当前位置:文档之家› 简析高层建筑分层式热水采暖系统

简析高层建筑分层式热水采暖系统

简析高层建筑分层式热水采暖系统
简析高层建筑分层式热水采暖系统

简析高层建筑分层式热水采暖系统

摘要本文对高层建筑加热的分层式采暖系统、双水箱及单水箱分层式采暖系统,以及本文提到的加压泵,减压泵装置分层式采暖系统运行原理进行了分析;论述了各种系统的优缺点、适用场合。最后,建议在供热热媒为低温水的场合下,优先选用加压泵、减压泵装置分层式采暖系统。

关键词高层建筑分层加热采暖系统供热外网

由于城市集中供热的热媒参数不同,而决定了高层建筑采暖系统与供热外网连接形式的不同,对于高层建筑在垂直方向上分成两个或者两个以上的采暖系统,也就是分层式采暖系统而言,通常是低层采暖系统与供热外网直接连接,且采暖系统的高度取决于供热外网的供水压力和散热器的承压能力,而高层采暖系统,由于其静水位高于供热外网的供水压力,所以此系统必须采取相应的有效措施,既能保证高层采暖系统的正常供暖,又能保护低层采暖系统散热器不因超压而被压破。目前,对于高层采暖系统与供热外网连接形式有如下几种:

一、热交换器分层式采暖系统

系统形式见图一。图中:1是城市供热给水管网,2是供热回水管网,3是热交换器,4是高层采暖系统循环水泵,5是高层采暖系统补水泵,6是自动跑风。此系统的工作原理是:由供热热媒通过热交换器加热高层采暖系统的循环水,通过循环水泵使之循环,而达到采暖的目的。

系统形式的特点:一是使高层采暖系统与供热外网彻底隔绝,从而在高层采暖系统运行或者停止运行时,都不影响供热外网的水力工况,采暖系统运行可靠。二是这种系统无论是高层系统还是低层系统的散热器均可选用承压力较低的。但是这种系统仅仅适用于供热热媒为高温水或者是蒸汽热源的场合,对于目前一些集中供热热媒为低温水,有的供水温度仅为70℃。80℃的城市而言,这种系统是不可能采用的。其原因是因为供热热水温度低时,若再经过二次换热,势必造成高层系统循环水温度更低,从而使散热器用量加大,热交换器也会庞大,使系统投资加大,在经济上显然是不太合理的,同时也容易因散热器增多而造成散热器布置不下的困难。

二、双水箱或单水箱分层式采暖系统

系统形式见图二、图三。图中:1是供热给水管网,2是供热回水管网,3是高层系统加压水泵,4是高层系统进水箱,5是高层系统回水箱,6是进水箱溢流管,7是水箱信号管,8是回水箱非满管溢流管,9是自动跑风。

此种系统的工作原理:由于高层系统静水位高于供热给水管网压力,因而通过加压水泵把采暖给水提升到系统给水箱,对于单水箱系统把水提升到高层系统供水水平干管最高点以上,且具有以下的压头,系统借助于给水箱和回水箱的水位差产生的压力或者通过系统最高点压头进行水循环,而回水利用回水箱非满管流动的溢流管子与供热管网回水管隔绝。

此系统的优点:一是因为没有二次热交换,所以适用于供热热媒为低温水的场合。二是由于利用了两个水箱与外网隔绝,对于单水箱系统利用加压泵出口逆止阀和回水箱外网隔绝。因而系统运行或者停运时,都不能影响外网水力工况。三是简化了入口装置,在投资方面低于热交换器分层式采暖系统。

此种系统的缺点:一是由于采用了开式水箱和非满管流的溢水管,很容易使空气进入采暖循环水中,从而增加了采暖系统氧腐蚀的因素。二是开式水箱占据了建筑物空间,减少了建筑有效利用面积。三是供热水水温高于环境温度,散发大量的湿气,使房间易变潮。四是进水箱设置了溢流管,如管理不善或者由于供热外网压力的波动很容易造成供热水流失。

三、加压泵、减压阀装置的分层式采暖系统

该形式系统中设有:供热给水管网、供热回水管网、加压水泵、减压阀装置、自动跑风、高层系统回水总管垂直向上倒流管(简称倒流管)、高层系统回水总管垂直返下管(简称返下管)。

此系统的工作原理:当供热外网给水管道压力低于高层系统静水压时,则在高层系统给水管路上设置了加压水泵,通过加压水泵把供热水提升到使系统水平干管最高点具有2m~5m 的水头,系统借助于该水头压力进行水循环,以达到采暖的目的。

在高层系统水循环时,由于此系统是密闭循环,则造成回水压力又远远高于供热外网回水管的压力。为此,在系统返下管上设置了减压阀装置,通过减压使系统回水压力和外网回水管压力相平衡。

另外,此系统设置了倒流管和返下管,而二者最高点高度和采暖系统供水干管最高点高度相同,同时也在返下管最高点设置了自动跑风,设置的原因和作用是:当系统因故停止运行时,由于系统静水位产生的压力高于外网的回水管网压力,使整个系统水位下降,有把整个系统水泄空的趋势。设置了倒流管和返下管之后,则停运时,只能是返下管中的水位下降,同时,由于自动跑风中无水压作用,则跑风中浮球靠自垂下降,跑风阀自动打开,而空气进入返下管中,则倒流管起到水封作用,把整个系统水封住而不被泄空,这样使系统再启动运行时,补水量相当少,启动运行快。

停止运行时,返下管水位下降,水是流动着的,此时,减压阀装置仍然起到减低动压的作用。当水位下降到一定程度,返下管水位的位能与外网回水管网压力相平衡时,水位下降停止,系统则通过加压泵出口端的逆止阀和返下管中上部的空气柱使整个系统与供热外网隔绝,这样隔断了高层采暖系统静压对低压采暖系统散热器的压力,从而起到了保护低层系统散热器的作用。

此系统的优点:一是采暖系统与供热外网直接连接,这样能适用于供热热水温度低的场合。二是与外网连接装置简单,降低了入口装置造价。三是系统运行时,通过减压阀减低动压,系统停止运行时,又通过返下管7空气柱与加压水泵出口逆止阀与外网隔绝,所以无论是高层系统运行或者停运时,都能起到既能不破坏外网水力工况,又能保护低层散热器不被压破。四是采暖系统水循环是密闭的,因此空气不能进入循环水中,减少了氧腐蚀因素。五是取消了供、回水水箱,因此减少了供热水流失量。六是系统运行管理方便,运行可靠。

四、结束语

从以上对几种高层分层式采暖系统形式的分析不难看出,对于某个城市或者小区供热热源为高温水或者是蒸汽时,高层采暖与供热外网连接采用热交换器分层式采暖系统是合理的。但是,对于热源为低温水时,高层采暖系统与供热外网的连接,应采用双水箱或者单水

