四川省巴中市2018年中考数学试卷(解析版)
- 格式:doc
- 大小:985.11 KB
- 文档页数:25
2018年四川省巴中市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣1+3的结果是()A.﹣4B.4C.﹣2D.22.(3分)毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.3.(3分)下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=D.(3a2﹣6a+3)÷3=a2﹣2a4.(3分)2017年四川省经济总量达到3.698万亿元,居全国第6位,在全国发展大局中具有重要地位.把3.698万亿用科学记数法表示(精确到0.1万亿)为()A.3.6×1012B.3.7×1012C.3.6×1013D.3.7×10135.(3分)在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90B.平均数是90C.众数是87D.极差是96.(3分)如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:①=;②=;③=;④=.其中正确的个数有()A.1个B.2个C.3个D.4个7.(3分)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m8.(3分)若分式方程+=有增根,则实数a的取值是()A.0或2B.4C.8D.4或89.(3分)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.B.2C.2D.310.(3分)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题(本大题共10小题,每小题3分,共30分。
专题2 科学记数法,近似数一、选择题1。
(山东东营,11,3分)年第一季度,东营市实现生产总值787。
68亿元,比上年同期提高了0.9个百分点.787.68亿元用科学记数法表示是___________________元.【答案】7。
8768×1010【逐步提示】本题考查用科学记数法表示较大的数,【详细解答】解:787。
68亿=78 768 000 000=7.8768×1010.故答案为7.8768×1010.【解后反思】此类题易于出错的地方有两个:一是不理解对a的规定而确定a的值时出现错误;二是不理解n的值的确定规律求错n 的值.(1)科学记数法a×10n中,a的整数位数只有1位.当原数的绝对值≥10时,确定n的方法是:①把已知数的小数点向左移动的位数即为n值;②n等于原数的整数位数减1.当原数的绝对值<1时,确定n的方法是:①把已知数的小数点向右移动几位数即为n值;②n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的那个0).(2)对于含有计数单位并需转换单位的科学记数法,利用1亿=1×108,1万=1×104,1千=1×103来表示,可使问题简化.【关键词】科学记数法2。
( 山东聊城,3,3分)地球的体积约为1012立方千米,太阳的体积约为1。
4⨯1018立方千米,地球的体积约是太阳体积的倍数是A、7。
1610-⨯C、1.4610⨯D、1.4710⨯⨯B、7.1710-【答案】B【逐步提示】第一步表达出地球的体积与太阳体积的商,第二步运算时按照单项式除以单项式的运算法则进行. 第三步化为科学记数法.【详细解答】解: 1012÷(1.4⨯1018)=(1 ÷1。
4 )⨯181210-≈0.71610-⨯=7.1710-⨯ ,故选择B .【解后反思】本题考查了同底数幂的除法、单项式除以单项式,科学记数法,解题的关键是掌握相关法则.即同底数幂的相乘,底数不变,指数相减,即:m n m n a a a -÷=(a ≠0)。
第四篇图形的性质专题17 三角形及其性质☞解读考点算与证明☞2年中考【2017年题组】一、选择题1.(2017内蒙古包头市)若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm【答案】A.【解析】若2cm为等腰三角形的底边,则腰长为(10﹣2)÷2=4(cm),此时三角形的三边长分别为2cm,4cm,4cm,符合三角形的三边关系;故选A.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.2.(2017广西河池市)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【答案】A.【解析】试题分析:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.考点:1.三角形的面积;2.三角形的角平分线、中线和高;3.应用题.3.(2017贵州省遵义市)如图,△ABC的面积是12,点D,E,F,G 分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4。
5B.5C.5.5D.6【答案】A.【解析】考点:1.三角形中位线定理;2.三角形的面积.4.(2017南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【答案】B.【解析】试题分析:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选B.考点:三角形内角和定理.5.(2017南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE ∥BC D.∠DAE=∠EAC【答案】D.【解析】考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.6.(2017广西贵港市)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.14B.12C.34D.1【答案】B.【解析】试题分析:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=24=12,故选B.考点:1.列表法与树状图法;2.三角形三边关系;3.概率及其应用.7.(2017江苏省扬州市)若一个三角形的两边长分别为2和4,则该三角形的周长可能是()A.6B.7C.11D.12【答案】C.【解析】试题分析:设第三边的长为x,∵三角形两边的长分别是2和4,∴4﹣2<x<2+4,即2<x<6.则三角形的周长:8<C<12,C选项11符合题意,故选C.考点:三角形三边关系.8.(2017四川省雅安市)一个等腰三角形的边长是6,腰长是一元二次方程27120x x-+=的一根,则此三角形的周长是()A.12B.13C.14D.12或14【答案】C.【解析】考点:1.解一元二次方程﹣因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.9.(2017四川省巴中市)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【答案】D.【解析】试题分析:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D.考点:1.三角形内角和定理;2.实数.10.(2017德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C.【解析】考点:1.三角形中位线定理;2.规律型:图形的变化类.二、填空题11.(2017四川省广安市)如图,Rt△ABC中,∠C=90°,BC=6,AC=8,D、E分别为AC、AB的中点,连接DE,则△ADE的面积是.【答案】6.【解析】试题分析:∵D、E分别为AC、AB的中点,∴AD=12AC=4,DE=12BC=3,DE∥BC,∴∠ADE=∠C=90°,∴△ADE的面积=12×AD×DE=6,故答案为:6.考点:三角形中位线定理.12.(2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM.当AM⊥BM时,则BC的长为.【答案】8.【解析】考点:1.三角形中位线定理;2.等腰三角形的判定与性质.13.