的焦化现象有时被称为“柴油机效应”。
焦化现象可解释熔料和挤入的气泡交接的地方由于压缩作用产生高温,同时空气的氧气通过氧化作用使熔料产生断裂。
工艺调试应该在喂料区的中间开始熔化过程,此处熔料压力已较高,迫使颗粒之间的空气朝后移动并溢出料口。
与加工参数有关的原因与改良措施见下表:1、螺杆背压太低增加螺杆背压2、喂料区的料筒温度过高降低喂料区的料筒温度3、螺杆转速过快降低螺杆转速4、循环时间短,即熔料在料筒残留时间短延长循环时间与设计有关的原因与改良措施见下表:1、不合理的螺杆几何形状选用加料段长的螺杆,且加料段的螺槽较深注塑成型缺陷之八:料头附近有灰黑斑1、表观制品表面上以浇口或附近一点为中心向外发散出现银色或黑色纹迹。
如果使用低粘性(高流动性)材料和高成型温度,纹路大多是黑色,如果采用高粘性(低流动性)材料,纹路大多是银白色。
物理原因这是由被挤入和压缩的另一种气泡。
如果螺杆降压幅度太高(螺杆回缩),降压速度过快,螺杆头前面的熔料释放太多,会在熔料产生负压,在熔料温度太高的情况下,很容易在熔料形成这些气泡会在以后的注射阶段再次受到压缩,导致黑色纹路在制品生成,最终成为“柴油机效应”。
如果浇口为中心式浇口,纹路就会从料头向外辐射。
在带热流道注射的情况下,纹路只会再某段流道以后出现,因为在热流道里的材料不包含任何气泡,因而材料不会产生烧焦的痕迹。
只有再料筒头的熔料才会产生烧焦的痕迹。
假如是低粘性的熔料,纹路比高粘性材料更灰黯和更大,因为前者再螺杆降压过程中容易产生真空和空隙。
3、与加工参数有关的原因与改良措施见下表:a、螺杆降压太高减小螺杆降压幅度b、螺杆降压率太高减小螺杆降压率c、熔料温度太高降低料筒温度,降低螺杆背压,降低螺杆转速注塑成型缺陷之九:放射纹1、表观从浇口喷射出,有灰黯色的一股熔流在稍微接触模壁后马上被随后注入的熔料包住。
此缺陷可能部分或完全隐藏在制品部。
物理原因放射纹往往发生在当熔料进入到模腔,流体前端停止发展的方向。
它经常发生在大模腔的模具,熔流没有直接接触到模壁或没有遇到障碍。
通过浇口后,有些热的熔料接触到相对较冷的模腔表面后冷却,在充模过程中不能同随后的熔料紧密结合在一起。
除去明显的表面缺陷,放射纹伴随不均匀性,熔料产生冻结拉伸,残余应力和冷应变而产生,这些因素都影响产品质量。
在多数情况下不太可能只通过调节成型参数改进,只有改进浇口位置和几何形状尺寸才可以避免。
与加工参数有关的原因与改良措施见下表:1、注射速度太快降低注射速度2、注射速度单级采用多级注射速度:慢-快3、熔料温度太低提高料筒温度(对热敏性材料只在计量区)。
增加低螺杆背压与设计有关的原因与改良措施见下表:1、浇口和模壁之间过渡不好提供圆弧过渡2、浇口太小增加浇口3、浇口位于截面厚度的中心浇口重定位,采用障碍注射冷料头1、表观这指的是有一块冷料卡在或粘在料头附近的表面上。
冷料头会导致制品表面出现痕迹,严重的还会降低制品的力学性能物理原因当熔料可以在机器喷嘴或热流道附近冷却时往往会产生冷料头。
由于先注射进的熔料总是聚集在浇口附近,在此区域就会产生缺陷。
它的成因是因为机器喷嘴或热流道喷嘴周围的温度控制不合理。
3、与加工参数有关的原因与改良措施见下表:b、喷嘴温度太低测量喷嘴温度,提高喷嘴温度,减少喷嘴接触区4、与设计有关的原因与改良措施见下表:a、喷嘴横截面太小增加喷嘴横截面b、浇口几何尺寸不合理改变浇口几何尺寸将冷料头留在通道c、热流道几何尺寸不合理改变热流道喷嘴几何尺寸注塑成型缺陷之十一:唱片纹1、表观在整个料流方向上甚至到流道末端可以看出很深的槽。
在采用高粘性(流动性差)材料和厚壁的制品生产时出现这种现象,这些槽看上去象唱片上的纹路。
在PC料做成的产品上非常清晰,但在ABS制品上更大,并且呈灰黯色。
物理原因如果在注射过程中—特别时在低注射速度的条件下,接触模具表面的熔体凝结速度太快,流动阻力太高,就会在流体前端产生扭曲。
凝固的外层材料不会完全接触模腔壁而形成波浪状。
这些波浪状的材料会冻结,保压也不再能够将它们弄平整。
与加工参数有关的原因与改良措施见下表:1、注射速度太低增加注射速度2、熔料温度太低提高料筒温度,增加螺杆背压3、模具表面温度太低增加模具温度4、保压太低增加保压与设计有关的原因与改良措施见下表:1、浇口横截面太小增加浇口横截面,缩短浇道2、喷嘴孔太小增大喷嘴孔注塑成型缺陷之十二熔接缝熔接缝(Weld line)表观在充模方式里,熔接缝是指各流体前端相遇时的一条线。
特别是模具有高抛光表面的地方,制品上的熔接缝很象一条刮痕或一条槽,尤其是在颜色深或透明的制品上更明显。
熔接缝的位置总是在料流方向上。
物理原因熔接缝形成的地方为熔料的细流分叉并又连接在一起的地方,最典型的是型芯周围的熔流或使用多浇口的制品。
在细流再次相遇的地方,表面会形成熔接缝和料流线。
熔料周围的型芯越大或浇口间的流道越长,形成的熔接缝就越明显。
细小的熔接缝不会影响制品的强度。
然而,流程很长或温度和压力不足的地方,充模不满会造成明显的凹槽。
原因主要是流体前端未均匀熔合产生弱光点。