2021年吉林省敦化市中考数学总复习:二次函数(附答案解析)
- 格式:docx
- 大小:2.47 MB
- 文档页数:212
2021中考数学二次函数的图象及其性质一轮复习一、选择题1. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,12. 对于函数y=-2(x-m)2,下列说法不正确的是()A.其图象开口向下B.其图象的对称轴是直线x=mC.最大值为0D.其图象与y轴不相交3. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为() A. y=(x-2)2+3 B. y=(x-2)2+5C. y=x2-1D. y=x2+44. (2020·深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示,以下结论错误..的是()A.abc>0 B.4ac-b2<0C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根5. 已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是()A. 当a=1时,函数图象过点(-1,1)B. 当a=-2时,函数图象与x轴没有交点C. 若a>0,则当x≥1时,y随x的增大而减小D. 若a<0,则当x≤1时,y随x的增大而增大6. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y37. (2020·福建)10.已知()111,P x y ,()222,P x y 是抛物线22=-y ax ax 上的点,下列命题正确的是( )A.若12|1||1|->-x x ,则12>y yB.若12|1||1|->-x x ,则12<y yC.若12|1||1|-=-x x ,则12=y yD.若12=y y ,则12=x x二、填空题8. 将抛物线y =-(x +2)2向________平移________个单位长度,得到抛物线y =-(x -1)2.9. 如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (-2,4),B (1,1),则方程ax 2=bx+c 的解是 .10. (2019•荆州)二次函数2245y x x =--+的最大值是__________.11. 已知二次函数y=-(x -1)2+2,当t<x<5时,y 随x 的增大而减小,则实数t 的取值范围是 .12. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.13. 抛物线y =ax 2+bx +c(a ,b ,c 为常数)的顶点为P ,且抛物线经过点A(-1,0),B(m ,0),C(-2,n)(1<m <3,n <0),有下列结论: ①abc >0; ②3a +c <0; ③a(m -1)+2b >0;④a =-1时,存在点P 使△PAB 为直角三角形. 其中正确结论的序号为________.14. 如图,抛物线y =-x 2+2x +3与y 轴交于点C ,点D (0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,则点P 的坐标为________.三、解答题15. 已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A(2,m)和点B(3,n),试比较m 与n 的大小,并说明理由.16. 如图,已知抛物线y =x 2-(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点. (1)求m 的值;(2)求A 、B 两点的坐标; (3)点P (a ,b )(-3<a <1)是抛物线上一点,当△P AB 的面积是△ABC 面积的2倍时,求a 、b 的值.17. (2019·山东滨州)如图①,抛物线211482y x x =-++与y 轴交于点A ,与x 轴交于点,B C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D . (1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点 ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P到直线AD的距离为524时,求sin PAD的值.2021中考数学二次函数的图象及其性质一轮复习-答案一、选择题1. 【答案】D【解析】由y=(x-2)2+k知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y=x2+bx+5知其对称轴为x=-b2,得-b2=2,所以b=-4;于是可以得到函数的解析式是y=x2-4x+5,把(2,k)代入其中即得k=1.2. 【答案】D3. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.4. 【答案】C【解析】根据抛物线开口向下,得到a<0,对称轴为直线x=-b2a=-1,知b=2a<0,抛物线与y轴交于正半轴,c>0,∴abc>0,故选项A正确;根据抛物线与x轴有两个交点,∴b2-4ac>0,即4ac-b2<0,故选项B正确;当x=1时,y=a+b+c<0,又∵b=2a,∴3a+c<0,∴选项C错误;∵抛物线开口向下,顶点为(-1,n),∴函数有最大值n,即抛物线y=ax2+bx+c与直线y =n+1无交点,一元二次方程ax2+bx+c=n+1无实数根,选项D正确;而要选择结论错误..的,因此本题选C.5. 【答案】D【解析】当a=1时,函数为y=x2-2x-1,当x=-1时,y=1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A选项错误;当a=-2时,函数为y=-2x2+4x-1,b2-4ac=16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B 错误;当a >0时,抛物线的开口向上,它的对称轴是直线x =--2a2a =1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a <0时,抛物线的开口向下,它的对称轴是直线x =--2a2a =1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.6. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.7. 【答案】C【解析】本题考查了二次函数的图象和性质,∵22=-y ax ax =a (x -1)2-a ,∴抛物线的对称轴为x =1,根据二次函数的对称性知若12|1||1|-=-x x ,则12=y y ,因此本题选C . 二、填空题8. 【答案】右 39. 【答案】x 1=-2,x 2=1[解析]∵抛物线y=ax 2与直线y=bx +c 的两个交点坐标分别为A (-2,4),B (1,1),∴的解为即方程ax 2=bx +c的解是x 1=-2,x 2=1.10. 【答案】7【解析】222452(1)7y x x x =--+=-++, 即二次函数245y x x =--+的最大值是7, 故答案为:7.11. 【答案】1≤t<5[解析]抛物线的对称轴为直线x=1,因为a=-1<0,所以抛物线开口向下,所以当x>1时,y 的值随x 值的增大而减小,因为t<x<5时,y 随x 的增大而减小,所以1≤t<5.12. 【答案】21(4)2yx =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.13. 【答案】②③ [解析] 由抛物线经过A(-1,0),B(m ,0),可知对称轴为x =m -12=-b 2a, ∴-ba =m -1.∵1<m <3,∴ab <0.画出二次函数y =ax 2+bc +c 的大致图象可知a <0, ∴b >0.把(-1,0)代入y =ax 2+bx +c ,可得a -b +c =0, ∴c =b -a >0.∴abc <0,故①错误. 当x =3时,y <0,∴9a +3b +c =9a +3(a +c)+c =12a +4c =4(3a +c)<0,∴3a +c<0,故②正确. ∴-ba =m -1,∴a(m -1)+2b =-b +2b =b >0,故③正确.当a =-1时,y =-x 2+bx +c ,∴P(b 2,b +1+b 24).若△PAB 为直角三角形,则△PAB 为等腰直角三角形, ∴b +1+b 24=b2+1,∴b =-2或b =0.∵b >0,∴不存在点P 使△PAB 为直角三角形, 故④错误. 故答案为②③.14. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).三、解答题15. 【答案】解:(1)∵抛物线y =2x 2-4x +c 与x 轴有两个不同的交点, ∴Δ=b 2-4ac =16-8c >0,∴c <2.(2)m<n.理由:∵抛物线y =2x 2-4x +c 的对称轴为直线x =1, ∴点A(2,m)和点B(3,n)都在对称轴的右侧. 又∵当x≥1时,y 随x 的增大而增大, ∴m <n.16. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上, ∴方程x 2-(m +3)x +9=0有两个相等的实数根, ∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9, 又∵抛物线对称轴大于0,即m +3>0, ∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎨⎧y =x 2-6x +9y =x +3,解得⎩⎨⎧x =1y =4或⎩⎨⎧x =6y =9,∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,解图∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15,S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分) 又∵S △PAB =2S △ABC , ∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上, ∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1, ∴a =7-732,∴b =15+7-732=37-732.(10分)17. 【答案】(1)当0x =时,4y =,则点A 的坐标为()0,4,当0y =时,2110482x x =-++,解得,124,8x x =-=,则点B 的坐标为()4,0-,点C 的坐标为()8,0,∴4OA OB ==,∴45OBA OAB ∠=∠=︒, ∵将直线AB 绕点A 逆时针旋转90︒得到直线AD , ∴90BAD ∠=︒,∴45OAD =︒,∴45ODA ∠=︒,∴OA OD =,∴点D 的坐标为()4,0, 设直线AD 的函数解析式为,y kx b =+440b k b =⎧⎨+=⎩,得14k b =-⎧⎨=⎩, 即直线AD 的函数解析式为4y x =-+;(2)作PN x ⊥轴交直线AD 于点N ,如图①所示,设点P 的坐标为211,482t t t ⎛⎫-++ ⎪⎝⎭,则点N 的坐标为(),4t t -+,∴2211134(4)8282PN t t t t t ⎛⎫=-++--+=-+ ⎪⎝⎭,∴PN x ⊥轴, ∴PN y ∥轴,∴45OAD PNH ∠=∠=︒,作PH AD ⊥于点H ,则90PHN ∠=︒, ∴22222132322926)2282164164PH PN t t t ⎫==-+=-+=--+⎪⎝⎭, ∴当6t =时,PH 92P 的坐标为(56,2),即当点P 到直线AD 的距离最大时,点P 的坐标是(56,2),最大距离是924;②当点P 到直线AD的距离为524时,如图②所示,则2232521644t t -+=,解得:122,10t t ==, 则1P 的坐标为(92,2),2P 的坐标为(10,)72-,当1P 的坐标为(92,2),则221917(20)42P A ⎛⎫=-+-= ⎪⎝⎭,∴125344sin 172P AD ∠==; 当2P 的坐标为(10,)72-,则222725(100)422P A ⎛⎫=-+--= ⎪⎝⎭,∴25224sin 252P AD ∠==;由上可得,sin PAD ∠的值是53434或210. 【名师点睛】本题是一道二次函数的综合性题目,关键在于设P 点的横坐标,最后将其转化成二次函数的最值问题,通过求解二次函数的最值问题来求解最短距离,难度系数较大,是一道特别好的题目,应当熟练的掌握.。
2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。
2021年吉林省敦化市中考数学总复习:二次函数解析版一.选择题(共50小题)1.关于二次函数y=x2+6x+11的图象的性质,下列结论正确的是()A.对称轴为y=﹣3B.顶点坐标为(﹣3,2)C.当x<3时,y随x的增大而增大D.它与x轴有两个交点【解答】解:y=x2+6x+11=(x+3)2+2,∴对称轴为x=﹣3,顶点坐标为(﹣3,2),A.函数的对称轴为:x=﹣3,故原选项错误,不符合题意;B.正确,符合题意;C.当x>3时,y随x的增大而增大,故原选项错误,不符合题意;D.函数的顶点在第二象限,且开口向上,故抛物线与x轴没有交点,故原选项错误,不符合题意;故选:B.2.如图,抛物线y=ax2+bx+c(a≠0)交x轴于点A,B,交y轴于点C.若点A坐标为(﹣4,0),对称轴为直线x=﹣1,则下列结论错误的是()A.二次函数的最大值为a﹣b+cB.a+b+c>0C.b2﹣4ac>0D.2a+b=0【解答】解:当x=﹣1时,y=a﹣b+c的值最大,选项A不符合题意;抛物线与x轴的另一个交点为(2,0),当x=1时,y=a+b+c>0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b2﹣4ac>0,故选项C不符合题意;抛物线y=ax2+bx+c过点A(﹣4,0),对称轴为直线x=﹣1,因此有:x=﹣1=−b2a,即2a﹣b=0,因此选项D符合题意;故选:D.3.二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,顶点坐标为(﹣1,m),与x轴的一个交点的坐标为(﹣3,0),给出以下结论:①abc>0;②4a﹣2b+c>0;③若B(−5 2,y1)、C(−12,y2)为函数图象上的两点,则y1<y2;④当﹣3<x<0时方程ax2+bx+c=t有实数根,则t的取值范围是0<t≤m.其中正确的结论的个数为()A.1个B.2个C.3个D.4个【解答】解:①函数的对称轴在y轴右侧,故ab>0,而c>0,故abc>0正确,符合题意;②由图象可以看出,x=﹣2时,y=4a﹣2b+c>0正确,符合题意;③若B(−52,y1)、C(−12,y2)为函数图象上的两点,函数的对称轴为:x=﹣1,点C比点B离对称轴近,故则y1<y2正确,符合题意;④当﹣3<x<0时方程ax2+bx+c=t有实数根,即y=ax2+bx+c与y=t有交点,故则t的取值范围是0<t≤m正确,符合题意.故选:D.4.在平面直角坐标系中,把一条抛物线先向上平移1个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6.则原抛物线的顶点坐标是()A.(52,−34)B.(−52,−34)C.(52,54)D.(−52,54)【解答】解:∵抛物线的解析式为:y=x2+5x+6,设原抛物线上有点(x,y),绕原点旋转180°后,变为(﹣x,﹣y),点(﹣x,﹣y)在抛物线y=x2+5x+6上,将(﹣x,﹣y)代入y=x2+5x+6得到新抛物线﹣y=x2﹣5x+6,。
2021年吉林省中考数学试卷(附答案详解)1.化简-(-1)的结果为()答案:B。
12.据《吉林日报》2021年5月14日报道,第一季度XXX销售整车辆,数据用科学记数法表示为()答案:B。
7.006×1043.不等式2x−1>3的解集是()答案:B。
x>24.如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()答案:B.5.如图,四边形ABCD内接于⊙x,D重合)连接xx.点P为边AD上任意一点(点P不与点A,若∠x=120°,则∠xxx的度数可能为()答案:D。
65°6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为()答案:C。
3x+2x+7x+x=337.√9-1=______.答案:B。
28.因式分解:x2−2x=______.答案:x(x-2)9.计算:x−1/x−1=______.答案:110.若关于x的一元二次方程x2+3x+x=有两个相等的实数根,则c的值为______.答案:3/411.如图,已知线段xx=2xx,其垂直平分线CD的作法如下:(1)分别以点A和点B为圆心,xxx长为半径画弧,两弧相交于C,D两点;(2)作直线CD.上述作法中b满足的条作为b______1.(填“>”,“<”或“=”)答案:=12.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),点P在直线y=x上,且AP=BP,过点P作直线CD交x轴于点E.若PE=2,则PE的坐标为______.答案:(2,2)增长量÷去年业务量×100%。
根据以上数据,回答以下问题:1)2016年快递业务量为______亿件;2)2018年快递业务量比2017年增长了______亿件;3)2019年快递业务量为______亿件;4)2020年快递业务量比2019年增长了______亿件;5)2016年至2017年,快递业务量的增长速度______;6)2018年至2020年,快递业务量的增长速度______.过25天完成全部接种,而乙地需要30天完成全部接种.已知甲地每天接种人数比乙地多200人,求甲地前5天平均每天接种人数.解:设甲地每天接种人数为x,乙地每天接种人数为x,则40万=5万+25x+(30−25)x40万=30x+5万解得:x=x+200则甲地前5天接种人数为5x=5(x+200)=5x+1000,平均每天接种人数为(5x+1000)/5=x+200,代入第二个式子得40万=30x+5万解得:x=所以甲地前5天平均每天接种人数为+200=人.解析】去括号与添括号是一种基本的代数运算,常用于化简和变形式子。