(2017贵州省黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE 的度数是.【答案】40°.【解析】AD,试题分析:∵P是对角线BD的中点,E是AB的中点,∴EP=12BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,同理,FP=12故答案为:40°.考点:三角形中位线定理.14.(2017黑龙江省绥化市)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n 个小三角形的面积为 .【答案】2112n .【解析】考点:1.三角形中位线定理;2.等腰直角三角形;3.综合题;4.规律型;5.操作型.15.(2017四川省成都市)在△ABC 中,∠A :∠B :∠C =2:3:4,则∠A 的度数为 . 【答案】40°. 【解析】试题分析:∵∠A :∠B :∠C =2:3:4,∴设∠A =2x ,∠B =3x ,∠C =4x ,∵∠A +∠B +∠C =180°,∴2x +3x +4x =180°,解得:x =20°,∴∠A 的度数为:40°.故答案为:40°. 考点:三角形内角和定理.16.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 . 【答案】1<m <4. 【解析】试题分析:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD 是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC 中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.考点:1.全等三角形的判定与性质;2.三角形三边关系.17.(2017贵州省黔西南州)已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是.【答案】15.【解析】考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.18.(2017四川省巴中市)若a、b、c为三角形的三边,且a、b满2--=,第三边c为奇数,则c= .9(2)0a b【答案】9.【解析】试题分析:∵a、b满足2-+-=,∴a=9,b=2,∵a、b、c为三a b9(2)0角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为:9.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.19.(2017四川省泸州市)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为cm.【答案】45.【解析】试题分析:连接AO并延长,交BC于H,由勾股定理得,DE=22+OE OD =25,∵BD和CE分别是边AC、AB上的中线,∴BC=2DE=45,OBC=25,∵O 是△ABC的重心,∴AH是中线,又BD⊥CE,∴OH=12是△ABC的重心,∴AO=2OH=45,故答案为:45.考点:1.三角形的重心;2.勾股定理.20.(2017山东省淄博市)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1.交于点F1,得到四边形CD1F1E1,其面积S1=13如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=1;6如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=1;10…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= ..【答案】2++n n(1)(2)【解析】考点:1.规律型:图形的变化类;2.三角形的面积;3.规律型;4.综合题.三、解答题21.(2017内蒙古呼和浩特市)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:B D=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.【答案】(1)证明见解析;(2)四边形DEMN是正方形.【解析】试题解析:(1)解:由题意得,AB=AC,∵BD,CE分别是两腰上的中线,∴AD=12AC,AE=12AB,∴AD=AE,在△ABD和△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≌△ACE(ASA),∴BD=CE;(2)四边形DEMN是正方形,证明:∵E、D分别是AB、AC的中点,∴AE=12AB,AD=12AC,ED是△ABC的中位线,∴ED∥BC,ED=1BC,∵点M、N分别为线段BO和CO中点,∴OM=BM,ON=CN,2BC,∴ED∥MN,ED=MN, MN是△OBC的中位线,∴MN∥BC,MN=12∴四边形EDNM是平行四边形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四边形EDNM是矩形,在△BDC与△CEB中,∵BE=CD,CE=BD,BC=CB,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到顶点A的BC,∴BD⊥CE,∴四边距离与底边长相等,∴O到BC的距离=12形DEMN是正方形.考点:1.全等三角形的判定与性质;2.三角形的重心;3.等腰三角形的性质.【2016年题组】一、选择题1.(2016贵州省铜仁市)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B. 2 C.4D.8【答案】B.【解析】考点:1.角平分线的性质;2.含30度角的直角三角形.2.(2016贵州省毕节市)到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【答案】D.【解析】试题分析:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选D.考点:1.线段垂直平分线的性质;2.角平分线的性质.3.(2016广西河池市)下列长度的三条线段不能组成三角形的是()A.5,5,10B.4,5,6C.4,4,4 D.3,4,5【答案】A.【解析】考点:三角形三边关系.4.(2016广西百色市)三角形的内角和等于()A.90°B.180°C.300°D.360°【答案】B.【解析】试题分析:因为三角形的内角和为180度.所以B正确.故选B.考点:三角形内角和定理.5.(2016广西贵港市)在△ABC中,若∠A=95°,∠B=40°,则∠C 的度数为()A.35°B.40°C.45°D.50°【答案】C.【解析】试题分析:∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.考点:三角形内角和定理.6.(2016江苏省盐城市)若a、b、c为△ABC的三边长,且满足-+-=,则c的值可以为()420a bA.5B.6C.7D.8【答案】A.【解析】试题分析:∵420-+-=,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2a b<c<4+2,2<c<6,5符合条件;故选A.考点:1.三角形三边关系;2.非负数的性质:绝对值;3.非负数的性质:算术平方根.7.(2016湖南省岳阳市)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【答案】D.【解析】考点:三角形三边关系.8.(2016贵州省安顺市)已知实数x,y满足480--=,则以x,yx y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【答案】B.【解析】试题分析:根据题意得:4080x y -=⎧⎨-=⎩,解得:48x y =⎧⎨=⎩. (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B .考点:1.等腰三角形的性质;2.非负数的性质;3.三角形三边关系;4.分类讨论.9.