箱分层式采暖系统及加压泵、减压阀装置的分层式采暖系统。同时,笔者认为,加压泵、减压泵装置系统优于双水箱式或者单水箱分层式采暖系统,建议优先选用。

高层建筑热水系统

3.1高层建筑雨水供四系统 3.1.1热水供应系统的组成 高层建筑热水供应系统的基本要求是:保证用户能按时得到符合设计要求的水量、水温、水压和水质的热水。 热水供应系统的组成,应根据使用对象、建筑物特点、热水用量、用水规律、用水点分布、热源情况、水加热设备、用水要求、管网布置、循环方式以及运行管理条件等的不同而有所不同。 图3.1为集中热水供应系统的一种方式及其基本组成。由锅炉生产的蒸汽,经热煤管送人加热器把冷水加热;蒸汽凝结水由凝结水管排至凝结水池;锅炉用水由凝结水池旁的凝结水泵送入;水加热器中所需冷水由给水箱供给,加热后的热水由配水管送到各用水点;为了保证热水温度,循环管(回水管)和配水管中还循环流动着一定数量的循环热水,用以补偿配水管路在不配水时的热损失。因此,集中热水供应系统是由第一循环系统(包括热源、热媒管网及水加热器等设备)和第二循环系统(包括水加热器、配水和水管网等设备)组成的。3.1.2 热水供应系统的类型 高层建筑热水供应工程就其供应范围可分为局部、集中和小区热水供应系统3大类。 1)局部热水供应系统 局部热水供应系统通常由单独的热水器把冷水加热,供单个或少数用水点使用。该系统设备简单,管网造价低,维护管理容易、灵活,热损失小。但一般加热器效率较低,热水成本高,使用不够舒适。这种方式在高层住宅中使用较多,在一些中等的旅馆中也有使用。常用的加热器有:太阳能加热器、电加热器、燃气加热器以及蒸汽加热器等。适用于热水用水量不超过4个淋浴器的用户,热水用水点分散且用水量不大的建筑或设置集中热水供应系统不合理的场所。 2)集中热水供应系统 集中热水供应系统就是在锅炉房或水加热器间将冷水集中加热,通过热水管网将热水送至用水点。优点是:设备集中,便于维护管理,热效率高,热水成本低,使用更为舒适。但设备、系统复杂,一次投资大,需要专门维护管理人员,管网较长,热损失大,改、扩建较困难。适用于热水用量较大,用水比较集中的建筑,如较高级居住建筑以及旅馆、宾馆、大型饭店等公共建筑。 3)小区热水供应系统(区域热水供应系统) 小区热水供应系统(区域热水供应系统)是利用工业余热、废热或地热等集中加热站、建筑小区或城市区域性锅炉房、热交换站,将冷水集中加热后,通过小区或市政热水管网输送到建筑小区、城市街坊或整个工业企业的热水系统。优点是:便于集中统一维护管理和热能的综合利用,减少环境污染,设备热效率和自动化程度较高,热水成本低,使用方便舒适,保证率高。但设备、系统复杂,建设投资高,维护管理水平要求高,改、扩建困难。适用于建筑小区,建筑集中、热水用量较大的城市和工业企业。 3.1.3 热水供应系统的供水方式 高层建筑的集中(小区、区域)热水供应系统与冷水系统一样,应竖向分区,其分区原则、方法和要求也相同。在管网布置和形式上一般也是相对应的,各区水加热器、贮水罐的进水均应由同区的给水系统专管供应,以便保

高层建筑供暖定压

对高层建筑供热定压与节电问题的探讨 【摘要】关于高层建筑供热定压与节电问题,本文提出了两个鲜明的观点: 1 、节电的关键在于对高、低区回水压差的利用。 2 、如果不考虑节电,只是为了降低回水压力,那么不必浪费很多投资。据此作者提供了几项行之有效的解决方案 1、当前的技术状况 一项高层建筑“直连供暖”技术目前正在流行。从网上可以看到相关阐述的文章有许多。有关这项技术的侵权问题也在不断进行争执。笔者注意到这些文章中,只是介绍如何降低高层回水压力,防止高区水压导入低区的手段,并没有任何一篇文章谈及节电的机理。 事实上这项技术并不节电,因而也就无机理可谈。无论在高区回水管上设置什么“断流器”也好,“阻旋器”也好,还是什么“气水共存管”也好,都是摩擦消耗液体压头的元件,这些元件必须把高低区回水压差全部消耗掉,才能使两者混合为一体,就这样水泵的功率在这个复杂的过程中白白浪费掉了。要证实这一点可以查看其循环水泵的扬程、功率选型便知。如果真的节电,高低区同水量的系统,水泵功率应该相差不大。水泵的作用是克服系统阻力的,与系统高度并无关系。一个独立为高区供热的换热机组,如果供热设备能承受较

高压力,那么其回水是不需要节流降压的,自然也就不会额外消耗很多电能。 有人提出:高区回水经过这些元件只减静压不减动压,似乎节能,实则不然,对不可压缩流体而言,两端管径不变,流速不变,动压就不变,所以无论什么节流设备都是只减静压不减动压。这里的静压正是水泵通过牺牲了宝贵的电能而提供的。另外流速为 1~2m/s 的水,动压与静压相比只是微乎其微。 “直连供暖”技术导致空气气泡在系统中集结,恶化循环,腐蚀金属的问题无法回避。 既然“直连供暖”技术不节电,为什么它会被许多用户采用呢?其中的原因除了这些用户被玄虚所迷惑外,主要是它确实能够把高区回水压力降下来,实现与低区的混合,并防止串压现象,达到一个系统两个定压运行的目的。而要达到这个目的,大可以不必如此麻烦,如此消耗资源,增加投资。在此笔者提出下述方案,与读者一起商榷。 二、不考虑节电的简单节流方案 有人提出,采用减压阀导致定压失控,停运时由于减压阀漏流导致低区超压,而采用“直连供暖”技术能够避免。事实果真如此吗? 一般说来,减压阀有两种:一种是阀后压力恒定型,简称阀后型,就是我们平常所说的减压阀;一种是阀前压力恒定型,又称持压阀或

单双管混合式采暖系统在高层建筑中的应用

单双管混合式采暖系统在高层建筑中的应用 单双管混合式采暖系统在高层建筑中的应用单双管系统与单菅系统相比, 其采暖效果好,投资基本不增加。 在现行的采暖系统中,依据供回水方式的不同,可分为单管和双管两种系统。现在以高层为主的建筑物中,采暖系统大多采用单双管混合式采暖系统。 山西国际贸易中心商住楼的采暖即采用单双管混合式系统。 1单双管混合式采暖系统的构成单双管混合式采暖系统就是将采暖立管的 散热器沿建筑高度方向划分为若干个采暖单元,每个采暖单元包括2层~3层,在每个采暖单元内散热器按双管形式连接,各采暖单元之间采用单管连接,这 就组成了单双管混合式系统。 此系统既具有单管系统的优点,又具有双管系统的优点,楼层数越多,优 点越明显。