函数图象解题思路起点:动点从何处出发,何时出发,何速度运动,运动方向是什么,形成的是何图形?起点有没有意义?点运动的路程(边长)中间点:分阶段运动,中间的位置是什么?终点:何时何地结束运动,停止时是否有先后?特殊点:运动过程中特殊的位置。
类型一、实际问题【经典例题1】已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A.B. C. D.【解析】 由题意和图象可得,乙到达B 地时甲距A 地120km ,开始时两人的距离为0; 甲的速度是:120÷(3−1)=60km/h ,乙的速度是:80÷3=380km/h ,即乙出发1小时后两人距离为380km ;设乙出发后被甲追上的时间为x h ,则60(x −1)=380x ,得x =1.8,即乙出发后被甲追上的时间为1.8h.所以符合题意的函数图象只有选项B.故选:B.练习1-1甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢练习1-2小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如下图所示.小明选择的物体可能是( )A.B.C.D.练习1-3如图,在一个盛水的圆柱形容器的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速将小球从水下向水面上拉动时,圆柱形容器内水面的高度与时间的函数图象大致是()类型二:几何动态①动点图形面积【经典例题2】如图,在等腰△ABC中,AB=AC=4cm,△B=30°,点P从点B 出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.【解析】作AH ⊥BC 于H ,∵AB=AC=4cm ,∴BH=CH ,∵∠B=30°,∴AH=12AB=2,BH=3AH=23,∴BC=2BH=43,∵点P 运动的速度为3m/s ,Q 点运动的速度为1cm/s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0△x △4时,作QD ⊥BC 于D ,如图1,BQ=x ,BP=3x ,在Rt △BDQ 中,DQ=21BQ=21x , ∴y=21⋅21x ⋅3x =43x 2,当4<x △8时,作QD ⊥BC 于D ,如图2,CQ=8−x ,BP=43在Rt △BDQ 中,DQ=21CQ=21(8−x ),∴y=21⋅21(8−x )⋅43=−3+83, 综上所述,⎪⎩⎪⎨⎧≤<+-≤≤=)84(383)40(432x x x x y ,,,.故选D.练习2-1四边形ABCD 为直角梯形,CD△AB ,CB△AB 且CD=BC=21AB ,若直线l △AB ,直线l 截这个梯形所得的位于此直线左方的图形面积为y ,点A 到直线L 的距离为x ,则y 与x 关系的大致图象为( )A.B. C. D.练习2-2如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B −C −D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是( )练习2-3如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D.练习2-4如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A. B. C. D.练习2-5如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t (s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()练习2-6如图,在△ABCD中,AB=6,BC=10,AB△AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.练习2-7如图,在平面直角坐标系x Oy中,A(2,0),B(0,2),点M在线段AB 上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A. B. C. D.练习2-8木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.练习2-9数学课上,老师提出一个问题:如图△,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使△BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图△所示,题中用“……”表示的缺失的条件应补为( )A. 点C的横坐标B. 点C的纵坐标C. △ABC的周长D. △ABC的面积练习2-10如图,在平面直角坐标系x Oy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴,y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ 于点H.设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x函数关系的图象大致是().②动点图形边长【经典例题3】如图△,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图△所示,则AD边的长为( )A. 3B. 4C. 5D. 6【解析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为3. ∴21AB •21=3,即AB •BC=12. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为7,∴AB+BC=7.则BC=7-AB ,代入AB •BC=12,得AB 2-7AB+12=0,解得AB=4或3, 因为AB<AD ,即AB<BC ,所以AB=3,BC=4.故选:B .练习3-1如图1,动点P 从菱形ABCD 的顶点A 出发,沿以1cm/s 的速度运动到点D ,设点P 的运动时间为x (s ),△PAB 的面积为y(cm 2),表示y 与x 的函数关系的图象如图2所示,则a 的值为( ) A.25 B.5 C. 2 D.52练习3-2如如图△,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B--运动到点D.图△是点P、Q运动时,△BPQ的面积S随时出发沿折线B C D间t变化关系图象,则a的值是()A.2B.2.5C.3D.练习3-3如如图1,四边形ABCD中,AB△CD,△B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.练习3-4如如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是______.练习3-5如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是52,则矩形ABCD 的面积是() A.523 B. 5 C. 6 D. 425【经典例题4——圆】如图,在平面直角坐标系x Oy中,以(3,0)为圆心作△P,△P与x轴交于A. B,与y轴交于点C(0,2),Q为△P上不同于A. B的任意一点,连接QA、QB,过P点分别作PE△QA于E,PF△QB于F. 设点Q的横坐标为x,PE2+PF2=y.当Q 点在△P上顺时针从点A运动到点B的过程中,下列图象中能表示y与x的函数关系的部分图象是( )【解析】△P(3,0),C(0,2),△PC2=13.△AC是直径,△△Q=90°.又PE△QA于E,PF△QB于F,△四边形PEQF是矩形。
中考数学总复习《二次函数的三种形式》专项练习题附答案一、单选题1.抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是( )A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<03.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+74.抛物线y=(x+2)2−3的对称轴是()A.直线x=2B.直线x=-2C.直线x=-3D.直线x=35.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5B.y=(x﹣3)2+5C.y=(x﹣3)2﹣4D.y=(x+3)2﹣96.已知二次函数y=(x−1m)(mx−4m)(其中m>0),下列说法正确的是()A.当x>2时都有y随着x的增大而增大B.当x<3时都有y随着x的增大而减小C.若x<n时都有y随着x的增大而减小,则n≥2+12mD.若x<n时都有y随着x的增大而减小,则n≤2+12m7.将二次函数y=2x2﹣4x+1化成顶点式是()A.y=2(x+1)2﹣1B.y=2(x﹣1)2﹣1C.y=2(x+1)2+1 D.y=2(x﹣1)2+18.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+39.