(2016湖北省荆门市)已知3是关于x 的方程2(1)20xm x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或11【答案】D .【解析】考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.10.(2016湖北省襄阳市)如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C的度数为()A.50°B.40°C.30°D.20°【答案】C.【解析】试题分析:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.考点:1.平行线的性质;2.角平分线的定义;3.三角形的外角性质.11.(2016湖北省鄂州市)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50°B.40°C.45°D.25°【答案】B.【解析】考点:1.平行线的性质;2.三角形内角和定理.12.(2016湖北省黄石市)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【答案】B.【解析】试题分析:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选B.考点:1.三角形的外角性质;2.线段垂直平分线的性质.13.(2016湖南省湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【答案】C.【解析】试题分析:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.14.(2016青海省)已知等腰三角形的腰和底的长分别是一元二次方程2680x x-+=的根,则该三角形的周长为()A.8B.10C.8或10D.12【答案】B.【解析】考点:1.解一元二次方程—因式分解法;2.三角形三边关系;3.等腰三角形的性质.15.(2016宁夏)菱形ABCD的对角线AC,BD相交于点O,E,F 分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD 的面积为()A.22B2C.62D.82【答案】A.【解析】试题分析:∵E,F分别是AD,CD边上的中点,EF=2,∴AC=2EF=22,又∵BD=2,∴菱形ABCD的面积S=12×AC×BD=12×22×2=22A.考点:1.菱形的性质;2.三角形中位线定理.16.(2016广东省广州市)如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【答案】D.【解析】考点:1.线段垂直平分线的性质;2.勾股定理;3.勾股定理的逆定理;4.三角形中位线定理.17.(2016新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE=12BC B.AD AEAB ACC.△ADE∽△ABCD.S△ADE:S△ABC=1:2【答案】D.【解析】试题分析:∵D 、E 分别是AB .AC 的中点,∴DE ∥BC ,DE =12BC ,∴12AD AE DE ABACBC===,△ADE ∽△ABC ,∴2ΔADE ΔABC 1:()4AD SS AB ==,∴A ,B ,C 正确,D 错误;故选D .考点:1.相似三角形的判定与性质;2.三角形中位线定理. 18.(2016广西梧州市)在△ABC 中,AB =3,BC =4,AC =2,D 、E 、F 分别为AB 、BC 、AC 中点,连接DF 、FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11 【答案】B . 【解析】考点:三角形中位线定理.19.(2016陕西省)如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△A BC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B.【解析】试题分析:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC=22+=10,∵DE是△ABC的中位线,86+=22AB BC∴DF∥BM,DE=1BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,2AC=5,∴DF=DE+EF=3+5=8.故∴∠EFC=∠ECF,∴EC=EF=12选B.考点:1.三角形中位线定理;2.等腰三角形的判定与性质;3.勾股定理.20.(2016江苏省苏州市)如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.3【答案】C.【解析】考点:三角形的面积.21.(2016湖北省咸宁市)如图,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论: ①12DE BC=;②ΔDOEΔCOB12SS =;③AD OE AB OB=;④ΔODE ΔADC 13S S = 其中正确的个数有( )A .1个B .2个C .3个D .4个 【答案】B . 【解析】故正确的是①③.故选B.考点:1.相似三角形的判定与性质;2.三角形的重心.22.(2016湖南省永州市)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短"的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.【解析】考点:1.圆的认识;2.线段的性质:两点之间线段最短;3.垂线段最短;4.三角形的稳定性.23.(2016内蒙古包头市)如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A3B.33C.32D.22【答案】A.【解析】试题分析:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO 平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°3A.考点:1.角平分线的性质;2.特殊角的三角函数值.24.(2016江苏省淮安市)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再MN的长为半径画弧,两弧交于点P,分别以点M,N为圆心,大于12作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【答案】B.【解析】考点:角平分线的性质.25.(2016福建省厦门市)如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是()A.EF=CF B.EF=DE C.CF<BD D.EF>DE【答案】B.【解析】试题分析:∵DE是△ABC的中位线,∴E为AC中点,∴AE=EC,∵CF∥BD,∴∠ADE=∠F,在△ADE和△CFE中,∵∠ADE=∠F,∠AED=∠CEF,AE=CE,∴△ADE≌△CFE(AAS),∴DE=FE.故选B.考点:1.三角形中位线定理;2.全等三角形的判定与性质。