2单双管混合式系统的特点这种系统避免了双管系统在楼层过多时出现的 严重竖向失调现象。如果把每个采暖单元看作一组散热器,实际上单双管混合 式系统就成为一个标准的单管系统,可以避免双管系统由于自然循环作用附加 压头的影响而存在难以克服的上热下冷水力失调。单双管系统各采暖单元的温 降均小于系统的温降,各层散热器之间的重力循环水头较小。 单双管系统提高了立管末端散热器的供水温度,即提高了散热器的平均温 度和单片散热量,避免了立管末端由于散热器平均温度过低,末端房间采暖温 度无法有效保证的缺点。 便于每组散热器单独调节,保证采暖效果和满足用户要求。单双管系统中,每个采暖单元内部采用双管连接,每组散热器上可以安装调节阀门,便于调节,便于维护管理,便于用户根据自己对室温的要求调节室内温度,而不影响其他 房间散热器的运行。 减小了每组散热器支管管径,便于施工安装和维护管理单双管系统中,由 于每个采暖单元内部采用双管连接,所以,每组散热器支管管径与单管系统相 比较小,便于管道安装维修,楼层数越多,这种优点就越明显。 3单双管混合式系统经济分析:A目前有种观点认为,单双管混合式系统 应用于高层建筑采暖系统虽有一些优点,但与传统的单管系统相比较,存在着 所需管材多,阀门多,造价高,施工难度大的缺点,即耗资大,弊大于利,对 单双管系统持否定的态度。这是对单双管系统的误解,也是一种偏见。下面以 为例,通过计算加以说明。单双管系统与单管系统供回水干管完全相同,所不 同的是立管的连接形式,通过对立管的经济分析就可以说明两种系统的所需投资。a)图为12层的单管系统,为便于调节,设置三通调节阀(最常用的形式)图图为12层的单双管系统,每两层为一采暖单元,供水支管设调节阀(闸阀)均为上供下回系统。设计条件相同,供水温度95°C,回水温度70°C,室内设 计温度为18°C,散热器均选用四柱813型铸铁散热器(稀土型)建筑层高为3.3m,为了简化计算,不考虑热水在沿途的冷却散热,通过计算对这两种系统进行造价比较。 31单管系统散热器内平均水温及室内温差:各层散热器的传热系数及每片散热量:传热系数依据公式:K=2.237t0.散热器每片散热量: Q1=K1XArP1X0. 32单双管混合式系统1)立管总热负荷:g=1)男,1991 年毕业于太原工业大学暖通专业,工程师,山西光信实业有限公司,山西太原030001散热器内平均水温及室内温差:各层散热器的传热系数K及每片散热

供热工程4.3 高层建筑热水供暖系统

第三节高层建筑热水供暖系统 随着城市发展,新建了许多高层建筑。相应对高层建筑供暖系统的设计,提出了一些新的问题。 首先是高层建筑供暖设计热负荷的计算问题。它的计算特点已在本书第一章第八节中有所阐述。 其次是高层建筑供暖系统的型式和与室外热水网路的连接方式问题。由干.高层建筑热水供暖系统的水静压力较大,因此,它与室外热网连接时,应根据散热器的承压能力,外网的压力状况等因素,确定系统的型式及其连接方式。此外,在确定系统型式时,还要考虑由于建筑层数多而加重系统垂直失调的问题。 目前国内高层建筑热水供暖系统,有如下几种形式。 一、分层式供暖系统 在高层建筑供暖系统中,垂直方向分成两个或两个以上的独立系统称为分层式供暖系统。 下层系统通常与室外网路直接连接。它的 高度主要取决于室外网路的压力工况和散热 器的承压能力。上层系统与外网采用隔绝式连 接,利用水加热器使上层系统的压力与室外网 路的压力隔绝。上层系统采用隔绝式连接,是 目前常用的一种形式。 当外网供水温度较低,使用热交换器所需 加热面过大而不经济合理时,可考虑采用如图 所示的双水箱分层式供暖系统。 图3-23分层式热水供暖系统

图3-24双水箱分层式热水供暖系统双水箱分层式供暖系统,具有如下特点: 1.上层系统与外网直接连接。当外网供水压力低于高层建筑静水压力时,在用户供水管上设加压水泵(如图3-24所示)。利用进、回水箱两个水位高差h进行上层系统的水循环。 2.上层系统利用非满管流动的溢流管6与外网回水管连接,溢流管6下部的 H取决于外网回水管的压力。 满管高度 h 3.由于利用两个水箱替代了用热交换器所起的隔绝压力作用。简化了入口设备,降低了系统造价。 4.采用了开式水箱,易使空气进入系统,造成系统的腐蚀。 二、双线式系统 双线式系统有垂直式和水平式两种形式。 (一)垂直双线式单管热水供暖系统 垂直双线式单管热水供暖系统是由竖向的∏形单管式立管组成的。双线系统的散热器通常采用蛇形管或辐射板式(单块或砌入墙内形成整体式)结构。由于散热器立管是由上升立管和下降立管组成的,因此各层散热器的平均温度近似地可以认为是相同的。这种各层散热器的平均温度近似相同的单管式系统,尤其对高层建筑,有利于避免系统垂直失调。这是双线式系统的突出优点。 垂直双线式系统的每一组∏形单管式立管最高点处应设置排气装置。此外,由于立管的阻力较小,容易引起水平失调。可考虑在每根立管的回水立管上设置孔板,增大立管阻力,或采用同程式系统来消除水平失调。 图3-25垂直双线式单管热水供暖系统图3-26水平双线式热水供暖系统 1-供水干管;2-回水干管;3-双线立管;1-供水干管;2-回水干管;3-双线水平管;4-散热器;5-截止阀;6-排水阀;4-散热器;5-截止阀;6-节流孔板;7-调节阀7-节流孔板;8-调节阀 (二)水平双线式热水供暖系统 水平双线式系统,在水平方向的各组散热器平均温度近似地认为是相同的。当系统的水温度或流量发生变化时,每组双线上的各个散热器的传热系统K值

供热系统的组成及特点

供热系统的组成及特点 供热、供燃气空调与通风工程刘艳涛305 一、供热系统的组成 供暖系统由热源、热媒输送管道和散热设备组成。 热源:制取具有压力、温度等参数的蒸汽或热水的设备。 热媒输送管道:把热量从热源输送到热用户的管道系统。 散热设备:把热量传送给室内空气的设备。 二、供热系统的分类和特点 供暖系统有很多种不同的分类方法,按照热媒的不同可以分为:热水供暖系统、蒸汽供暖系统、热风采暖系统;按照热源的不同又分为热电厂供暖、区域锅炉房供暖、集中供暖三大类等。 热水供暖系统 水为热媒的供暖系统的优点:其室温比较稳定,卫生条件好;可集中调节水温,便于根据室外温度变化情况调节散热量;系统使用的寿命长,一般可使用25年。 热水为热媒的供暖系统的缺点:采用低温热水作为热媒时,管材与散热器的耗散较多,初期投资较大;当建筑物较高时,系统的静水压力大,散热器容易产生超压现象;水的热惰性大,房间升温、降温速度较慢;热水排放不彻底时,容易发生冻裂事故。 热水供暖系统按其作用压力的不同,可分为重力循环热水供暖系统和机械循环热水供暖系统两种,机械循环热水供暖系统是用管道将锅炉、水泵和用户的散热器连接起来组成一个供暖系统。 在供暖系统中,各个散热器与管道的连接方式称为散热系统的形式。热水供暖系统中散热系统的形式可分为垂直式和水平式两大类。 (1)垂直式 指将垂直位置相同的各个散热器用立管进行连接的方式。它按散热器与立管的连接方式又可分为单管系统和双管系统两种;按供、回水干管的布置位置和供水方向的不同也可分为上供下回、下供下回和下供上回等几种方式。 (2)水平式 指将同一水平位置(同一楼层)的各个散热器用一根水平管道进行连接的方式。它可分为顺序式和跨越式两种方式。顺序式的优点是结构较简单,造价低,但各散热器不能单独调节;跨越式中各散热器可独立调节,但造价较高,且传热系数较低。 水平式系统与垂直式系统相比具有如下优点。 ①构造简单,经济性好。 ②管路简单,无穿过各楼层的立管,施工方便。 ③水平管可以敷设在顶棚或地沟内,便于隐蔽。 ④便于进行分层管理和调节。 但水平式系统的排气方式要比垂直式系统复杂些,它需要在散热器上设置冷风阀分散排气,或在同层散热器上串接一根空气管集中排气。