在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=-(x-1)2-2B.y=-(x+1)2-2C.y=-(x-1)2+2D.y=-(x+1)2+210.已知二次函数y=x2+bx+c的图像经过点(−1,−2),则bc有()A.最小值−14B.最小值−94C.最大值14D.最大值9411.二次函数y=x2+2x﹣3的图象的顶点坐标是()A.(﹣1,﹣4)B.(1,﹣4)C.(﹣1,﹣2)D.(1,﹣2)12.二次函数y=﹣3x2+6x变形为y=a(x+m)2+n形式,正确的是()A.y=﹣3(x+1)2﹣3B.y=﹣3(x﹣1)2﹣3C.y=﹣3(x+1)2+3D.y=﹣3(x﹣1)2+3二、填空题13.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b+k=.14.二次函数y=﹣4(1+2x)(x﹣3)的一般形式y=ax2+bx+c是.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…-4-3-2-10…y…3-2-5-6-5…的取值范围是.16.某抛物线的顶点坐标为(﹣2,﹣1),开口方向、形状与抛物线y=3x2相同,则此抛物线的解析式是.17.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式18.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.(只需写一个)三、综合题19.成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时y2与x之间的函数关系式;(2)某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时获得的总利润最大?最大总利润是多少?20.如图,需在一面墙上绘制两个形状相同的抛物绒型图案,按照图中的直角坐标系,最高点M到横轴的距离是4米,到纵轴的距离是6米;纵轴上的点A到横轴的距离是1米,右侧抛物线的最大高度是左侧抛物线最大高度的一半.(结果保留整数或分数,参考数据√3= 74,√6= 52)(1)求左侧抛物线的表达式;(2)求右侧抛物线的表达式;(3)求这个图案在水平方向上的最大跨度是多少米.21.已知二次函数y=x2−4x+3.(1)将y=x2−4x+3化成y=a(x−ℎ)2+k的形式:;(2)这个二次函数图象与x轴交点坐标为;(3)这个二次函数图象的最低点的坐标为;(4)当y<0时x的取值范围是.22.已知:二次函数y=2x2+bx+c的图象经过点(1,0),(2,10)(1)求这个抛物线的解析式;(2)运用配方法,把这个抛物线的解析式化为y=a(x+m)2+k的形式,并指出它的顶点坐标;(3)把这个抛物线先向右平移4个单位,再向上平移6个单位,求平移后得到的抛物线与y轴的交点坐标.23.已知抛物线y=x2+2x+2(1)该抛物线的对称轴是,顶点坐标;(2)选取适当的数据填入下表,并在直角坐标系内描点画出该抛物线的图象;x……y……(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.24.如图,东湖隧道的截面由抛物线和长方形构成,长方形的长OA为12cm,宽OB为4cm,隧道顶端D到路面的距离为10cm,建立如图所示的直角坐标系(1)求该抛物线的解析式.(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5m,那么两排灯的水平距离最小是多少米?参考答案与解析1.【答案】A2.【答案】A3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】B8.【答案】D9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】﹣314.【答案】y=﹣8x2+20x+1215.【答案】y>-516.【答案】y=3(x+2)2﹣117.【答案】y=(x﹣6)2﹣3618.【答案】y=2x2﹣119.【答案】(1)解:当0<x≤30时根据题意设y2=a(x﹣30)2+900将原点(0,0)代入,得:900a+900=0,解得:a=﹣1∴y2=﹣(x﹣30)2+900=﹣x2+60x当x>30时y2=900(2)解:①设投资钢材部分的资金量为t万元,则投资生产水泥的资金量为(100﹣t)万元当0<t≤30时W=y1+y2=20(100﹣t)+(﹣t2+60t)=﹣t2+40t+2000当t>30时W=20(100﹣t)+900=﹣20t+2900;②∵t≥45∴W=﹣20t+2900,W随t的增大而减小∴当t=45时W最大值=2000万元答:当投资钢材部分的资金量为45万元时获得的总利润最大,最大总利润是2000万元.20.【答案】(1)解:最高点M到横轴的距离是4米,到纵轴的距离是6米∴M(6,4)设左侧抛物线的表达式为y=a(x﹣6)2+4把A(0,1)代入y=a(x﹣6)2+4得a=﹣112∴左侧抛物线的表达式为y=﹣112(x﹣6)2+4(2)解:∵抛物线y=﹣112(x﹣6)2+4与x轴的交点C(13,0)∵右侧抛物线与左侧抛物线形状相同∴设右侧抛物线的表达式为y=﹣112(x﹣h)2+2把C(13,0)代入y=﹣112(x﹣h)2+2得0=﹣112(13﹣h)2+2解得:h=18,h=8(不合题意,舍去)∴右侧抛物线的表达式为y=﹣112(x﹣18)2+2(3)解:∵C(13,0),右侧抛物线的对称轴是直线x=18∴D(23,0)∴这个图案在水平方向上的最大跨度是23米21.【答案】(1)y=(x-2)2-1(2)(1,0)或(3,0)(3)(2,-1)(4)1<x<322.【答案】(1)解:将(1,0)和(2,10)分别代入二次函数y=2x2+bx+c,得{0=2+b+c10=8+2b+c解得{b=4c=−6∴这个抛物线的解析式是y=2x2+4x-6.(2)解:y=2x2+4x-6=2(x+1)2-8∴顶点坐标是(-1,-8).(3)解:将顶点(-1,-8)先向右平移4个单位,再向上平移6个单位,得顶点坐标为(3,-2)∴平移后得到的抛物线的解析式是y=2(x-3)2-2,令x=0,则y=16∴它与y轴的交点的坐标是(0,16).23.【答案】(1)x=1;(1,3)(2)解:x…-10123…y…-1232-1…(3)解:因为在对称轴x=1右侧,y随x的增大而减小,又x1>x2>1,所以y1<y2.24.【答案】(1)解:根据题意,该抛物线的顶点坐标为(6,10)设抛物线解析式为y=a(x﹣6)2+10将点B(0,4)代入,得:36a+10=4解得:a=﹣1 6故该抛物线解析式为y=﹣16(x﹣6)2+10(2)解:根据题意,当x=6+4=10时y=﹣16×16+10=223>6∴这辆货车能安全通过(3)解:当y=8.5时有:﹣16(x﹣6)2+10=8.5解得:x1=3 x2=9∴x2﹣x1=6答:两排灯的水平距离最小是6米。
中考数学复习----《二次函数之函数变换》知识点总结与专项练习题(含答案解析)知识点总结1.二次函数的平移:①若函数进行左右平移,则在函数的自变量上进行加减。
左加右减。
②若函数进行上下平移,则在函数解析式整体后面进行加减。
上加下减。
2.一次函数的对称变换:①若二次函数关于x轴对称,则自变量不变,函数值变为相反数。
②若二次函数关于y轴对称,则函数值不变,自变量变成相反数。
③若二次函数关于原点对称,则自变量与函数值均变成相反数。
练习题1、(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图像向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣1【分析】根据图像的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图像向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.2、(2022•玉林)小嘉说:将二次函数y=x2的图像平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【分析】分别求出平移或翻折后的解析式,将点(2,0)代入可求解.【解答】解:①向右平移2个单位长度,则平移后的解析式为y =(x ﹣2)2,当x =2时,y =0,所以平移后的抛物线过点(2,0),故①符合题意;②向右平移1个单位长度,再向下平移1个单位长度,则平移后的解析式为y =(x ﹣1)2﹣1,当x =2时,y =0,所以平移后的抛物线过点(2,0),故②符合题意;③向下平移4个单位长度,则平移后的解析式为y =x 2﹣4,当x =2时,y =0,所以平移后的抛物线过点(2,0),故③符合题意;④沿x 轴翻折,再向上平移4个单位长度,则平移后的解析式为y =﹣x 2+4,当x =2时,y =0,所以平移后的抛物线过点(2,0),故④符合题意;故选:D .3、(2022•泸州)抛物线y =﹣21x 2+x +1经平移后,不可能得到的抛物线是( ) A .y =﹣21x 2+x B .y =﹣21x 2﹣4 C .y =﹣21x 2+2021x ﹣2022 D .y =﹣x 2+x +1【分析】根据抛物线的平移规律,可得答案.【解答】解:∵将抛物线y =﹣x 2+x +1经过平移后开口方向不变,开口大小也不变, ∴抛物线y =﹣x 2+x +1经过平移后不可能得到的抛物线是y =﹣x 2+x +1.