2020年四川省巴中市中考数学试卷一、选择题(本大题共12小题,共48.0分)1.−3的绝对值的相反数是()A. 3B. −13C. −3 D. 132.下列四个算式中正确的是()A. a2+a3=a5B. (−a2)3=a6C. a2⋅a3=a6D. a3÷a2=a3.疫情期间,某口罩厂日生产量从原来的360万只增加到现在的480万只.把现在的口罩日生产量用科学记数法表示为()A. 3.6×106B. 3.6×107C. 4.8×106D. 4.8×1074.已知一个几何体由大小相等的若干个小正方体组成,其三视图如图所示,则组成该几何体的小正方体个数为()A. 6B. 7C. 8D. 95.某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A. 8.6B. 9C. 12.2D. 12.66.如图,在△ABC中,∠BAC=120°,AD平分∠BAC,DE//AB,AD=3,CE=5,则AC的长为()A. 9B. 8C. 6D. 77.关于x的一元二次方程x2+(2a−3)x+a2+1=0有两个实数根,则a的最大整数解是()A. 1B. −1C. −2D. 08.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?“意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A. 4尺B. 4.55尺C. 5尺D. 5.55尺(k≠9.如图,一次函数y1=ax+b(a≠0)与反比例函数y2=kx0,x>0)的交点A坐标为(2,1),当y1≤y2时,x的取值范围是()A. 0<x≤2B. 0<x<2C. x>2D. x≥210.如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=2√2,则⊙O的半径OA的长是()A. √2B. 2C. 2√2D. 311.定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125−log381=()A. −1B. 2C. 1D. 4412.如图,在矩形ABCD中,AB=4,对角线AC,BD交于点O,sin∠COD=√3,P为AD上一动点,PE⊥AC于点E,2PF⊥BD于点F,分别以PE,PF为边向外作正方形PEGH和PFMN,面积分别为S1,S2.则下列结论:①BD=8;②点P在运动过程中,PE+PF 的值始终保持不变,为2√3;③S1+S2的最小值为6;④当PH:PN=5:6时,则DM:AG=5:6.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13. 分解因式:3a 3−6a 2+3a =_____.14. 函数y =2x+1√1−x 中自变量x 的取值范围是______ .15. 若关于x 的分式方程x+3x−1=mx(1−x)有增根,则m = ______ .16. 如图,在实验桌上有完全相同的烧杯内装有体积相同且无色透明的3种液体,其中1杯酒精,3杯生理盐水,2杯白糖水,从中任取一杯为白糖水的概率是______ .17. 如图,是中国象棋残局图的一部分,请用线段将图中棋子所在的格点按指定方向顺次连接,组成一个多边形.连接顺序为:将→象→炮→兵→马→車→将,则组成的多边形的内角和为______ 度.18. 现有一“祥云”零件剖面图,如图所示,它由一个半圆和左右两支抛物线的一部分组成,且关于y 轴对称.其中半圆交y 轴于点E ,直径AB =2,OE =2;两支抛物线的顶点分别为点A 、点B.与x 轴分别交于点C 、点D ;直线BC 的解析式为:y =kx +34.则零件中BD 这段曲线的解析式为______ .三、解答题(本大题共7小题,共84.0分)19. (1)计算:|1−√3|+√273−2cos30°+(−13)−1−(2020−π)0.(2)解一元二次方程:x(x −4)=x −6.(3)先化简:(x 2−2xx 2−4x+4−1x−2)÷x 2−xx 2−4,再从不等式−2≤x <3中选取一个合适的整数,代入求值.20.如图所示,△ABC在边长为1cm的小正方形组成的网格中.(1)将△ABC沿y轴正方向向上平移5个单位长度后,得到△A1B1C1,请作出△A1B1C1,并求出A1B1的长度;(2)再将△A1B1C1绕坐标原点O顺时针旋转180°,得到△A2B2C2,请作出△A2B2C2,并直接写出点B2的坐标;(3)在(1)(2)的条件下,求线段AB在变换过程中扫过图形的面积和.21.巴中某商场在6月份举行了“年中大促,好物网罗”集赞领礼品活动.为了解参与活动顾客的集赞情况,商场从参与活动的顾客中,随机抽取28名顾客的集赞数,调查数据如下(单位:个):36262938485948524333186140526455465645433755475266573645整理上面的数据得到如下频数分布表和频数分布直方图:礼品类别集赞数(a)频数一盒牙膏18≤a<282一条毛巾28≤a<385一提纸巾38≤a<48m一件牛奶48≤a<589一桶食用油58≤a<68n回答下列问题:(1)求频数分布表中m,n的值,并补全频数分布直方图;(2)求以上28个数据的中位数和众数;(3)已知参加此次活动的顾客有364人,领到礼品为“一件牛奶”的顾客大约有多少人?22.某果农为响应国家“乡村振兴”战略的号召.计划种植苹果树和桔子树共100棵.若种植40棵苹果树,60棵桔子树共需投入成本9600元;若种植40棵桔子树,60棵苹果树共需投入成本10400元.(1)求苹果树和桔子树每棵各需投入成本多少元?(2)若苹果树的种植棵数不少于桔子树的3,且总成本投入不超过9710元,问:共5有几种种植方案?(3)在(2)的条件下,已知平均每棵苹果树可产30kg苹果,售价为10元/kg;平均每棵桔子树可产25kg枯子,售价为6元/kg,问:该果农怎样选择种植方案才能使所获利润最大?最大利润为多少元?23.如图,海面上产生了一股强台风.台风中心A在某沿海城市B的正西方向,小岛C位于城市B北偏东29°方向上,台风中心沿北偏东60°方向向小岛C移动,此时台合风中心距离小岛200海里.(1)过点B作BP⊥AC于点P,求∠PBC的度数;(2)据监测,在距离台风中心50海里范围内均会受到台风影响(假设台风在移动过程中风力保持不变).问:在台风移动过程中,沿海城市B是否会受到台风影响?请说明理由.(参考数:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,√3≈1.73)24.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,交AB的延长线于点E,AC平分∠DAB.且OA=3,AC=3√3.(1)求证:AD⊥DE;(2)若点P为线段CE上一动点,当△PBE与△ACE相似时,求EP的长.25.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B左侧),交y轴正半轴于点C,M为BC中点,点P为抛物线上一动点,已知点A坐标(−1,0),且OB=2OC=4OA.(1)求抛物线的解析式;(2)当△PCM≌△POM时,求PM的长;(3)当4S△ABC=5S△BCP时,求点P的坐标.答案和解析1.【答案】C【解析】解:−3的绝对值的相反数是:−|−3|=−3.故选:C.首先根据绝对值的含义和求法,可得:−3的绝对值是3;然后在3的前面加上−,求出−3的绝对值的相反数是多少即可.此题主要考查了绝对值的含义和求法,以及相反数的含义和求法,要熟练掌握.2.【答案】D【解析】解:A.a2和a3不能合并,故本选项不符合题意;B.(−a2)3=−a6,故本选项不符合题意;C.a2⋅a3=a5,故本选项不符合题意;D.a3÷a2=a,故本选项符合题意;故选:D.根据幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法逐个判断即可.本题考查了幂的乘方与积的乘方,合并同类项法则,同底数幂的乘法,同底数幂的除法等知识点,能熟记知识点是解此题的关键.3.【答案】C【解析】解:480万=480×104=4.8×106.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:根据俯视图可知该组合体共3行、2列,结合主视图和左视图知该几何体中小正方体的分布情况如图所示:则组成此几何体需要正方体个数为6.故选:A.从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.【答案】D【解析】解:由题意可知,数据中最大的值33.6℃,最小值21℃,所以极差为33.6−21=12.6℃.故选:D.根据极差的公式:极差=最大值−最小值.找出所求数据中最大的值33.6℃,最小值21℃,再代入公式求值.本题考查极差的定义,属于基础题,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.6.【答案】B【解析】解:∵∠BAC=120°,AD平分∠BAC,∴∠BAD=∠CAD=1∠BAC=60°,2∵DE//AB,∴∠BAD=∠ADE=60°,∠DEC=∠BAC=120°,∴∠AED=60°,∴∠ADE=∠AED,∴△ADE是等边三角形,∴AE=AD=3,∴AC=AE+CE=3+5=8,故选:B.∠BAC=60°,根据平行线的性质得到根据角平分线的定义得到∠BAD=∠CAD=12∠BAD=∠ADE=60°,∠DEC=∠BAC=120°,推出△ADE是等边三角形,于是得到结论.