高铁铝土矿铝铁分离技术研究
- 格式:pdf
- 大小:190.66 KB
- 文档页数:3
2019年第12期轻金属•15•高铁铝土矿还原焙烧分离铁、铝的研究吴艳',白皓S辛海霞蔦徐玉君$(1.东北大学,辽宁沈阳110819;2东北大学秦皇岛分校,河北秦皇岛066004)摘要:高铁铝土矿是一种典型的难处理的多共生资源,具有较高的综合利用价值。
本文采用还原提铁及铁焙烧提铝工艺对高铁铝土矿进行了铁、铝分离研究。
实验研究表明,在还原温度1200弋、还原时间120min、•熔剂用量20%时,铁还原率可达80%,磁选分离后得到磁性物质(铁精矿)和非磁性物质(富铝渣),再通过铁焙烧的方法提取了富铝渣中的铝,在焙烧温度450弋、恒温时间120min、铁铝比为6时,铝提取率可达80%以上。
提铝后的渣主要为二氧化硅和硫酸钙。
关键词:高铁铝土矿;氧化铝;铁;还原;焙烧中图分类号:TF803.X758文献标识码:A文章编号:1002-1752(2019)12-0015-05DOI:10.13662/ki.qjs.2019.12.004Study on separation of iron and aluminum of high iron bauxite by reduction roastingWu Yan1,Bai Hao1,Xin Haixia2and Xu Yujun2(1.Northeastern University,Shenyang110819,China;2.Northeastern University at Qinhuangdao Branch,Qinhuangdao066004,China)Abstract:High iron bauxiteis a typical multiple symbiotic resource which is difficult to deal with and has high comprehensive utilization value.In this paper,the separation of Fe and Al from high iron bauxite by the process of iron reduction and ammonium roasting was studied.The experimental results show that the reduction rate of iron can reach80%when reduction at1200°C for120min and with20%flux.The magnetic substances(Iron concentrate)and non-magnetic substances(Aluminum-rich residue)were obtained by magnetic separation.The alumina in the aluminum-rich residue was extracted by ammonium roasting.When the roasting temperature is450°C,the constant temperature time is120min and the ratio of ammonium to aluminum is6, the aluminum extraction rate can reach more than80%.Silica and calcium sulfate are the main residues after aluminum extractionKey words:high iron bauxite;alumina;iron;reduction;roasting高铁铝土矿实际上是指全铁含量在25%以上,同时含有赤铁矿、磁铁矿、褐铁矿等含铁矿物,以三水铝石、一水软铝石或一水硬铝石等含铝矿物矿石的统称[,'21o我国拥有大量的高铁铝土矿资源。
铝土矿拜耳法
拜耳法主要是针对高铁三水铝石矿,先按拜耳法溶解矿石提取氧化铝,经选矿或酸溶从赤泥中回收铁。
对于拜耳法溶出的研究已较为成熟,故研究多集中在从赤泥中回收铁。
陈德和徐树涛将高铁三水铝土矿进行了拜耳法溶出-赤泥选铁研究,氧化铝的回收率可达53%~58%;赤泥配入还原煤和燃烧煤,进行成型干燥、还原焙烧、磁选,铁的回收率达到80%以上,得到的海绵铁粉可进行造球、炼钢使用;刘培旺等人采用湿式高梯度脉动磁选法处理某拜耳法赤泥,可得到TFe含量54%~56%的铁精矿,该铁精矿能用于高炉炼铁。
陈世益对广西高铁三水铝石矿进行常压、低温和低碱浓度条件下溶出约10分钟,三水铝石矿溶出率高于90%,赤泥掺入煤粉经压团、干燥,进入回转窑还原焙烧,然后破碎、磁选、成型为海绵铁团块,产品的全铁品位和金属化率均高于90%,铁回收率大于85%。
拜耳法适合处理高铝硅比(A/S>7)的三水铝石矿,对原矿的品质要求高,且在高铁三水铝土矿中,Al2O3不仅以三水铝石形式存在,有时会夹杂有一水硬铝石和一水软铝石,而拜耳法常压浸出时只能溶出三水铝石形式存在的Al2O3,Al2O3浸出率较低,原矿中Al2O3在浸出过程中损失较大,而且无法分离固溶在Fe2O3中的Al2O3,导致铁精矿中Al2O3含量会较
高。
铝土矿筛选工艺铝土矿是一种含有铝的矿石,主要成分是氧化铝和硅酸盐。
铝土矿的筛选工艺是指对铝土矿进行分级、去除杂质和提取铝的一系列工艺过程。
本文将介绍铝土矿筛选工艺的基本原理和常用方法。