高层建筑供热系统的竖向分区

高层建筑供热系统的竖向分区 高层建筑供热系统的竖向分区主要有两个目的,一是考虑低区系统材料的承压问题,二是便于调控,防止系统出现垂直失调现象。建筑物按层数大致有如下的分类: 住宅建筑:低层:1—3层;多层:4—6层;中高层:7—9层;高层:10—30层。 公共建筑及综合性建筑:建筑物总高度在24米以下者为非高层建筑,总高度在24米以上者为高层建筑(不包括高度超过24米的单层主体建筑)。 建筑物高度超过100米时,不论住宅或公共建筑均称为超高层建筑。 规范上有这样的规定:“建筑物高度超过50米时空调系统宜分区。”由此可以看出,高层建筑供热系统竖向分区并没有一个严格的分区高度或层数(例如上海等高层建筑较多的城市一般按80—100米进行竖向分区),实际上各地区根据各自不同情况也进行了大量工程及运行实践。(1)对于一个热源供单幢(或高度相当的几幢)高层建筑时,除考虑材料承压、垂直失调外,还应结合运行成本、控制技术等诸多因素综合考虑以确定分区的高度或是否分区,根据有关资料显示,甚至就有超高层建筑不分区的例子,上海地标性建筑金茂大厦(88层,420米)在确定空调水系统时就出现了两种观点:中方专家提出将系统竖向分三个区,安装三套冷(热)水机组分别与之相连;美方专家提出整个系统不分区,而是将机组、阀件及低部系统的材料等进行耐高压材料的单独定货,仅安装一套冷(热)水

机组与之相连,同时配置高效自控设备。后者从运行成本、运行管理、局部调控等方面都有明显优势,并且按此方案形成的空调系统运行状况良好。(2)对于住宅建筑,在原有多层及中高层建筑热负荷中出现高层建筑(一般指30层以下)热负荷,由于受到不同的开发商、不同的系统设计、不同的材料等因素影响,给供热单位带来了相应的问题,单从投资、运行成本来说,对于供热单位并不希望高层建筑进行分区,并希望用尽量少的机组满足这不同高度热负荷的需求,这就引出了如下不同高度建筑与集中供热管网的连接方式问题。 多层、中高层、高层混合热负荷与集中供热系统的连接 当前,在一些中小城市,高层建筑越来越多出现在原有的多层或中高层中间,甚至由于地形等原因在同一片新建小区中,也会规划、设计出高度不同的建筑形式,这样供热单位就必须根据建筑分布、高层分区情况、采暖形式、系统材料等诸多情况进行综合分析,选择科学合理的连接方式与集中供热系统进行连接,既要保证热用户的采暖效果,还要确保整个供热系统的安全、经济运行。下面就介绍几种连接方法。 蒸汽(高温水)换热间接供热 例如某小区内的建筑物有多层、中高层(室内供热系统不分区)和高层(室内供热系统分区)建筑。若把多层建筑、中高层建筑与高层建筑的室内供热系统连接在一个水网系统上,则系统低点的静压太高,换热机组、低层热用户散热设备等都承压过高,一是设施长时间过高承压,降低了使用寿命,还直接影响到运行安全,二是易造成水力失调,使热用户出现冷热不均的现象,从而影响到运行管理和供热节能。因此,宜把多层建筑、

高层建筑直连供暖技术

高层建筑直连供暖技术 论文作者:刘梦真 摘要:本文介绍了一种高层建筑与低层建筑直连并网供暖方法。当高层建筑采用本后,即可与任一低层建筑直连并网供暖,不再受高低楼限制,从而大大节省了工程投资和运行费。百余座高层建筑应用5年证明,系统运行平衡、节资节能效益显著。 关键词:高层建筑直连并网节能 本技术专门解决高层建筑与低层建筑直连供暖问题。高层建筑采暖系统采用本方法后,即可与任一低层建筑直连并网供暖,不再受高、低楼限制,从而大大节省工程投资和运行费。 一、技术现状 低建筑群中,突然出现了一座高层建筑,通常的供暖方法是为高层建筑设一台专用锅炉(初投资大、运行费高),或设热交换器与低区系统隔绝(有高温水热源才合理)。最为经济的方法是,利用原有低区的低温水系统直连供暖。但问题是,高、低层建筑直连后,运行时,压力低了高楼上不去水,压力高了低楼散热器超压;当建筑更高时,即使不运行,高楼的水静压就足以压破低楼系统的散热器。 为了解决这一问题,近几年也曾有人试图用减压阀方法的,但都因减压阀减得了动压减不了静压而失败。这是因为,只有水在流动时减压阀才能通过改变流通截面减压,当静止不动时,水静压就将低区散热器压破了。最近,有的厂商号称他们的减压阀既减得了动压也能减静压了。其实,也是是“减”静压,而是“关断”静压,还是采用机械弹簧类判断方式,并未跳出依靠判断阀门进行隔断的老路。 实践证明,机械类关断也好,电磁阀类关断也好,都有关闭延迟和重复动作的高可靠性问题。例如:朝阳某邮政大厦,1998年采用上海某阀门公司的新式减压阀直连供暖,结果,原低区住宅散热器爆裂不断,损失惨重。最后被迫拆除,改用了本技术。 二、核心内容 结实上可见,技术的焦点就在于“减压”。村技术的总体思路就是避开上述“减压”习惯思维方式,独壁蹊径,借鉴膜流运动理论,采用类似于流体非满管的减压方式。具体地说(如图1),就是设计一个“断流器”,利用散热后的热媒高压流体余压,造成水流高速旋转,人为促进膜流生成,从而达到减压目的。为了消除气体进入系统,根据能量方程式,利用下落的高位流体势能,再设计一个“阻旋器”,用于阻止水流旋转并分离空器,使无压流的膜流状液体再有组织的“复原”到有压流状态。这样,通过有压流→无压流→有压流,这样一个逆变过程,就使得高压流体平衡地“过渡”到了低压流体。据此原理,便可实现高楼与低