本题考查了等腰三角形的判定和性质,平行线的性质,等边三角形的判定和性质,熟练掌握各定理是解题的关键.7.【答案】D【解析】解:∵关于x的一元二次方程x2+(2a−3)x+a2+1=0有两个实数根,∴△=(2a−3)2−4(a2+1)≥0,,解得a≤512则a的最大整数值是0.故选:D.若一元二次方程有实数根,则根的判别式△=b2−4ac≥0,建立关于k的不等式,求出k的取值范围.考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.【答案】B【解析】解:设竹子折断处离地面x尺,则斜边为(10−x)尺,根据勾股定理得:x2+32=(10−x)2解得:x=4.55.答:原处还有4.55尺高的竹子.故选:B.竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10−x)尺.利用勾股定理解题即可.此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.9.【答案】A【解析】解:由图象得,当y1≤y2时,x的取值范围是0<x≤2,故选:A.(k≠0,x>0)的交点坐标即可得根据一次函数y1=ax+b(a≠0)与反比例函数y2=kx到结论.本题考查了反比例函数与一次函数的交点问题,根据A的坐标,结合图象是解题的关键.10.【答案】B【解析】【分析】本题主要考查了圆周角定理和解直角三角形.能求出△AOB是直角三角形是解此题的关键.根据圆周角定理求出∠AOB,再求出OA即可.【解答】解:根据圆周角定理得:∠AOB=2∠ACB,∵∠ACB=45°,∴∠AOB=90°,∵AB=2√2,OA=OB,∴2OA2=AB2,∴OA=OB=2.故选:B.11.【答案】A【解析】解:由题意可得,log5125−log381=3−4=−1,故选:A.根据新定义的计算方法,可以计算出所求式子的值.本题考查新定义的运算,解答本题的关键是明确新定义的计算方法.12.【答案】C【解析】解:①∵sin∠COD=√32,∴∠COD=60°,∵四边形ABCD是矩形,∴OA=OC=OD=OB,∴△AOB和△COD是等边三角形,∴BD=2OA=2AB=8,故①正确;②连接OP,由①知BD=8,∵矩形ABCD的两边AB=4,BC=4√3,∴S矩形ABCD=AB⋅BC=16√3,∴S△AOD=14S矩形ABCD=4√3,OA=OD=4,∴S△AOD=S△AOP+S△DOP=12OA⋅PE+12OD⋅PF=12OA(PE+PF)=12×4×(PE+PF)=4√3,∴PE+PF=2√3,故②正确;③∵(PE−PF)2=PE2+PF2−2PE⋅PF≥0,∴PE2+PF2≥2PE⋅PF,∴S1+S2=PE2+PF2=12(PE2+PF2+PE2+PF2)≥12(PE2+PF2+2PE⋅PF)=12(PE+PF)2=6,当且仅当PE=PF=√3时,等号成立,故③正确;④∵∠AEP=∠DFP,∠PAE=∠PDF,∴△APE∽△DPF,∴AEDF =PEPF=EGFM=PHPN=56,∵AEDF =AG+GEDM+FM,∴AGDM =56,故④错误.综上所述,其中正确的结论有①②③,3个.故选:C.①由矩形ABCD的性质和特殊角三角函数可得△AOB和△COD是等边三角形,进而可以判断;②连接OP.由S△AOD=S△AOP+S△DOP求得答案;③利用完全平方公式变形,当且仅当PE=PF=√3时,等号成立,即可判断;④根据已知条件证明△APE∽△DPF,对应边成比例即可判断.此题考查了正方形的性质、矩形的性质、解直角三角形、相似三角形的判定与性质、完全平方公式、等边三角形的判定与性质,解决本题的关键是综合运用以上知识.13.【答案】3a(a−1)2【解析】解:3a3−6a2+3a=3a(a2−2a+1)=3a(a−1)2.故答案为:3a(a−1)2.先提取公因式3a,再根据完全平方公式进行二次分解.完全平方公式:a2−2ab+b2= (a−b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.14.【答案】x<1【解析】解:由题意得1−x>0,解得x<1.故答案为:x<1.根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.15.【答案】−4或0【解析】解:去分母得:x2+3x=−m,由分式方程有增根,得到x−1=0或x=0,即x=0或x=1,把x=0代入方程得:0=−m,解得:m=0.把x=1代入方程得:1+3=−m,解得:m=−4.故答案为:−4或0.根据分式方程有增根,确定出x的值,分式方程去分母转化为整式方程,把x的值代入整式方程计算即可求出m的值.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.【答案】13【解析】解:∵在实验桌上有完全相同的烧杯内装有体积相同且无色透明的3种液体,1杯酒精,3杯生理盐水,2杯白糖水,∴从中任取一杯为白糖水的概率是:26=13.故答案为:13.直接利用概率公式计算得出答案.此题主要考查了概率公式,正确掌握概率求法是解题关键. 17.【答案】720【解析】解:根据题意可知,组成的多边形是六边形,(6−2)×180°=720°.故组成的多边形的内角和为720度.故答案为:720.根据题意可知,组成的多边形是六边形,根据多边形内角和定理即可求解. 考查了多边形内角与外角,关键是熟练掌握多边形内角和定理.18.【答案】y =−14(x −1)2+1(1≤x ≤3)【解析】解:记AB 与y 轴的交点为F ,∵AB =2,且半圆关于y 轴对称,∴FA =FB =FE =1,∵OE =2,∴OF =1,则右侧抛物线的顶点B 坐标为(1,1),将点B(1,1)代入y =kx +34得k +34=1,解得k=14,∴y=14x+34,当y=0时,14x+34=0,解得x=−3,∴C(−3,0),则D(3,0),设右侧抛物线解析式为y=a(x−1)2+1,将点D(3,0)代入解析式得4a+1=0,解得a=−14,∴y=−14(x−1)2+1(1≤x≤3).故答案为:y=−14(x−1)2+1(1≤x≤3).记AB与y轴的交点为F,根据图象关于y轴对称且直径AB=2,OE=2得出点B(1,1),由点B坐标求出直线BC解析式,据此得出点C坐标,继而得出点D坐标,将点D坐标代入右侧抛物线解析式y=a(x−1)2+1,求出a的值即可得出答案.本题主要考查二次函数的应用,解题的关键是根据轴对称图形的性质得出点B坐标及待定系数法求函数解析式的能力.19.【答案】解:(1)原式=√3−1+3−2×√32+(−3)−1=√3−1+3−√3−3−1=−2;(2)方程整理得:x2−5x+6=0,分解因式得:(x−2)(x−3)=0,可得x−2=0或x−3=0,解得:x1=2,x2=3;(3)原式=x2−2x−x+2(x−2)2⋅(x+2)(x−2)x(x−1)=(x−1)(x−2)(x−2)2⋅(x+2)(x−2)x(x−1)=x+2x,由不等式−2≤x<3的整数解为−2,−1,0,1,2,其中x=−2,0,1,2时,原式都没有意义,当x=−1时,原式=−1+2−1=−1.【解析】(1)原式利用绝对值的代数意义,立方根定义,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值;(2)方程整理后,利用因式分解法求出解即可;(3)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值,代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)如图所示,△A1B1C1即为所求,A1B1=3√2cm;(2)如图,△A2B2C2即为所求,B2(4,−4);(3)在(1)(2)的条件下,线段AB在变换过程中扫过图形的面积和为:5×3+1 2π×(4√2)2−12π×(√2)2=(15+15π)cm2.【解析】(1)分别将点A、B、C向上平移5个单位得到对应点,再顺次连接可得;(2)分别将点A、B、C绕点O顺时针旋转90°得到对应点,再顺次连接可得;(3)平行四边形的面积加上大半圆的面积与小半圆面积的差即可求得.本题主要考查作图−平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义和性质.21.