一、铝土矿筛选工艺的基本原理铝土矿筛选工艺的基本原理是根据矿石的物理和化学性质,通过筛分、重选、浮选等方法将铝土矿中的铝和杂质进行分离和提取。
其基本原理可以归纳为以下几点:1. 物理性质差异分离:根据铝土矿中不同矿物的物理性质差异,如颜色、密度、磁性等,利用物理分离的方法进行筛选。
2. 浮选法:利用矿石和杂质在浮选剂作用下的不同浮力,使其分离。
浮选法常用于铝土矿中含有硅酸盐的矿物分离。
3. 重选法:利用重选剂的作用,使铝和杂质在重力或离心力的作用下分离。
重选法常用于铝土矿中含有氧化铝的矿物分离。
1. 筛分:通过筛分将铝土矿分为不同粒度的矿石,以便后续工艺的进行。
筛分可以采用震动筛、滚筒筛等设备进行。
2. 浮选:将铝土矿经过细磨后,加入浮选剂,使硅酸盐矿物浮出。
常用的浮选剂有脂肪酸类、烷基硫酸盐类等。
3. 重选:将经过浮选的铝土矿进行重选,以分离出氧化铝矿物。
常用的重选剂有氟硅酸盐类、硅酸盐类等。
4. 磁选:利用铝土矿中铁矿物的磁性差异,通过磁选设备将铁矿物分离出来。
5. 重力选矿:利用铝土矿中矿物的比重差异,通过重力选矿设备将重矿物和轻矿物分离。
6. 电选:利用铝土矿中矿物的导电性差异,通过电选设备将导电矿物分离。
三、铝土矿筛选工艺的应用铝土矿筛选工艺广泛应用于铝土矿的开发和利用过程中。
通过筛选工艺,可以提高铝土矿的品位,降低杂质含量,从而提高铝的提取率和产品质量。
铝土矿筛选工艺还可以实现资源的综合利用,将铝土矿中的其他有价值的元素进行回收和利用。
在实际应用中,铝土矿筛选工艺的选择和优化是一个复杂的工程问题。
需要考虑矿石的性质、工艺设备的选择、工艺参数的调整等多个因素。
同时,还需要根据铝土矿的产量、品位要求和生产成本等因素进行综合考虑,以达到经济、高效和环保的目标。
高铁高硅铝土矿拜耳法生产氧化铝试验研究张正林;熊林;徐强【摘要】目前广西氧化铝生产的铝土矿其氧化铝含量52%~54%,铝硅比9左右.由于铝土矿资源的减少,对低品位的铝土矿使用成为解决资源短缺的主要措施.文章针对拜耳法氧化铝生产工艺进行了低品位铝土矿生产氧化铝试验,溶液为广西氧化铝生产企业的母液,采集制备铝硅比为6.9的低品位铝土矿矿样,根据铝土矿高铁高硅的物相性质,不同条件下的溶出试验、赤泥分离沉降试验.经过试验研究,高铁高硅的铝土矿只要采取合适的生产技术条件,完全满足拜耳法氧化铝生产工艺.该试验研究解决了铝土矿资源相关不足的问题,对氧化铝生产应用具有积极意义.【期刊名称】《大众科技》【年(卷),期】2019(021)006【总页数】6页(P21-25,56)【关键词】铝土矿;氧化铝;溶出;沉降【作者】张正林;熊林;徐强【作者单位】中国铝业股份有限公司广西分公司,广西平果 531499;中国铝业股份有限公司广西分公司,广西平果 531499;浙江大学浙江加州国际纳米技术研究院,浙江杭州 310058【正文语种】中文【中图分类】TF81 前言广西的氧化铝生产都采用的是拜耳法技术生产,其设计生产对铝土矿的要求是氧化铝含量大于56%,A/S在12左右。
经过近十多年的生产开采,铝土矿也不断减少,目前已探明可使用的铝土矿的使用年限约7~10年,并且品位也大幅度降低,经过十多年的生产实践及技术进步,广西各企业有效的使用各类铝土矿,对不同品位的铝土矿进行掺配使用,目前使用的铝土矿的质量为:氧化铝含量>(52%~54%),A/S=(9±0.5)。
整体上来看,中国铝土矿资源较为丰富,铝土矿保有基础储量在世界上居第七位,储量在世界上居第八位[1]。
截至到2006年,保有的资源储量为27.76亿吨,其中储量5.42亿吨,基础储量7.42亿吨,资源量20.35亿吨,主要分布在山西、河南、广西、贵州4省区,其资源储量占全国的90.9%,其中广西占15.5%,百色市累计查明资源储量7.136亿吨,占广西资源储量总量 99.67%;其中,县域分布最多为靖西市 3.012亿吨,占百色市资源储量总量42.07%;其次平果县2.381亿吨,占百色市资源储量总量33.26%;再次为德保县1.063亿吨,占百色市资源储量总量 14.85%。
2019年·46·矿产综合利用Multipurpose Utilization of Mineral Resources广西某高硫高铁铝土矿拜耳法溶出试验研究陈燕清(广西地质矿产测试研究中心,广西 南宁 530023)摘要:针对广西某地高硫高铁一水硬铝石型铝土矿的矿石特性,采用浮选脱硫-拜耳法溶出工艺流程,对其进行反浮选除硫再进行拜耳法溶出试验。
结果表明,该高硫高铁铝土矿可通过浮选方法脱硫,脱硫尾矿进行拜耳法溶出可以得到较佳的溶出效果。
其较佳的溶出条件为溶出温度260℃、溶出时间45 min 、配料分子比1.4、石灰加入量10%、循环母液苛性碱浓度260 g/L ,在此条件下氧化铝的相对溶出率达到99.40%。
关键词:铝土矿;浮选;拜耳法;溶出率doi:10.3969/j.issn.1000-6532.2019.02.009中图分类号:TD989; TF821 文献标志码:A 文章编号:1000-6532(2019)02-0046-06收稿日期:2017-12-04;改回日期:2018-01-13作者简介:陈燕清(1985-),女,硕士,工程师。
铝土矿是广西的优势矿产之一,广西共查明的铝土矿区就有35个,其中大型占14个、中型9个、小型12个[1]。
然而,这些铝土矿中大多属于高铁、高硫、低铝硅比型铝土矿,目前尚未得到有效开发利用而成为“呆滞矿”。