故选:D .4、(2022•湖州)将抛物线y =x 2向上平移3个单位,所得抛物线的解析式是( )A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)2【分析】根据二次函数变化规律:左加右减,上加下减,进而得出变化后解析式.【解答】解:∵抛物线y=x2向上平移3个单位,∴平移后的解析式为:y=x2+3.故选:A.5、(2022•牡丹江)抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是.【分析】利用平移规律可求得平移后的抛物线的解析式,可求得其顶点坐标.【解答】解:∵抛物线y=x2﹣2x+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线y=(x﹣1﹣2)2+2+3,即y=(x﹣3)2+5,∴平移后的抛物线的顶点坐标为(3,5).故答案为:(3,5).6、(2022•黑龙江)把二次函数y=2x2的图像向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图像向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,故答案为:y=2(x+1)2﹣2.7、(2022•黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是.【分析】先求出绕原点旋转180°的抛物线解析式,再求出向下平移5个单位长度的解析式,配成顶点式即可得答案.【解答】解:将抛物线y=x2+2x﹣1绕原点旋转180°后所得抛物线为:﹣y=(﹣x)2+2(﹣x)﹣1,即y=﹣x2+2x+1,再将抛物线y=﹣x2+2x+1向下平移5个单位得y=﹣x2+2x+1﹣5=﹣x2+2x﹣4=﹣(x﹣1)2﹣3,∴所得到的抛物线的顶点坐标是(1,﹣3),故答案为:(1,﹣3).8、(2022•荆州)规定:两个函数y1,y2的图像关于y轴对称,则称这两个函数互为“Y 函数”.例如:函数y1=2x+2与y2=﹣2x+2的图像关于y轴对称,则这两个函数互为“Y 函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图像与x轴只有一个交点,则其“Y函数”的解析式为.【分析】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求解.【解答】解:∵函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图像与x轴只有一个交点,∴函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的图像与x轴也只有一个交点,当k=0时,函数解析式为y=﹣2x﹣3,它的“Y函数”解析式为y=2x﹣3,它们的图像与x轴只有一个交点,当k≠0时,此函数是二次函数,∵它们的图像与x轴都只有一个交点,∴它们的顶点分别在x轴上,∴=0,解得:k=﹣1,∴原函数的解析式为y=﹣x2﹣4x﹣4=﹣(x+2)2,∴它的“Y函数”解析式为y=﹣(x﹣2)2=﹣x2+4x﹣4,综上,“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4,故答案为:y=2x﹣3或y=﹣x2+4x﹣4.。
中考数学总复习《二次函数与一次函数的综合应用》练习题-附带答案一、单选题(共12题;共24分)1.已知一次函数y=ax+c 与二次函数y=ax 2+bx+c ,它们在同一坐标系内的大致图象是( )A .B .C .D .2.已知函数y ={(x −1)2−1(x ≤3)(x −5)2−(x >3),则使y=k 成立的x 值恰好有三个,则k 的值为A .0B .1C .2D .33.已知二次函数y =ax 2−4ax −5a +1(a >0)下列结论正确是( )①已知点M(4,y 1),点N(−2,y 2)在二次函数的图象上,则y 1>y 2;②该图象一定过定点(5,1)和(−1,1);③直线y =x −1与抛物线y =ax 2−4ax −5a +1一定存在两个交点;④当−3≤x ≤1时y 的最小值是a ,则a =110; A .①④B .②③C .②④D .①②③④4.如图,二次函数 y =ax 2+bx +c 的最大值为3,一元二次方程 ax 2+bx +c −m =0 有实数根,则 m 的取值范围是( )A .m≥3B .m≥-3C .m≤3D .m≤-35.二次函数y =−(x −b)2+4b +1图象与一次函数y =−x +5(−1≤x ≤5)只有一交点,则b的值为()A.b=0.75B.b=2或b=12或b=0.75 C.2<b≤12D.2<b≤12或b=0.756.在平面直角坐标系中直线y=mx+n与x轴、y轴分别交于A(−10,0)、B(0,5),已知抛物线y=ax2+bx经过点A,且顶点C在直线y=mx+n的上方,则a的取值范围是().A.a<−0.1B.a>−0.1且a≠0C.a<−0.1且a≠0D.a>0.17.函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.8.反比例函数y=k x(k≠0)与二次函数y=2x2+kx-k的图象可能是() A.B.C.D.9.如图,点A是二次函数y=√3x2图象上的一点,且位于第一象限,点B是直线y=−√32x上一点,点B′与点B关于原点对称,连结AB,AB′,若△ABB′为等边三角形,则点A的坐标是()A.( 13,19√3)B.( 23,49√3)C.(1,√3)D.( 43,169√3)10.两位同学在足球场上玩游戏,两人的运动路线如图1所示,其中AC=DB,小王从点A出发沿线段AB运动到点B,小林从点C出发,以相同的速度沿△O逆时针运动一周回到点C,两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C 的距离y与时间x(单位:秒)的对应关系如图2所示,结合图象分析以下结论:①小王的运动路程比小林的长②两人分别在1.09秒和7.49秒的时刻相遇③当小王运动到点D的时候,小林已经过了点D④在4.84秒时两人的距离正好等于△O的半径上述说法正确的个数的是()A.1个B.2个C.3个D.4个11.若y=kx2﹣(2k﹣3)x+k﹣1是y关于x的二次函数,且函数值恒大于0,则k的取值范围是()A.k>0B.k>89C.k>98D.0<k<9812.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+n与C1、C2共有3个不同的交点,则n的取值范围是()A.−2<n<18B.−3<n<−74C.−3<n<−2D.−3<n<−158二、填空题(共6题;共6分)13.如图,抛物线y=ax2+c与直线y=mx+n交于A(−1,p),B(2,q)两点,则不等式ax2+mx+c>n的解集是.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则关于x的方程ax2−bx−c=0的解为.15.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y= 12x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.17.如图,在平面直角坐标系中抛物线y= 12x−212x与直线y=12x+32交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时点P的坐标:.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−3,4),B(2,1),则方程ax2=bx+c的解是.三、综合题(共6题;共68分)19.抛物线y=ax2与直线y=2x−3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=−2的两个交点B,C的坐标(点B在点C右侧).=−25x2+bx+c的图象与x轴、y轴分别交于点A(-1,0)20.如图,二次函数y1和点B(0,2),图象的对称轴交x轴于点C,一次函数y2=mx+n的图象经过点B,C,与二次函数图象的另一个交点为点D.(1)求二次函数的解析式y1和一次函数的解析式y2;(2)求点D的坐标;(3)结合图象,请直接写出y1≤y2时x的取值范围:. 21.2020年,新型冠状病毒肆虐,给人们的生活带来许多不便,网络销售成为这个时期最重要的一种销售方式.某乡镇农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10).(1)求y与x之间的函数关系式;(2)销售单价x为多少元时每天的销售利润最大?最大利润是多少元?22.已知关于x的二次函数y=x2−2ax+a2+2a.(1)当a=1时求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2−2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.23.设a,b是任意两个实数,用min{a,b}表示a,b两数中较小者,例如:min{-1,-1}=-1,min{1,2}=1,min{4,-3}=-3,参照上面的材料,解答下列问题:(1)min{-3,2}=,min{-1,-2}=;(2)若min{3x+1,-x+2}=-x+2,求x的取值范围;(3)求函数y=-x2-2x+4与y=-x-2的图象的交点坐标,函数y=-x2-2x+4的图象如图所示,请你在图中作出直线y=-x-2,并根据图象直接写出min{-x2-2x+4,-x-2}的最大值。