【答案】解:(1)根据频数分布表可知:m=8,n=4;补全的频数分布直方图.如图所示:(2)中位数:46+472=46.5,众数:52; (3)364×928=117(人).答:领到礼品为“一件牛奶”的顾客大约有117人.【解析】(1)根据频数分布表即可求得结论;(2)根据频数分布表和中位数和众数定义即可以上28个数据的中位数和众数;(3)利用样本估计总体的方法即可得领到礼品为“一件牛奶”的顾客大约有多少人. 本题考查了频数(率)分布直方图、用样本估计总体、频数分布表、中位数、众数,解决本题的关键是综合运用以上统计知识.22.【答案】解:(1)设每棵苹果树需投入成本x 元,每棵桔子树需投入成本y 元,由题意得:{40x +60y =960060x +40y =10400,解得:{x =120y =80, 答:苹果树每棵需投入成本120元,桔子树每棵需投入成本80元;(2)设苹果树的种植棵数为a 棵,则桔子树的种植棵数为(100−a)棵,由题意得:{a ≥35(100−a)120a +80(100−a)≤9710, 解得:37.5≤a ≤42.75,∵a 取整数,∴a =38,39,40,41,42,∴共有5种种植方案;(3)设该果农所获利润为W 元,则W =(30×10−120)a +(25×6−80)(100−a), 即:W =110a +7000,∵k =110>0.W 随a 的增大而增大,∴当a =42时,W 最大=110×42+7000=11620(元),答:该果农种植苹果树42棵,桔子树58棵时,获得利润最大,最大利润为11620元.【解析】(1)设每棵苹果树需投入成本x元,每棵桔子树需投入成本y元,根据“种植40棵苹果树,60棵桔子树共需投入成本9600元;若种植40棵桔子树,60棵苹果树共需投入成本10400元”列方程组求解即可;(2)设苹果树的种植棵数为a棵,则桔子树的种植棵数为(100−a)棵,根据题意列不等式组求出a的取值范围即可求解;(3)设该果农所获利润为W元,求出W与a的关系式,再根据一次函数的性质求解即可.考查列二元一次方程组解应用题的方法、一次函数的性质和一元一次不等式等知识,实用性较强,数据较多,理清数量之间的关系则是解决问题的关键.23.【答案】解:(1)∵∠MAC=60°,∴∠BAC=30°,又∵BP⊥AC,∴∠APB=90°,∴∠ABP=60°,又∵∠CBN=29°,∠ABN=90°,∴∠ABC=119°,∴∠PBC=∠ABC−∠ABP=59°;(2)不会受到影响.理由如下:由(1)可知,∠PBC=59°,∴∠C=90°−∠PBC=31°,又∵tan31°≈0.60,∴BPCP ≈0.60=35,设BP为x海里,则AP=√3x海里,CP=53x海里,∴√3x+53x=200,解得:x≈57,∵57>50,∴沿海城市B不会受到台风影响.【解析】(1)先由∠MAC=60°知∠BAC=30°,再由BP⊥AC知∠ABP=60°,结合∠CBN=29°,∠ABN=90°得∠ABC=119°,继而根据∠PBC=∠ABC−∠ABP可得答案;(2)先求出∠C=31°,由tan31°≈0.60知BPCP ≈0.60=35,设BP为x海里,表示出AP=√3x海里,CP=53x海里,根据AC=200海里建立关于x的方程,解之求出x的值,与50进行大小比较可得答案.本题主要考查解直角三角形的应用,解题的关键是掌握直角三角形的有关性质和三角函数的定义及其应用.24.【答案】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,又∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴OC//AD,又∵DE是⊙O的切线,∴OC⊥DE,∴AD⊥DE;(2)解:连接BC,∵AB为⊙O直径,∴∠ACB=90°,又∵AB=2OA=6,AC=3√3,∴cos∠BAC =AC AB =3√36=√32, ∴∠BAC =30°,BC =3,∴△BCO 为等边三角形,∴∠ECB =30°,∠BEC =30°,∴EC =AC =3√3,BE =BC =BO =AO =3,①当BP//AC 时,△BPE∽△ACE ,∴PE CE =BE AE, 即3√3=39,∴PE =√3;②当点P 与点C 重合时,△PBE∽△ACE ,∴PE =CE =3√3;综上:当△PBE 与△ACE 相似时,EP =3√3或√3.【解析】(1)根据等腰三角形的性质得出∠OAC =∠OCA ,根据角平分线的定义得出∠DAC =∠OAC ,求出∠DAC =∠OCA ,推出OC//AD ,根据切线的性质得出OC ⊥DE 即可;(2)解直角三角形求出∠BAC =30°,BC =3,推出△BCO 为等边三角形,求出EC =AC =3√3,BE =BC =BO =AO =3,根据相似三角形的性质和判定求出答案即可.本题考查了圆周角定理,切线的性质,平行线的性质和判定,等腰三角形的性质,解直角三角形,相似三角形的性质和判定等知识点,能综合运用知识点进行推理和计算是解此题的关键. 25.【答案】解:(1)∵A(−1,0),∴OA =1,又∵OB =2OC =4OA ,∴OC =2,OB =4,∴B(4,0),C(0,2),∵点B ,点C ,点A 在抛物线上,∴{c =216a +4b +c =0a −b +c =0解得:{a =−12b =32c =2,、 ∴抛物线解析式为:y =−12x 2+32x +2;(2)连接OM ,∵M 为BC 中点,∴M(2,1),∵△PCM≌△POM ,∴CM =OM ,PC =PO ,∴MP 是OC 的垂直平分线,∴PM//x 轴,∴点P 的纵坐标为1,当y =1时,代入y =−12x 2+32x +2,解得:x =3±√172, ∴P(3+√172,1)或(3−√172,1),∴PM =√17−12或√17+12; (3)∵S △ABC =12×AB ×OC =5,4S △ABC =5S △BCP ,∴S △BCP =4,∵B(4,0),C(0,2),∴直线BC 解析式为y =−12x +2,当点P 在BC 上方时,如图2,过点P 作PE ⊥x 轴,交BC 于点E ,设点P(p,−12p2+32p+2),则点E(p,−12p+2),∴PE=−12p2+2p,∴4=12×4×(−12p2+2p),∴p=2,∴点P(2,3);当点P在BC下方时,如图3,过点P作PE⊥x轴,交BC于点E,∴PE=12p2−2p,∴4=12×4×(12p2−2p),∴p=2±2√2,∴点P(2+2√2,−1−√2)或(2−2√2,−1+√2);综上,点P的坐标为:(2,3)或(2+2√2,−1−√2)或(2−2√2,−1+√2).【解析】(1)先求出点B,点C坐标,利用待定系数法可求解析式;(2)由全等三角形的性质可得PO=PC,可得点M在CO的垂直平分线上,即可求解;(3)分两种情况讨论,利用面积关系可求解.本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,全等三角形的性质等知识,利用分类讨论思想解决问题是本题的关键.。
2023年四川省巴中市中考数学试卷一、选择题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各数为无理数的是( )C. 5D. 3―27A. 0.618B. 2272. 如图所示图形中为圆柱的是( )A. B. C. D.3. 下列运算正确的是( )A. x2+x3=x5B. 3×2=6C. (a―b)2=a2―b2D. |m|=m4. 下列说法正确的是( )A. 多边形的外角和为360°B. 6a2b―2ab2=2ab(3a―2b)C. 525000=5.25×103D. 可能性很小的事情是不可能发生的5. 一次函数y=(k―3)x+2的函数值y随x增大而减小,则k的取值范围是( )A. k>0B. k<0C. k>3D. k<36.某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )A. 传B. 承C. 文D. 化7. 若x满足x2+3x―5=0,则代数式2x2+6x―3的值为( )A. 5B. 7C. 10D. ―138.如图,⊙O是△ABC的外接圆,若∠C=25°,则∠BAO=( )A. 25°B. 50°C. 60°D. 65°9. 某学校课后兴趣小组在开展手工制作活动中,美术老师要求用14张卡纸制作圆柱体包装盒,准备把这些卡纸分成两部分,一部分做侧面,另一部分做底面.