对于氧化铝矿石,将含硫量大于0.7%的铝土矿归为高硫铝土矿[2],硫含量过高会腐蚀设备,黄铁矿的溶出导致铝酸钠溶液中带入过量的铁[3];而一般将Fe 2O 3大于15%的铝土矿称为高铁铝土矿,铁含量过高不仅增大赤泥量,增加碱耗,还导致赤泥沉降性能变差,影响到氧化铝产品的质量[4-5]。
目前,国内外针对高硫铝土矿主要的脱硫方法有浮选法、火法、焙烧法等[6-9];而高铁铝土矿的处理方法主要有强磁选、酸浸、冶炼等方法来除铁[10-16]。
针对广西这一复杂类型的铝土矿采用反浮选脱硫-拜耳法溶出工艺流程,意在解决铝土矿高硫问题、且了解高铁铝土矿的溶出性能,这对广西这一类的优势资源回收具有一定的指导意义。
第 23 卷第 2 期中国有色金属学报 2013 年 2 月 V ol.23 No.2 The Chinese Journal of Nonferrous Metals Feb. 2013 文章编号:10040609(2013)02054306高铁三水铝石矿拜耳法溶出过程中铝针铁矿的行为李小斌 1, 2 ,孔莲莲 1, 2 ,齐天贵 1, 2 ,周秋生 1, 2 ,彭志宏 1, 2 ,刘桂华 1, 2(1. 中南大学 冶金科学与工程学院,长沙410083;2. 中南大学 难冶有色金属资源高效利用国家工程实验室,长沙 410083)摘 要:为了查明铝针铁矿含量高的红土型铝土矿拜耳法溶出过程中氧化铝溶出率低的原因,研究针铁矿在溶出 过程中的转化规律及其对氧化铝溶出率的影响。
结果表明:在溶出温度为110~240℃时,该类型铝土矿中的铝针 铁矿基本不发生转化,其中的氧化铝难以溶出; 提高溶出温度到260℃或在240℃左右溶出时, 添加干矿石量3% 的石灰可促使铝针铁矿转化为赤铁矿,且氧化铝的溶出率随着针铁矿转化程度的增加而提高。
加入非钙质添加剂 也可以促使铝针铁矿在溶出过程发生结构转变,且氧化铝几乎完全参与反应,从而说明此类铝土矿中铝针铁矿在 溶出过程中难以转变是红土型铝土矿中氧化铝溶出率低的重要原因。
关键词:三水铝石矿;高铁;溶出;铝针铁矿中图分类号:TF821 文献标志码:AEffect of alumogoethite in Bayer digestion process ofhighiron gibbsitic bauxiteLI Xiaobin 1, 2 , KONG Lianlian 1, 2 , QI Tiangui 1, 2 , ZHOU Qiusheng 1, 2 , PENG Zhihong 1, 2 , LIU Guihua 1, 2(1.School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China;2.National Engineering Laboratory for Efficient Utilization of Refractory Nonferrous Metals Resources,Central South University, Changsha 410083, China)Abstract: The transformation law of goethite and its effect on the alumina recovery were investigated in order to determine the reason of low alumina recovery in Bayer digestion process of gibbsitic bauxite with high alumogoethite content. The results show that the goethite present in this kind of bauxite has no obvious change in the digestion temperature range of 110℃ to 240 ℃ with low alumina recovery. And alumogoethite can be transformed to hematite by increasing digestion temperature to 260 ℃ or adding lime of 3% of dry ores added at about 240 ℃, and the alumina digestion rate increases with the increase of the goethite conversion degree. Adding noncalcareous additives in the redigestion process of red mud containing goethite can promote the structure transformation of alumogoethite and thus alumina almost reacts completely. The transition of alumogoethite into other forms in Bayer digestion process is important for alumina recovery for lateritic bauxite.Key words: gibbsitic bauxite; highiron; digestion; alumogoethite针铁矿是铝土矿中常见的主要含铁矿物之一,在 以三水铝石和针铁矿为主要矿物的红土型铝土矿中, 铝类质同象置换针铁矿中的铁而形成铝针铁矿的现象 较普遍 [1] 。