高层建筑供热采暖

高层建筑供热采暖-高低层联供高区采暖系统设计问题内容摘要:随着我国高层建筑的不断增多,每一个城市中的高层星罗棋布,高层采暖设计已经成为一个重要的课题。对于有高温水热网的高层建筑,通常采用高、低层垂直分高区和低区,高区单独设置换热器、循环水泵、膨胀水箱等,形成一个独立的采暖系统。这样设计的采暖系统与一般的低区的采暖系统基本相同,唯一的区别是,低区水平方向上的管路长度换成了垂直方向上的高度。象这种高区系统循环水泵的电能消耗,与低区采暖系统的能耗相当,... 随着我国高层建筑的不断增多,每一个城市中的高层星罗棋布,高层采暖设计已经成为一个重要的课题。 对于有高温水热网的高层建筑,通常采用高、低层垂直分高区和低区,高区单独设置换热器、循环水泵、膨胀水箱等,形成一个独立的采暖系统。这样设计的采暖系统与一般的低区的采暖系统基本相同,唯一的区别是,低区水平方向上的管路长度换成了垂直方向上的高度。象这种高区系统循环水泵的电能消耗,与低区采暖系统的能耗相当,都是克服系统管路的阻力而消耗的,是经常性的能耗能量,它是必需的,是可以接受的。 对于没有高温水热网的高层建筑,如锅炉直供及换热器换热的二次网低温供热系统,由于使用的是低温水,在这种温度下的高层建筑,再单独设置换热器、循环水泵、膨胀水箱等,设计成为一个独立的采暖系统也不是不行。但是,由于设计时可利用换热的温差小,造成换热器及采暖系统各有关的各种设备加大,导致设备投资大等一系列的问题。显而易见这在经济上是很不合理的,所以是不可取的。 为解决低温介质条件下的高层建筑的采暖,目前普遍的设计做法也是采用高低层分区分别设计,使用一个低温水热源实现高低层联供。以这种模式设计的高区低温水采暖的类型较多,其原理大同小异。双水箱采暖系统属于典型的一种类型。 双水箱系统的工作方式是:加压水泵把低温热网的供水加压到高区系统的高水箱。高区系统的供水管由高水箱引出送到各立管支管及散热器。高区采暖系统的回水由回水管回到低水箱(回水箱)。高区采暖系统的工作压差是高、低水箱的标高差HC。高区采暖系统的高水箱和回水箱(低水箱)布置在高区采暖系统的上部。从回水箱(低水箱)出来的高区系统的回水进行消能处理后进入热网总回水。 高区采暖系统的设计循环流量确定后,加压水泵要克服的阻力由两部分组成: 自低区热网供水管的接管点到高区高水箱之间管路的阻力H1 低区热网供水接管点供水动压线与高区的高水箱标高之差H2 加压水泵的总能耗为(H1+H2),mH2O 高区采暖系统的总阻力由以下几部分组成: 高区采系统的阻力为HC,mH2O 高区采暖系统供水干管的阻力为H1,mH2O 高区采暖系统回水干管的阻力(设与供水干管相同)H1,mH2O 高区采暖系统总阻力为(HC+2 H1),其中HC这部分能耗是高区采暖系统的阻力,2 H1这部分能耗是外网供、回支干管上的阻力。克服这些阻力而发生的能耗是为了保证高区采暖系统稳定工作服务的,是必须需要的。 如果整个低温热网的供水的动压线的高度能满足高层采暖系统的需要,而且低区散热器的承压能力也有保证,高层采暖系统可以与正常低区采暖系统一样进行设计,不需要加压水泵。

热水采暖系统常见故障的排除

热水采暖系统常见故障的排除 摘要:热水采暖系统常见故障的排除,局部散热器不热 ,热力失效,回水温度过高,系统回水温度过低,其它故障及排除方法。 关键词:热水采暖系统常见故障排除东北地区局部散热器热力失效回水温度故障排除 东北地区冬季气候寒冷,每年要有六个月的冬季采暖期。近年来热水采暖以其在技术和经济上的显着优越性得到广大用户的青睐。 目前热水采暖广泛用于工业和民用建筑中。但是由于施工作业人员在热水采暖系统的施工、调整与运行管理方面的经验不足,系统在运行时可能会出现一些故障,影响正常供热。经过多年的现场实践,总结了热水采暖系统几种常见的故障及其排除方法,供大家参考。 一、局部散热器不热 局部散热器不热的原因大体有以下几种情况:阀门失灵,阀盘脱落在阀座内堵塞了热媒流动通道,这时可打开阀门压盖进行修理,或把失灵阀门更换掉。集气罐存气太多,阻塞管路,也会产生局部散热器不热的情况,这时应打开系统中所设置的放气附件,如集气罐上的排气阀,散热器上的手动放风门等。 管路堵塞,出现这种故障,当送水时间较短时,可用手在管线转弯处与阀门前摸其温度,敲打听声;当送水时间过长,系统较大时,堵塞处前后出现死水段,靠手摸不容易确定堵塞位置,这时可用放水的方法查找,放水点可在不热段管道的中间依次向两端进展。放水时,如来水端热水继续往前延伸,说明堵塞点在此之后;再取余下管段中段进行放水,若发现来水段热水不继续向前延伸,说明堵塞点在第一次放水点与第二次放水点之间。当把堵塞点找出后,段开管子,将管内污物清除或把该管段更换。 采暖系统管道坡度安装的不合理,致使管道出现鼓肚,在其内部产生气塞,堵塞或减小了该管段的流通截面积,从而引起局部不热。这时应调整管段坡度,使其符合设计要求的坡度及坡向。 室内系统的送、回水管道与室外热网的送、回水相互接反,或全部在送(或回)水管上,室内系统不能形成一个循环环路。这时应认真查找,了解外网情况,将接错的管道改正过来。 二、热力失效 采用双管上分式采暖系统时,多层建筑上层散热器过热,下层散热器过冷。产生这种垂直热力失调的原因有两种可能。 其一,通过上下层散热器的热媒流量相差较大。排除这种故障的方法是关小上层散热器支管上的阀门,以减少其热媒流量。 其二,支管下端管段被氧化铁皮、水垢等堵塞,增加了该循环系统的阻力,破坏了系统各环路压力损失的平衡。对于这种情况及时清除管段中的污物或更换支立管,减少阻力损失,恢复系统各