2021年九年级数学中考复习——函数专题:二次函数实际应用(二)1.为确保贫困人口到2020年底如期脱贫,习总书记提出扶贫开发“贵在精准,重在精准,成败之举在于精准”,近年来扶贫工作小组对果农进行精准扶贫,帮助果农因地制宜种植一种有机生态水果并拓宽了市场,有机生态水果产量呈逐年上升,去年这种水果的产量是亩产约1000千克.(1)预计明年这种水果产量要达到亩产1440千克,求这种水果亩产量去年到明年平均每年的增长率为多少?(2)某水果店从果农处直接以每千克30元批发,专营这种水果.调查发现,若每千克的平均销售价为40元,则每天可售出200千克,若每千克的平均销售价每降低1元,每天可多卖出50千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时.该水果店一天的利润最大,最大利润是多少?2.一种工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件.(1)当每件售价130元时,获得的利润为多少元?(2)每天获得利润为W元,求每天获得的利润W与降价x元之间的函数关系式?要使每天获得的利润最大,每件需降价多少元?最大利润为多少元?3.某商品的成本为20元,市场调查发现:当售价为180元时,每周可售出50件,每涨价10元每周少售出1件.现要求每周至少售出35件,且售价不低于180元.(1)设售价为x元(x为10的整数倍),每周利润为y元,求y与x之间的函数关系式,并直接写出x的取值范围;(2)当售价为多少时,(销售这种商品)每周的利润最大?最大利润是多少?(3)若希望每周利润不得低于10400元,则售价x的范围为.4.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图所示建立直角坐标系),抛物线顶点为点B.(1)求该抛物线的函数表达式;(2)当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.求OD的长.5.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?6.如图,某隧道的截面由抛物线和长方形构成,长方形的长OA为12m,宽OB为4m,隧道顶端D到路面的距离为10m,建立如图所示的直角坐标系.(1)求该抛物线的解析式;(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m,宽为4m,隧道内设双向行车道,问这辆货车能否安全通过?7.某品牌钢笔进价为每支20元,经销商小周在销售中发现,每月销售量y(支)与销售单价x(元)之间满足一次函数y=﹣10x+500的关系,在销售中销售单价不低于进价,而每支钢笔的利润不高于进价的60%,设小周每月获得利润为w(元).(1)当销售单价定为每支多少元时,每月可获得最大利润?每月的最大利润是多少?(2)如果小周想要每月获得的利润不低于2000元,那么小周每月的成本最少需要多少元?(成本=进价×销售量).8.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?9.李师傅承包了一片池塘养鱼,他用总长为120m的围网围成如图所示的6个矩形区域,其中除矩形AEFJ外,其它5个矩形的面积都相等.若AE=xm,矩形ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)当x为何值时,y取得最大值,最大值是多少?10.陆臻同学善于总结改进学习方法,他发现每解题1分钟学习收益量为2;对解题过程进行回顾反思效果会更好,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点).某一天他共有30分钟进行学习,且用于回顾反思的时间不能超过用于解题的时间.(1)求陆臻回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(2)陆臻如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量=解题的学习收益量+回顾反思的学习收益量)参考答案1.解:(1)设这种水果去年到明年每亩产量平均每年的增长率为x,由题意,得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年的增长率为20%.(2)设每千克的平均销售价为m元,由题意得:w=(m﹣30)[200+50×(40﹣m)]=﹣50(m﹣37)2+2450,∵﹣50<0,∴当m=37时,w取得最大值为2450.答:当每千克平均销售价为37元时,一天的利润最大,最大利润是2450元.2.解:(1)当每件售价130元时,135﹣130=5(元),即降价5元,由题意得:(130﹣100)(100+4×5)=30×(100+20)=30×120=3600(元),∴当每件售价130元时,获得的利润为3600元.(2)由题意得:W=(135﹣x﹣100)(100+4x)=﹣4x2+40x+3500=﹣4(x﹣5)2+3600,∴当x=5时,每天获得的利润最大,最大利润为3600元.∴每天获得的利润W与降价x元之间的函数关系式为:W=﹣4x2+40x+3500,要使每天获得的利润最大,每件需降价5元,最大利润为3600元.3.解:(1)由题意得:y=(x﹣20)(50﹣)=﹣x2+70x﹣1360,∵要求每周至少售出35件,∴50﹣≥35,解得:x≤330,又∵售价不低于180元,∴180≤x≤330.∴y与x之间的函数关系式为y=﹣x2+70x﹣1360(180≤x≤330,且x为10的整数倍);(2)∵y=﹣x2+70x﹣1360=﹣(x﹣350)2+10890,∵二次项系数为负,当x≤350时,y随x的增大而增大,又∵180≤x≤330,∴当x=330时,y=10850,最大值∴当售价为330元时,(销售这种商品)每周的利润最大,最大利润是10850元;(3)∵每周利润不得低于10400元,∴﹣(x﹣350)2+10890≥10400,∴(x﹣350)2≤4900,解得:280≤x≤420,又∵180≤x≤330,∴280≤x≤330.故答案为:280≤x≤330,且x为10的整数倍.4.解:(1)设y=a(x﹣0.4)2+3.32(a≠0),把x=0,y=3代入上式得,3=a(0﹣0.4)2+3.32,解得a=﹣2,∴抛物线的函数表达式为y=﹣2(x﹣0.4)2+3.32.(2)把y=2.6代入y=﹣2(x﹣0.4)2+3.32,化简得(x﹣0.4)2=0.36,解得x1=﹣0.2(舍去),x2=1,∴OD=1m.5.解:(1)由题意得:w=(x﹣20)•y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000.∵每件的利润不高于成本价的60%.∴20≤x≤20(1+60%),∴20≤x≤32,∴w=﹣10x2+700x﹣10000(20≤x≤32).(2)∵w=﹣10x2+700x﹣10000(20≤x≤32),∴对称轴为直线x=﹣=35,又∵a=﹣10<0,∴抛物线开口向下,∴当20≤x≤32时,w随x的增大而增大,∴当x=32时,w有最大值,最大值为﹣10×322+700×32﹣10000=2160(元).∴当销售单价定为32元时,每月可获得最大利润,每月的最大利润是2160元.6.解:(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:y=a(x﹣6)2+10,将点B(0,4)代入,得:36a+10=4,解得:a=﹣,故该抛物线解析式为y=﹣(x﹣6)2+10;(2)根据题意,当x=6+4=10时,y=﹣×16+10=>6,∴这辆货车能安全通过.7.解:(1)由题意得:w=(x﹣20)y=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250,∵a=﹣10<0,20≤x≤20(1+60%),∴当20≤x≤32时,w随x的增大而增大,=﹣10(32﹣35)2+2250=2160.∴当x=32时,w最大答:当销售单价定为每支32元时,每月可获得最大利润,每月的最大利润是2160元.(2)设小周每月的成本需要p(元),根据题意得:p=20(﹣10x+500)=﹣200x+10000,∵w=﹣10x2+700x﹣10000≥2000,∴30≤x≤40,又∵20≤x≤32,﹣200<0,∴当30≤x≤32时,w≥2000,p随x的增大而减小,=﹣200×32+10000=3600.∴当x=32时,p的值最小,p最小值答:想要每月获得的利润不低于2000元,小周每月的成本最少需要3600元.8.解:(1)根据题意,得:y=100+10x,由60﹣x≥36得x≤24,∴1≤x≤24,且x为整数;(2)设所获利润为W,则W=(60﹣x﹣36)(10x+100)=﹣10x2+140x+2400=﹣10(x﹣7)2+2890,∵a<0∴函数开口向下,有最大值,∴当x=7时,W取得最大值,最大值为2890,答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.9.解:(1)∵除矩形AEFJ外,其它5个矩形的面积都相等,且AE=xm,∴IC=3ID=3xm,3AE+3AD+5IC=120,∴3x+3AD+5×3x=120,∴AD=(40﹣6x)m,∴y=4x(40﹣6x)=﹣24x2+160x,∵AD>0,40﹣6x>0,∴0<x<,∴y=﹣24x2+160x(0<x<);(2)y=﹣24x2+160x=﹣24+,∵﹣24<0,∴x=时,y取得最大值,最大值是.10.解:(1)当0≤x≤5时,设y=a(x﹣5)2+25,把(0,0)代入,得:0=25a+25,解得:a=﹣1,∴y=﹣(x﹣5)2+25=﹣x2+10x;当5<x≤15时,y=25.综上,y=;(2)设陆臻用于回顾反思的时间为x(0≤x≤15)分钟,学习收益总量为Z,则他用于解题的时间为(30﹣x)分钟.当0≤x≤5时,Z=﹣x2+10x+2(30﹣x)=﹣x2+8x+60=﹣(x﹣4)2+76.=76.∴当x=4时,Z最大当5<x≤15时,Z=25+2(30﹣x)=﹣2x+85.∵Z随x的增大而减小,∴Z<﹣2×5+85=75.综上所述,当x=4时,Z=76,此时30﹣x=26.最大∴陆臻用于回顾反思的时间为4分钟,用于解题的时间为26分钟时,才能使这30分钟的学习收益总量最大.。