已知每张卡纸可以裁出2个侧面,或者裁出3个底面,如果1个侧面和2个底面可以做成一个包装盒,这些卡纸最多可以做成包装盒的个数为( )A. 6B. 8C. 12D. 1610.如图,在Rt△ABC中,AB=6cm,BC=8cm,D、E分别为AC、BC中点,连接AE、BD相交于点F,点G在CD上,且DG:GC=1:2,则四边形DFEG的面积为( )A. 2cm2B. 4cm2C. 6cm2D. 8cm211. 我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了(a+b)n展开式的系数规律.当代数式x4―12x3+54x2―108x+81的值为1时,则x的值为( )A. 2B. ―4C. 2或4D. 2或―412. 在平面直角坐标系中,直线y=kx+1与抛物线y=1x2交于A、B两点,设A(x1,y1),B(4x2,y2),则下列结论正确的个数为( )①x1⋅x2=―4.②y1+y2=4k2+2.③当线段AB长取最小值时,则△AOB的面积为2.④若点N(0,―1),则AN⊥BN.A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)13. 在0,(―13)2,―π,―2四个数中,最小的实数是______ .14. 已知a为正整数,点P(4,2―a)在第一象限中,则a=______ .15. 这组数据1,3,5,2,8,13的中位数是______ .16. 关于x的分式方程x+mx―2+12―x=3有增根,则m=______ .17. 如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点H,tan∠ABG= 12,正方形ABCD的边长为8,则BH的长为______ .18. 规定:如果两个函数的图象关于y轴对称,那么称这两个函数互为“Y函数”.例如:函数y=x+3与y=―x+3互为“Y函数”.若函数y=k4x2+(k―1)x+k―3的图象与x轴只有一个交点,则它的“Y函数”图象与x轴的交点坐标为______ .三、解答题(本大题共7小题,共84.0分。
考点10.一次函数(精讲)【命题趋势】一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考查也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面,年年考查,总分值为10分左右。
一次函数不仅是中考重要考点,也是反比例函数、二次函数学习的基础,而初中函数部分,更是和整个高中学习体系联系紧密,不管对于中考还是高中基础积累,一次函数学习都尤为重要。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
【知识清单】1:一次函数的相关概念(☆☆)1)正比例函数的概念:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫正比例函数,其中k 叫正比例系数。
2)一次函数的定义:一般地,形如y =kx +b (k ,b 为常数,且k ≠0)的函数叫做x 的一次函数。
特别地,当一次函数y =kx +b 中的b =0时,y =kx ,所以说正比例函数是一种特殊的一次函数。
2:一次函数的图象与性质(☆☆☆)1)一次函数的图象特征与性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四k >0,b =0一、三y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四k <0,b =0二、四2)k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0)。
①当–bk>0时,即k,b异号时,直线与x轴交于正半轴。
②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴。
3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学第一阶段复习考点过关练习:二次函数的实际应用考点1:应用二次函数解决抛物线型实际问题1.(2018年四川省巴中市)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m2.(2018年江苏省连云港市)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m3.(2018年四川省绵阳市)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.4.(2018年浙江省衢州市)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.5.(2018年山东省滨州市)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?考点2:应用二次函数解决利润最大问题6.(2018年广西贺州市)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.7.(2018年河南省)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.(2018年甘肃省兰州市(a卷))某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?9.(2018年湖北省天门、仙桃、潜江、江汉油田市)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?10.(2018年浙江省温州市)温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排x人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙x x(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.11.(2018年浙江省台州市)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P 与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.12.(2018年贵州省黔南州、黔东南州、黔西南州)某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?13.(2018年四川省甘孜州)某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?14.(2018年四川省眉山市)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.(2018年湖北省荆门市)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)考点3:应用二次函数解决面积最大问题16.(2018年辽宁省沈阳市)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= m时,矩形土地ABCD的面积最大.17.(2018年福建省(A卷))如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.18.(2018年湖北省荆州市)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m 长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)14 16 28合理用地(m2/棵)0.4 1 0.419.(2018年内蒙古呼和浩特市)某市计划在十二年内通过公租房建设,解决低收入人群的住房问题.已知前7年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系构成一次函数,(1≤x≤7且x为整数),且第一和第三年竣工投入使的公租房面积分别为和百万平方米;后5年每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x(第x年)的关系是y=﹣x+(7<x≤12且x为整数).