简析高层建筑分层式热水采暖系统

简析高层建筑分层式热水采暖系统 摘要本文对高层建筑加热的分层式采暖系统、双水箱及单水箱分层式采暖系统,以及本文提到的加压泵,减压泵装置分层式采暖系统运行原理进行了分析;论述了各种系统的优缺点、适用场合。最后,建议在供热热媒为低温水的场合下,优先选用加压泵、减压泵装置分层式采暖系统。 关键词高层建筑分层加热采暖系统供热外网 由于城市集中供热的热媒参数不同,而决定了高层建筑采暖系统与供热外网连接形式的不同,对于高层建筑在垂直方向上分成两个或者两个以上的采暖系统,也就是分层式采暖系统而言,通常是低层采暖系统与供热外网直接连接,且采暖系统的高度取决于供热外网的供水压力和散热器的承压能力,而高层采暖系统,由于其静水位高于供热外网的供水压力,所以此系统必须采取相应的有效措施,既能保证高层采暖系统的正常供暖,又能保护低层采暖系统散热器不因超压而被压破。目前,对于高层采暖系统与供热外网连接形式有如下几种: 一、热交换器分层式采暖系统 系统形式见图一。图中:1是城市供热给水管网,2是供热回水管网,3是热交换器,4是高层采暖系统循环水泵,5是高层采暖系统补水泵,6是自动跑风。此系统的工作原理是:由供热热媒通过热交换器加热高层采暖系统的循环水,通过循环水泵使之循环,而达到采暖的目的。 系统形式的特点:一是使高层采暖系统与供热外网彻底隔绝,从而在高层采暖系统运行或者停止运行时,都不影响供热外网的水力工况,采暖系统运行可靠。二是这种系统无论是高层系统还是低层系统的散热器均可选用承压力较低的。但是这种系统仅仅适用于供热热媒为高温水或者是蒸汽热源的场合,对于目前一些集中供热热媒为低温水,有的供水温度仅为70℃。80℃的城市而言,这种系统是不可能采用的。其原因是因为供热热水温度低时,若再经过二次换热,势必造成高层系统循环水温度更低,从而使散热器用量加大,热交换器也会庞大,使系统投资加大,在经济上显然是不太合理的,同时也容易因散热器增多而造成散热器布置不下的困难。

高层住宅建筑采暖设计浅析

高层住宅建筑采暖设计浅析 发表时间:2018-08-06T13:42:55.907Z 来源:《基层建设》2018年第17期作者:朱成凤[导读] 摘要:高层住宅建筑的采暖设计是高层建筑的重要施工设计环节,和住户的切身利益息息相关。 杭州天诚空调工程有限公司浙江省杭州市 310000 摘要:高层住宅建筑的采暖设计是高层建筑的重要施工设计环节,和住户的切身利益息息相关。本文从高层住宅建筑的采暖设计原则和类型出发,详细的阐述了高层住宅建筑采暖设计的要点,分析了高层建筑采暖系统的选择情况。为高层住宅建筑采暖设计提供一定的参考作用。 关键词:高层住宅;建筑;采暖设计 一、高层住宅建筑的采暖设计原则和类型 1.高层住宅建筑的采暖设计原则 在设计高层住宅建筑的采暖系统设计过程中,要依据建筑物的自身特点来进行设计工作。具体来说,就是要按照高层建筑的楼层平面布局以及建设高度来确定设计的框架,然后,根据高层住宅建筑的采暖特点来对设计方案进行竖向分区考虑,运用整体的分析手段来考量高层住宅采暖设计的科学性和合理性,对于设计过程中遇到的采暖系统热计量等重要内容,依据每个楼层的使用特点和它的目的来明确计量手段。此外,高层住宅建筑采暖系统的设计人员在选择散热器、供暖系统敷设的过程中,应针对不同种类的散热器进行分析研究,从而选择合适的散热器。这一过程,可根据设备系统的承压、负荷、散热效率、占地面积以及楼层布局等来选择实际采暖所用的设备内容。 2.暖通空调系统的类型 暖通空调系统有好多种类型,但是其基本的设计安装原理是相同的。最为常见的空调系统类型为:全水系统、全空气系统、热泵系统、分散式供冷或供暖等。全空气系统的空调空间所有加湿、冷却和加热工作都是通过送风的方式完成的。全水系统是具有风机一盘管、组合通风装置或重力循环式室内末端的系统,未流通的空气通过风口输出或者渗入,较为突出的特点是能够为数量较多的建筑物进行温度的调节,还可以对其进行一定的修改。 二、高层住宅建筑采暖系统的选择 按照不同的载热体的分类标准,采暖工程通常可分为热水采暖、蒸汽采暖和辐射采暖等三种。热水采暖是指用水作为热媒方式形成的采暖系统。蒸汽采暖是通过水蒸气作为热媒的采暖系统。辐射采暖是采用放热的辐射板,将辐射板释放出来的热能直接运送到房间里,让室内保持相对稳定的温度。蒸汽采暖的方式热惰性相对较小,系统温度能够快速变换,从而保证温度的平衡稳定,同时使得室内空间较干燥,所以主要用于人员聚集相对短暂的大会堂、电影院及小型生产车间等采暖建筑物。辐射采暖方式的优点是减少能源的使用和降低空间的使用面积。所以通常被用于车间、厂房、商场、超市等空间高大的大型公共建筑。而热水供暖系统具有效率高,输送热能时无效的损失小,散热设备不容易被腐蚀,设备使用时间长,设备表面温度变化低,能够满足各项检查的需要。具有稳定安全的运行特点。且在集中调节热水的温度方面也较为简单,内部系统的蓄热能力较强,散热效率较好,在建筑当中运用的较为广泛。当前,考虑到开发商的经济情况和住户的实际要求等,高层住宅建筑的采暖设计中热水系统的运用较为多一些。政策明确的指出,在正常的住宅中实行:分室控制热量、分户计量收费,实施由建筑面积收费慢慢的转变成由热量收费的节能形式。因此,中国住宅建筑供热采暖,主要运用热电联产或区域锅炉房作为热源的集中供热采暖的方式。而高层住宅建筑政府通常优先采用热电联产集中供热,分户计量的热水采暖方式。 三、高层住宅在室内采暖设计方面的要点 1.热负荷的设计 对于采用热计量设计的特点来说,其房屋内各个房间在计算采暖热负荷时,主要涉及三方面:一是围护结构的耗热量;二是外门开启时冲入冷风时的耗热量;三是冷风渗透的耗热量。在这三项计算中,围护结构的耗热量主要由两部分组成,即基本类型耗热量与附加类型耗热量。在实际的计算过程中,能够使用公式将三种方法计算出来。即对于冷风状态下的渗透耗热量、基本热耗量和外门开启冲入冷风的耗热量。但在计算附加类型耗热量时候,需考虑风力附加、朝向附加和高度附加因素,在实际的设计当中,应当按照各项在基本热量中所占比例确定。需要注意:(1)当选择高层分户计量设计的时候,用户需要在不同的温度下对室内温度采取调节,要达到这一要求,可以在相应的设计标准基础上升高2℃(2)当对住宅围护结构耗热量进行计算时,需注意以下几点:一是外墙传热系数的选择,应使用考虑包含热桥作用以后的均衡传热系数;二是应该联系供热制度对轻质墙体进行修改;三是如果房间地面和外墙具备供热管道地沟,那么这类房间没必要再次计算地面耗热量;四是地下室如果不采暖,那么顶板需要采用保温材料,同时求出温差传热量。(3)针对选用分户计量与分室控温的设计类型,当相邻房间温差不低于5℃时,需要对通过隔墙及楼板的传热量予以计算。由于考虑邻室没有人居住或者非持续性采暖,那么隔墙或楼板产生的传热量会变大,因此计算时需在常规计算的热负荷的基础上,乘上适当的系数用于体现该部分的传热状况。(4)针对于高层、超高层建筑来说,再加上建筑物高度较高,需要观察热压和风压所带来的影响。一定要注意风速为耗热量带来的不确定因素,要经过实际的计算来确定。 2.系统形式的确定常见的室内供暖系统有三类:一是单管式;二是双管式;三是单双管混合式。这些系统有着各自的优缺点和适应范围,设计时选用哪种类型的系统,需要依据综合建筑的实际情况判断。一般针对新建集中供暖的住宅室内系统,要结合两方面进行确定:一是分户设置热量表的热计量方式;二是综合建筑实际数值,多数情况下宜使用基于公共立管的分户独立分区式系统类型。此外,当集中供暖系统最低点的工作压力大于规定数值时,需要选择符合节能要求的可靠办法,实现竖向分区,同时做到与和室外管网及热源系统在设计上匹配。最后,在布置高层建筑供暖系统管路时,由于高层建筑供暖系统通常会存在静水压力偏大和层数较多的情况,这会加剧垂直失调问题,在实际的设计方案中,要全面的研究和分析,采取适宜的敷设方式和管路形式,在符合各项设计规范的前提下,还要符合科学的使用方式。 3.选择相应的散热器 市场上销售的散热器琳琅满目,有铝制的散热器、铸铁的散热器和钢制的散热器等。在选取散热器时要依照一定的规则进行:首先遵循国家标准《住宅设计规范》中要求的选择散热器的原则即“应采用体型紧凑、便于清扫、使用寿命不低于钢管的型式”,其次要考虑系统的整体性能,详细的了解不同种类散热器的优缺点,要遵循优中则优的原则来进行选择。 4.水力计算设计