2021年吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.(2分)化简﹣(﹣1)的结果为()A.﹣1B.0C.1D.22.(2分)据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A.7.006×103B.7.006×104C.70.06×103D.0.7006×104 3.(2分)不等式2x﹣1>3的解集是()A.x>1B.x>2C.x<1D.x<2 4.(2分)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.5.(2分)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合),则∠APC的度数可能为()A.30°B.45°C.50°D.65°6.(2分)古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的全部,加起来总共是33.若设这个数是x()A.x+x+x=33B.x+x+x=33C.x+x+x+x=33D.x+x+x﹣x=33二、填空题(每小题3分,共24分)7.(3分)计算:﹣1=.8.(3分)因式分解:m2﹣2m=.9.(3分)计算:﹣=.10.(3分)若关于x的一元二次方程x2+3x+c=0有两个相等的实数根,则c的值为.11.(3分)如图,已知线段AB=2cm,其垂直平分线CD的作法如下:(1)分别以点A和点B为圆心,bcm长为半径画弧,两弧相交于C;(2)作直线CD.上述作法中b满足的条作为b1.(填“>”,“<”或“=”)12.(3分)如图,在平面直角坐标系中,点A的坐标为(0,3)(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,则点A′的坐标为.13.(3分)如图,为了测量山坡的护坡石坝高,把一根长为4.5m的竹竿AC斜靠在石坝旁,它离地面的高度DE为0.6m,则坝高CF 为m.14.(3分)如图,在Rt△ABC中,∠C=90°,BC=2.以点C为圆心,CB长为半径画弧,AB于点D,E,则图中阴影部分的面积为(结果保留π).三、解答题(每小题5分共20分)15.(5分)先化简,再求值:(x+2)(x﹣2)﹣x(x﹣1).16.(5分)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,用画树状图或列表的方法,求取出的2个球都是白球的概率.17.(5分)如图,点D在AB上,E在AC上,∠B=∠C,求证:AD=AE.18.(5分)港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共55km.其中桥梁长度比隧道长度的9倍少4km.求港珠澳大桥的桥梁长度和隧道长度.四、解(每小27分,共28分)19.(7分)图①、图2均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点B均在格点上,在给定的网格中按要求画图(1)在图①中,以点A,B,C为顶点画一个等腰三角形;(2)在图②中,以点A,B,D,E为顶点画一个面积为3的平行四边形.20.(7分)2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016﹣2017年快递业务量增长速度统计表年龄20162017201820192020增长速度51.4%28.0%26.6%25.3%31.2%说明:增长速度计算办法为:增长速度=×100%根据图中信息,解答下列问题:(1)2016﹣2020年快递业务量最多年份的业务量是亿件.(2)2016﹣2020年快递业务量增长速度的中位数是.(3)下列推断合理的是(填序号).①因为2016﹣2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.21.(7分)如图,在平面直角坐标系中,一次函数y=,与反比例函数y=在第一象限内的图象相交于点B(m,2)(1)求反比例函数的解析式;(2)求△ABC的面积.22.(7分)数学小组研究如下问题:长春市的纬度约为北纬44°,求北纬44°纬线的长度,小组成员查阅了相关资料(1)在地球仪上,与南,北极距离相等的大圆圈,所有与赤道平行的圆圈叫纬线;(2)如图,⊙O是经过南、北极的圆,地球半径OA约为6400km.弦BC∥OA,连接OB.若∠AOB=44°,则以BK为半径的圆的周长是北纬44°纬线的长度;(3)参考数据:π取3,sin44°=0.69,cos44°=0.72.小组成员给出了如下解答,请你补充完整:解:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°()(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×(填“sinB”或“cosB”).所以北纬44°的纬线长C=2π•BK.=2×3×6400×(填相应的三角形函数值)≈(km)(结果取整数).五、解答题(每小8分共16分)23.(8分)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,由于情况变化,接种速度放缓,乙地80天完成接种任务,在某段时间内(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.24.(8分)如图①,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E为射线BC上一点,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,如②,判断四边形ADFC的形状;(3)若DF⊥AB,直接写出∠BDE的度数.六.解答题(每小题10分,共20分)25.(10分)如图,在矩形ABCD中,AB=3cm cm.动点P从点A出发沿折线AB﹣BC向终点C运动,在边AB上以1cm/s的速度运动cm/s的速度运动,过点P作线段PQ与射线DC相交于点Q,连接PD,BD.设点P的运动时间为x(s)2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.答案一、单项选择题(每小题2分,共12分)1.参考答案:﹣(﹣1)=1,故选:C.点睛:本题考查去括号,解题关键是掌握去括号法则.2.参考答案:70060=7.0060×104,故选:B.点睛:本题考查科学记数法,解题关键是熟练掌握用科学记数法表示较大的数.3.参考答案:2x﹣1>5,2x>3+8,2x>4,x>7.故选:B.点睛:本题考查解不等式,熟练掌握不等式的基本性质(1,不等式的两边同时加上或减去同一个数或整式,不等号方向不变;2,不等式的两边同时乘以或除以同一个正数,不等号方向不变)是解题关键.4.参考答案:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.点睛:本题考查简单几何体的三视图,解题关键是掌握主视图是从正面看到的图形.5.参考答案:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.点睛:本题考查圆内接四边形的性质,解题关键是熟练掌握圆内接四边形对角互补.6.参考答案:由题意可得x+x+x=33.故选:C.点睛:本题考查列一元一次方程,解题关键是通过题干找出等量关系.二、填空题(每小题3分,共24分)7.参考答案:原式=3﹣1=8.故答案为:2.点睛:此题主要考查了实数运算,正确化简二次根式是解题关键.8.参考答案:m2﹣2m=m(m﹣2).故答案为:m(m﹣2).点睛:本题考查因式分解,解题关键是熟练掌握因式分解的各种方法.9.参考答案:﹣==.故答案为:.点睛:本题考查分式的加减法,解题关键是熟练掌握分式运算的法则.10.参考答案:∵一元二次方程x2+3x+c=7有两个相等的实数根,∴△=32﹣8c=0,解得c=.