配电网络重构的研究
- 格式:pdf
- 大小:277.69 KB
- 文档页数:7
基于逐次逼近法的配电网络动态重构的开题报告一、研究背景和目的随着经济的发展和人们生活水平的提高,对电能质量的要求也越来越高。
其中,电能质量问题的核心就是解决功率负载不平衡、过载和电压偏差问题,而这些问题又与配电网络的动态重构密切相关。
在配电网络中,动态重构是指通过合理调整网络拓扑结构和参数配置来提升系统的性能和可靠性。
针对这一目的,目前已经出现了许多动态重构方法,如基于神经网络的方法、基于遗传算法的方法等。
其中,基于逐次逼近法的方法因为具有计算速度快、精度高等优点,被广泛应用于动态重构领域。
因此,本研究旨在深入分析基于逐次逼近法的配电网络动态重构方法的原理和特点,研究其应用范围和优缺点,建立适用于具体问题的数学模型和算法,并对其进行仿真验证。
二、研究内容和方法本研究的主要内容包括以下几个方面:1. 基于逐次逼近法的配电网络动态重构方法的原理和特点分析。
2. 通过对现有基于逐次逼近法的配电网络动态重构方法的研究和总结,建立适用于具体问题的数学模型和算法。
3. 基于Matlab等工具,对所建立的数学模型进行仿真验证,并分析其优缺点。
4. 根据仿真结果,总结基于逐次逼近法的配电网络动态重构方法的优缺点,提出进一步改进和发展方向。
本研究采用文献资料法、数学建模法和仿真验证法等研究方法。
在文献资料方面,将选取相关权威期刊、学术论文和专业书籍等,对已有的基于逐次逼近法的配电网络动态重构方法进行详细的梳理和分析;在数学建模方面,将采用逐步逼近法、有限元分析法等手段,建立适用于具体问题的数学模型和算法;在仿真验证方面,将采用Matlab等工具,对所建立的数学模型进行仿真验证,并根据仿真结果进行数据分析和统计。
三、预期结果和意义本研究的预期结果如下:1. 深入分析了基于逐次逼近法的配电网络动态重构方法的原理和特点,对该方法的优缺点进行了评价和总结。
2. 建立了适用于具体问题的数学模型和算法,并应用Matlab等工具进行了仿真验证。
配电系统自动网络重构方案探究摘要:随着国民经济的高速发展和改革开放的深入,电力用户对电能质量和供电可靠性的要求越来越高,电压波动和短时的停电都会造成巨大的损失,所以配电网的自动化设计就显得尤为重要,因此,需要在结合电网改造中实现自动化,以提高电网的管理水平,向广大电力用户不间断的提供优质电能。
关键词:配电网;自动化;方案配电网作为电力系统的重要组成成分,是电力系统的主要负荷中心,同时也是建设现代化城市的主要基础设施。
在目前的城市配电网工程建设中,由于其点多面广、数量庞大的工程特点,因此对其自动化系统的设计和改造需要软硬件功能和结构适应其特点全面发展,有效进步,为城市配电工作的正常进行提供基础。
一、配电网自动化的作用和优势1、配电网自动化系统作用配电网自动化是电力系统实现现代化的必然趋势,其在设计和建设中的主要作用在于以下几个方面:首先配电网自动化设计有利于城市电力系统的正常运行。
在建设的过程中通过先进的信息技术和远程监控技术对配电网的运行情况进行全面有效的监控,进而优化配电网运行方式,保证配电网系统的安全、可靠、稳定的运行。
其次配电自动化是指利用现代电子技术、通信技术、计算机及网络技术与电力设备相结合,将配电网在正常及事故情况下的监测、保护、控制、计量和供电部门的工作管理有机地融合在一起,改进供电质量,与用户建立更密切更负责的关系,以合理的价格满足用户要求的多样性,力求供电经济性最好,企业管理更为有效。
配电自动化是一个庞大复杂的、综合性很高的系统性工程,包含电力企业中与配电系统有关的全部功能数据流和控制。
2,优势首先扩大供电能力。
配电网自动化通过实时监控能够及时调整系统运行,并提高用户侧管理水平,提高供电和服务质量,从而逐步扩大供电能力。
降低线路损耗。
配电网自动化能够优化网络结构,通过无功配置降低线路损耗。
其次提高供电可靠性。
配电网自动化能够通过环网供电等方式,借助馈线自动化系统对线路进行检测,自动定位故障并隔离故障区段,保证其它区段供电的稳定。
配电网重构研究综述本文介绍了配电网重构的目的与意义,阐述了国内外配电网重构的发展历程,并详细介绍了配电网重构的算法,以及算法和重构问题结合的方法,同时综述了国内外配电网重构的研究热点,并介绍了处理不确性问题的方法,最后展望了配电网重构的发展方向和值得进一步研究的问题。
标签:配电网重构;分布式电源;电动汽车;不确定性1 引言由于配电网中存在大量的分段开关和联络开关,开关操作的排列组合数目十分巨大,若采用穷举搜索将面临“组合爆炸”问题。
因而配电网重构是一个多目标非线性混合优化问题。
在现有配电网络的基础上,对网络进行重构,能够提高系统的安全性和经济性,具有很大的经济效益和社会效益。
2 配电网重构算法的研究现状传统算法如启发式算法之类的特点是计算量小,计算速度快。
缺点是给出的配电网重构结果与配电网的初始结构有关,不能保证全局最优。
智能算法如遗传算法之类可以求得很好的解,却由于计算时间过长而限制了其应用。
目前不少研究人员致力于研究如何提高算法速度,取得了一定成效。
2.1 传统优化技术传统优化技术是相对人工智能方法这些现代优化技术而言的,它主要包括了启发式方法、最优流模式算法、支路交换法、动态规划法。
2.2 人工智能方法近年来,许多人致力于将人工智能的理论和方法应用于配电网自动化中,用于配电网重构的人工智能方法主要有:模拟退火算法、遗传算法方法、蚁群算法方法、微粒群算法方法、模拟植物生长算法。
3 重构问题和算法结合的现状对于配电网重构问题,需要找到系统满足某一个或某些目标函数最优的拓扑结构,这是一个离散的最优化问题,具有很多的不可行解,如何缩小搜索空间,避免不可行解的产生是配电网重构问题的核心。
3.1 化整为零策略为缩减编码长度,提高计算效率,提出了基于化整为零策略和改进二进制差分进化算法的配电网重构方法。
将开关根据其在环路中的位置进行分类,建立了环路–开关关联矩阵。
应用化整为零策略将整个解空间划分成若干个子解空间,应用改进二进制差分进化算法直接对各子解空间进行并行搜索,比较所有子解空间的搜索结果即可找到重构问题的最优解,缩短了开关方案的编码长度。