高层建筑热水采暖系统形式

高层建筑热水采暖系统形式 热水采取系统无论是商业建筑还是民用建筑都需要的生活设备,但是高层建筑对热水采暖系统有更高更多的要求,尤其是在倡导节能减排的当今设计,如果设计热水采暖设备以供高层建筑更好的使用,成为重点,但是就目前我国高层建筑热水采暖系统形式来说依然很单一。接下来,笔者就高层建筑热水采暖系统形式进行具体的概述。 1.分层式采暖系统 所谓分层式采暖系统简单的说就是根据高层建筑的层数和高速,将其分为很多个多层单元,这些多层单元都成为独立系统,分别设置一个单独的采暖系统,下面单元的热水采暖系统直接与室外的管网连接,而上面单位的热水采暖系统与下面的有所不同,需要利用隔绝式的方法并且与外网相连,这样就能避免因为水压工况之间的存在着互相影响的情况,并且能够保证散热器符合一定的承压要求。分层式采暖系统依据热媒温度条件有所不同,可以采取下面的形式:如果出现热媒高水温的现象,就采取换热水器进行隔断连接的方法;而当时热媒水温相对低时,为了降低换热水器大小而导致过多的成本支出,就可以利用双水箱的方式。这两种形式全面具体值得考虑。高层建筑热水采暖系统如果利用分层式采暖系统,从本质上说就是利用底层的采暖技术来缓解高层采暖的压力,相对于高层建筑热水采暖技术,我国的底层采暖技术已经很成熟,因为利用这种方式安全可靠。但是这个系统形式虽然在技术上没有什么问题,但会提高建设成本。这是因为分层

采暖系统有很多个独立的采取系统,这不仅使采暖管道和设备增多了,进而提高了建设成本,还因为分层采暖系统一定要有相关技术层做支持,也就导致了工程成本和建筑面积在一定程度上的消耗,所以在高层建筑中利用分层采暖系统进行热水采暖很难实现,因此很多的专家学者一直都希望找到不同设备层就可以进行高层热水采暖供应的方式,这样才能节约一定的成本。 2.垂直双线单管采暖系统 上文中,笔者主要向我们介绍了高层建筑热水采暖的分层采暖系统形式,我们知道虽然它在技术层面上不需要投入太多,但是因为相关的设备太多,因此其成本支出依然很大,那么,除了上述所说的分层热水采暖系统外,还有哪些系统形式呢?接下来,笔者就介绍一下垂直双线单管采暖系统。所谓垂直双线单管采暖系统简单的说就是利用单管垂直回旋而形成的各种管状相互连接而形成的一种热水采暖系统。 该统的明显特点是:系统采用单管回转串联形式,可克服在高层建筑中更易引起的水力失调;散热器采用蛇形管承压能力大,可取消高层建筑的设备技术层,但这种系统形式也有它的致命弱点:散热器的温度无法调节控制,且设计计算也比较复杂;辐射板散热器尺寸大,尤其混凝土辐射板须砌筑到墙体中,使用困难;散热器本身内部温度不均、热应力大,易造成结构破坏(如混凝土辐射板裂缝),而且无法检修更换。上述因素,使得这种系统形式,在高层建筑采暖工程中没有得到实际的应用和发展。