故答案为:.点睛:本题考查根的判别式,解题关键是熟练掌握一元二次方程的根与判别式的关系.11.参考答案:∵AB=2cm,∴半径b长度>AB,即b>1cm.故答案为:>.点睛:本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.12.参考答案:作AC⊥x轴于点C,由旋转可得∠O'=90°,O'B⊥x轴,∴四边形O'BCA'为矩形,∴BC=A'O'=OA=3,A'C=O'B=OB=4,∴点A'坐标为(8,4).故答案为:(7,8).点睛:本题考查平面直角坐标系与图形旋转的性质,解题关键是通过添加辅助线求解.13.参考答案:如图,过C作CF⊥AB于F,∴,即,解得CF=2.7,故答案为:2.5.点睛:本题考查了相似三角形应用,解决本题的关键是掌握相似三角形的性质.14.参考答案:连接CE,∵∠A=30°,∴∠B=90°﹣∠A=60°,∵CE=CB,∴△CBE为等边三角形,∴∠ECB=60°,BE=BC=2,∴S扇形CBE==π∵S△BCE=BC2=,∴阴影部分的面积为π﹣.故答案为:π﹣.点睛:本题考查扇形的面积与解直角三角形,解题关键是判断出三角形CBE为等边三角形与扇形面积的计算.三、解答题(每小题5分共20分)15.参考答案:(x+2)(x﹣2)﹣x(x﹣7)=x2﹣4﹣x3+x=x﹣4,当x=时,原式=.点睛:本题考查了整式的化简与求值,能熟记平方差公式和单项式乘以多项式法则是解此题的关键.16.参考答案:用列表法表示所有可能出现的结果情况如下:共有6种等可能出现的结果情况,其中两球都是白球的有1种,所以取出的3个球都是白球的概率为.答:取出的2个球都是白球的概率为.点睛:本题考查列表法求简单的等可能事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.17.【解答】证明:在△ABE与△ACD中,,∴△ACD≌△ABE(ASA),∴AD=AE(全等三角形的对应边相等).点睛:本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角.18.参考答案:设港珠澳大桥隧道长度为xkm,桥梁长度为ykm.由题意列方程组得:.解得:答:港珠澳大桥的桥梁长度和隧道长度分别为49.4km和5.9km.点睛:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.四、解(每小27分,共28分)19.参考答案:(1)如图①中,△ABC即为所求(答案不唯一).(2)如图②中,四边形ABDE即为所求.点睛:本题考查作图﹣应用与设计作图,等腰三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.20.参考答案:(1)由2016﹣2020年快递业务量统计图可知,2020年的快递业务量最多是833.6亿件,故答案为:833.6;(2)将2016﹣2020年快递业务量增长速度从小到大排列处在中间位置的一个数是28.3%,因此中位数是28.0%,故答案为:28.0%;(3)①2016﹣2019年快递业务量的增长速度下降,并不能说明快递业务量下降,只是增长的速度没有那么快;②因为2016﹣2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.3×(1+25%)=1042亿件以上;故答案为:②.点睛:本题考查条形统计图,中位数,样本估计总体,理解“增长率”“增长速度”“增长量”的意义及相互关系是正确判断的前提.21.参考答案:(1)∵B点是直线与反比例函数交点,∴B点坐标满足一次函数解析式,∴,∴m=3,∴B(3,2),∴k=6,∴反比例函数的解析式为;(2)∵BC⊥y轴,∴C(0,2),∴BC=5,令x=0,则y=,∴A(5,﹣2),∴AC=4,∴,∴△ABC的面积为8.点睛:本题考查了反比例函数与一次函数交点问题,会用坐标求解析式,会用解析式求坐标是解决此题的基本要求,同时要注意在平面直角坐标系中如何利用坐标表示水平线段和竖直线段.22.参考答案:因为BC∥OA,∠AOB=44°,所以∠B=∠AOB=44°(两直线平行,内错角相等)(填推理依据),因为OK⊥BC,所以∠BKO=90°,在Rt△BOK中,OB=OA=6400.BK=OB×cosB(填“sinB”或“cosB”).所以北纬44°的纬线长C=2π•BK.=2×7×6400×0.72(填相应的三角形函数值)≈27648(km)(结果取整数).故答案为:两直线平行,内错角相等;0.72.点睛:本题考查解直角三角形,解题关键是熟练三角函数的含义及解直角三角形的方法.五、解答题(每小8分共16分)23.参考答案:(1)乙地接种速度为40÷80=0.5(万人/天),8.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,(100,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=,40﹣35=5(万人).点睛:本题考查一次函数的应用,解题关键是熟练掌握待定系数法求解.24.参考答案:(1)如图①,在Rt△ABC中,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.点睛:此题重点考查直角三角形的性质、轴对称的特征、平行四边形及特殊平行四边形的判定等知识与方法,在解第(3)题时,应进行分类讨论,解题的关键是准确地画出图形,以免丢解.六.解答题(每小题10分,共20分)25.参考答案:(1)如图,在Rt△PDQ中,AD=,∴tan60°==,∴DQ=AD=1.(2)点P在AB上运动时间为6÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤7时,点P在AB上,PQ交AB于点E,同(1)可得MQ=AD=8.∴DQ=DM+MQ=AP+MQ=x+1,当x+1=5时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠DBC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=,∴y=DQ•EN=(x+6)=6=x5+x+.当2<x≤7时,点Q在DC延长线上,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣7,tan60°=,∴CF=CQ•tan60°=(x﹣2),∴S△CQF=CQ•CF=(x﹣2)=x2﹣5x+2,∴y=S△DEQ﹣S△CQF=x2+x+x2﹣2x+2x8+x ﹣.当8<x≤4时,点P在BC上,∵CP=CB﹣BP=﹣(x﹣3)=4﹣x,∴y=DC•CP=﹣x)=6﹣.综上所述,y=点睛:本题考查四边形综合应用,解题关键是熟练掌握矩形的性质及解直角三角形方法,通过数形结合求解.26.参考答案:(1)将A(0,﹣),点B(1,2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)6﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣6,∵2﹣(﹣)>﹣,∴当x=6时,y取最大值22+5﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣4m+1|,当﹣3m+7>0时,PQ=﹣3m+2,当﹣3m+1<3时,PQ=3m﹣1,∴﹣2m+1>0满足题意,解得m<.②∵0<PQ≤8,∴0<﹣3m+5≤7,解得﹣2≤m<,如图,当x=﹣时,PQ与图象有1交点,m增大过程中,﹣<m<,PQ与图象只有8个交点,直线x=关于抛物线对称轴直线x=﹣,∴﹣<m<﹣时,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣≤m时,﹣<m<﹣时.点睛:本题考查二次函数的综合应用,解题关键是熟练掌握二次函数的性质,将函数解析式配方,通过数形结合的方法求解.。
第 1 页 共
212 页 2021年吉林省敦化市中考数学总复习:二次函数
一.选择题(共50小题)
1.关于二次函数y =x 2+6x +11的图象的性质,下列结论正确的是( )
A .对称轴为y =﹣3
B .顶点坐标为(﹣3,2)
C .当x <3时,y 随x 的增大而增大
D .它与x 轴有两个交点
2.如图,抛物线y =ax 2+bx +c (a ≠0)交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(﹣
4,0),对称轴为直线x =﹣1,则下列结论错误的是( )
A .二次函数的最大值为a ﹣b +c
B .a +b +c >0
C .b 2﹣4ac >0
D .2a +b =0
3.二次函数y =ax 2+bx +c (a ≠0)图象的一部分如图所示,顶点坐标为(﹣1,m ),与x 轴
的一个交点的坐标为(﹣3,0),给出以下结论:①abc >0;②4a ﹣2b +c >0;③若B (−52,y 1)、C (−12,y 2)为函数图象上的两点,则y 1<y 2;④当﹣3<x <0时方程ax 2+bx +c =t 有实数根,则t 的取值范围是0<t ≤m .其中正确的结论的个数为( )
A .1个
B .2个
C .3个
D .4个 4.在平面直角坐标系中,把一条抛物线先向上平移1个单位长度,然后绕原点旋转180
°。