高层建筑的供暖安装施工及技术要点分析

高层建筑的供暖安装施工及技术要点分析 发表时间:2019-04-11T11:38:19.127Z 来源:《基层建设》2019年第4期作者:于晓平 [导读] 摘要:目前,在高层建筑的供暖和安装施工过程中,由于工程本身等外部条件,整个建筑供暖工程的质量经常出现。 山东方正建工有限公司山东淄博 225000 摘要:目前,在高层建筑的供暖和安装施工过程中,由于工程本身等外部条件,整个建筑供暖工程的质量经常出现。这些质量问题对整个建筑和人们的日常生活都有非常严重的影响。因此在进行高层建筑供暖工程施工的时候,需要施工人员对这项工程项目有一个全面的了解,并根据相应了解制定合理的施工方案,借以保证高层建筑供暖安装工程能够顺利进行。 键词:高层建筑;供暖安装;施工及技术;要点分析 1给排水管线选择及布置原则 1.1确定管材。给排水管材的质量影响着排水工程的质量,一旦管材不合格,可能会导致管道渗漏、阀门失效等质量问题。因此,需要根据设计要求合理确定管材:①给水管道中生活冷水管、热水管、人防给水管优先采用内衬聚乙烯钢管;②消防系统中的管网、自动喷淋管优先采用内外壁镀锌钢管;③排水管及雨水管优先采用卡箍式柔性接口铸铁排水管;④人防排水管,优先采用焊接钢管;⑤对于中央空调管道:DN100以下的采用焊接钢管,DN100以上的采用无缝钢管。 1.2室内管线的布置原则。高层建筑给排水管道众多,设备安装复杂,管道的正确排列能够提高施工速度,保证施工质量,因此施工技术人员应该重视管道布置环节,管道排列间距及避让的基本原则为:①气体管道排列在上,液体管路在下;②金属管路排列在上,非金属管路在下;③保温管路排列在上;不保温管路在下;④热水管路排列在上,冷水管在下;⑤主干管排列优先于分支管管路;⑥有压力管路优先于无压力管路;⑦高温或低温管路优先于常温管路。对于管线间距的确定,应该以保证管路、阀门及保温层的安装和检修为原则,当室内空间较小时,控制其间距不宜过大,对于管子的外壁、法兰边缘及热绝缘层外壁等管路最突出部位距离墙壁或柱边的距离不得小于100mm。对于同方向管路上的并列阀门,其间距≥100mm。 2供暖安装工程施工中的常见问题 首先,保留埋葬前问题的地点。预葬地的设置是建筑安装工程施工中需要考虑的一个重要因素,是施工中不可缺少的步骤。预留预葬质量在某种意义上直接影响施工的整体质量。因此,有必要确保预留的预葬施工科学合理,且预留的预葬位置必须符合施工的总体要求。同时,还需要安排有关部门的工作人员对保留的预葬进行有效的监督管理,保证保留的预葬施工进度,提高保留的预葬质量。然而,在实际的预建工程中,混凝土浇筑后施工现场往往人手不足,严重影响整个工程的质量。除此之外,一些工作人员在砸孔施工中常常会使用大锤,导致很多钢筋暴露,发生钢筋断裂的现象。总之,预留预埋位置的问题需要引起相关工作人员足够的重视。 其次,室内排水管道堵塞问题。在供暖安装工程施工中,排水管道堵塞问题也是比较常见的,一般发生在建筑物内部卫生间的排水管口处。如果排水管道堵塞长期得不到有效解决,将会导致建筑物卫生间发生地漏现象,针对室内排水管道堵塞的问题,我们常常采用砂浆来对管道进行封口处理,这样就可以减少管道堵塞对施工的不利影响。另外,在建筑功能安装施工前,我们可以安排相关人员对排水管道进行清理,防患于未然,以免在后续排水管道严重堵塞时的疏通难题。因为在排水管道严重堵塞时,施工过程比较复杂,需要耗费大量的人力和时间,具体来讲,需要采取凿打地面的方式,把全部管道进行拆除,在此基础之上,来重新安装管道。 总之,预留预埋位置问题和室内排水管道堵塞问题是供暖安装工程施工中存在的主要问题,需要相关领域专家学者在今后的研究中引起足够的重视,也希望专家们从更多的角度对供暖安装工程施工中的问题进行探讨。 3供暖安装工程的质量控制 针对于以上描述的问题来说,要想保证建筑供暖安装工程施工质量有所提升,还要对施工过程进行有效的质量控制,借以减少在建筑供暖安装过程中出现的问题。在研究中还了解到整个建筑供暖安装工程中的质量控制主要表现在三个方面,针对于此就需要对整个过程中涉及的三个方面进行全面研究,保证其在建筑供暖安装施工的过程中全面落实。 3.1重视思想高度 因此,在设计、施工和监督水暖项目的过程中,有关管理部门应加强对相关工作的质量控制,提高质量监督意识。采取有效措施,改善水管工程的质素。必须做好施工前的前期准备工作,对施工所需图纸进行审核,不仅熟悉本专业图纸,而且掌握其他专业图纸,并协调各施工环节可能出现的问题。施工前将及时发现影响施工的因素,并采取有效措施处理。 与此同时,还要建立完善的质量管理制度,逐渐的是质量管理体系健全,根据水暖施工的不同项目的安排,创建水暖安装工程的预埋、预留管理小组,将责任落实到主管人员身上,不同的主管人员管理不同的项目,一旦出现问题就对项目主观人员进行处分。水暖安装技术人员技术管理部门集中管理,要定期的进行技术施工人员的培训工作,提高施工人员的技术,保证水暖工程的质量。水暖安装施工过程中,施工人员还要按照相关的施工规范进行施工,要具有完善的施工操作规程和较为先进的施工工艺,创新施工技术进行水暖安装施工,能够保证水暖安装施工的质量。 3.2清除杂物 为了消除管道堵塞的问题,我们应该在管道安装前仔细检查,看看管腔里是否有任何碎片。如果有碎片,我们必须清理碎片。清理管道中的杂物,使管道畅通,使用排水装置也必须符合规范,确保管道畅通。在安装管道期间,必须关闭喷嘴,以防止其他碎片进入管道内部。所有管道安装好后,应清洗干净,与外线保持良好的连接,确保连接不会进入碎片。排水管道安装时,埋地排出管与立管暂不连接,在立管检查口管插端用托板或其他方法支牢,并及时补好立管穿二层的楼板洞,待确认立管固定可靠后,拆除临时支撑物,此管口应尽量避免土建施工时作为临时污水排出口。排水管道施工中,待分段进行排水管道充分胶襄灌水度验合格后,在放水过程中如发现排水流速缓慢时,说明该水平支管段内有堵塞,应及时查明水平支管被堵塞部位,并将垃圾、杂物等清理干净为了保证楼面地漏及屋面管口免受黄砂、石子、垃圾等掉落入排水管内。所有地漏及仲出屋面的透气管、雨水管口应及时用水泥砂浆封闭,并经常检查封闭的管口是否被土建工人拆开,一旦发现应及时采取有效措施,防比管道堵塞。 3.3防漏和防冻 管道立管在穿越楼板处应设置钢套管,高出地面5cm左右,防比地面积水渗入下层房间。土建抹地面时,一定要将套管与地面结合处严密捣实,或将穿越楼板管道四周抹出一个高出原地面2cm的混凝土阻水圈,严禁结合部位出现渗水、漏水现象。在材料选用方面,严禁使用

热水采暖系统的分类与特点

热水采暖系统的分类与特点 一、重力循环与机械循环1.重力循环膨胀水箱作用1)吸纳系统水温升高时热胀而多出的水量;2)补充系统水温降低和泄漏时短缺的水量;3)排除水在加热过程中所释放出来的空气;4)稳定系统的压力。2.重力循环:水平供水干管标高应沿水流方向下降,气水逆向流动。3.优缺点:不需要外来动力,运行时无噪声,调节方便,管理简单;由于作用压头小,所需管径大,只宜用于没有集中供热热源、对供热质量有特殊要求的小型建筑物中。4.机械循环:膨胀水箱不能排气,供水干管末端集气罐,干管向集气罐抬起。二、按供水温度分类1.高温水采暖系统:供水温度高于100℃的系统;2.低温水采暖系统:供水温度低于100℃的系统;高温水采暖系统优缺点:散热器表面温度高,易烫伤皮肤,烤焦有机灰尘,卫生条件及舒适度较差,但可节省散热器用量,供回水温差较大,可减小管道系统管径,降低输送热媒所消耗的电能,节省运行费用。3.用于对卫生要求不高的工业建筑及其辅助建筑中。4.低温水采暖系统是民用及公用建筑的主要采暖系统型式。三、按供回水的方式分类1.上供下回式:布置管道方便,排气顺畅, 用得最多。 2.上供上回:采暖干管不与

地面设备及其它管道发生占地矛盾,但立管消耗管材量增加,立管下面均要设放水阀,主要用于设备和工艺管道较多的、沿地面布置干管发生困难的工厂车间。 3.下供上回:称为倒流式系统,无效热损失小,底层散热器平均温度升高,从而减少底层散热器面积,有利于解决一层散热器面积过大,难于布置的问题。立管中水流方向与空气浮升方向一致,有利于排气,当热媒为高温水时,底层散热器供水温度高,然而水静压力也大,有利于防止水的汽化。 4.下供下回:供水干管无效热损失小、可减轻竖向失调,有利于水力平衡。天棚下无干管比较美观,可以分层施工,分

相关主题
文本预览
相关文档 最新文档