(1)已知第6年竣工投入使用的公租房面积可解决20万人的住房问题,如果人均住房面积,最后一年要比第6年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨等因素的影响,已知这12年中,每年竣工投入使用的公租房的租金各不相同,且第一年,一年38元/m2,第二年,一年40元/m2,第三年,一年42元/m2,第四年,一年44元/m2……以此类推,分析说明每平方米的年租金和时间能否构成函数,如果能,直接写出函数解析式;(3)在(2)的条件下,假设每年的公租房当年全部出租完,写出这12年中每年竣工投入使用的公租房的年租金W关于时间x的函数解析式,并求出W的最大值(单位:亿元).如果在W取得最大值的这一年,老张租用了58m2的房子,计算老张这一年应交付的租金.答案解析1.【考点】二次函数的应用【分析】A、设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值;B、根据函数图象判断;C、根据函数图象判断;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,当x=﹣2,5时,即可求得结论.解:A、∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数关系式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得3.05=a×1.52+3.5,∴a=﹣,∴y=﹣x2+3.5.故本选项正确;B、由图示知,篮圈中心的坐标是(1.5,3.05),故本选项错误;C、由图示知,此抛物线的顶点坐标是(0,3.5),故本选项错误;D、设这次跳投时,球出手处离地面hm,因为(1)中求得y=﹣0.2x2+3.5,∴当x=﹣2.5时,h=﹣0.2×(﹣2.5)2+3.5=2.25m.∴这次跳投时,球出手处离地面2.25m.故本选项错误.故选:A.【点评】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,体现了数学建模的数学思想,难度不大,能够结合题意利用二次函数不同的表达形式求得解析式是解答本题的关键.2.【考点】二次函数的应用【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.3.【考点】二次函数的应用【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.4.【考点】二次函数的应用.【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.5.【考点】二次函数的应用【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.6.【考点】二次函数的应用【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.7.【考点】二次函数的应用,一元二次方程的应用,一元一次不等式的应用【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.【考点】二次函数的应用【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.9.【考点】二次函数的应用【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.【点评】本题考查了二次函数的应用,待定系数法求二次函数的解析式,解题的关键是从实际问题中抽象出二次函数模型.10.【考点】一元二次方程的应用;二次函数的应用【分析】(1)根据题意列代数式即可;(2)根据(1)中数据表示每天生产甲乙产品获得利润根据题意构造方程即可;(3)根据每天甲、丙两种产品的产量相等得到m与x之间的关系式,用x表示总利润利用二次函数性质讨论最值.解:(1)由已知,每天安排x人生产乙产品时,生产甲产品的有(65﹣x)人,共生产甲产品2(65﹣x)130﹣2x件.在乙每件120元获利的基础上,增加x人,利润减少2x元每件,则乙产品的每件利润为120﹣2(x﹣5)=130﹣2x.故答案为:65﹣x;130﹣2x;130﹣2x(2)由题意15×2(65﹣x)=x(130﹣2x)+550∴x2﹣80x+700=0解得x1=10,x2=70(不合题意,舍去)∴130﹣2x=110(元)答:每件乙产品可获得的利润是110元.(3)设生产甲产品m人W=x(130﹣2x)+15×2m+30(65﹣x﹣m)=﹣2(x﹣25)2+3200∵2m=65﹣x﹣m∴m=∵x、m都是非负数∴取x=26时,m=13,65﹣x﹣m=26即当x=26时,W最大值=3198答:安排26人生产乙产品时,可获得的最大利润为3198元.【点评】本题以盈利问题为背景,考查一元二次方程和二次函数的实际应用,解答时注意利用未知量表示相关未知量.11.【考点】二次函数的应用【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.12.【考点】二次函数的应用【分析】(1)找出当x=6时,y1、y2的值,二者做差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y1、y2关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y1﹣y2的值,设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t的一元一次方程,解之即可得出结论.解:(1)当x=6时,y1=3,y2=1,∵y1﹣y2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y1=mx+n,y2=a(x﹣6)2+1.将(3,5)、(6,3)代入y1=mx+n,,解得:,∴y1=﹣x+7;将(3,4)代入y2=a(x﹣6)2+1,4=a(3﹣6)2+1,解得:a=,∴y2=(x﹣6)2+1=x2﹣4x+13.∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.∵﹣<0,∴当x=5时,y1﹣y2取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.13.【考点】二次函数的应用【分析】(1)根据题意可以得到y与x的函数关系式;(2)根据(1)中的函数关系式,然后化为顶点式即可解答本题.解:(1)由题意得,商品每件降价x元时单价为(100﹣x)元,销售量为(128+8x)件,则y=(128+8x)(100﹣x﹣80)=﹣8x2+32x+2560,即y与x之间的函数解析式是y=﹣8x2+32x+2560;(2)∵y=﹣8x2+32x+2560=﹣8(x﹣2)2+2592,∴当x=2时,y取得最大值,此时y=2592,∴销售单价为:100﹣2=98(元),答:A商品销售单价为98元时,该商场每天通过A商品所获的利润最大.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.14.【考点】二次函数的应用【分析】(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答;解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,,解得,∴p=0.1x+1,①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,∵a=﹣2<0,∴当x=﹣=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.15.【考点】二次函数的应用【分析】(1)根据题意列出方程组,求出方程组的解得到m与n的值即可;(2)根据图象,分类讨论利用待定系数法求出y与P的解析式即可;(3)根据W=ya﹣mt﹣n,表示出W与t的函数解析式,利用一次函数与二次函数的性质求出所求即可.解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:。
四川省巴中市恩阳区2018-2019学年八年级上学期期末数学试题一.选择题(共10小题)1. 下列说法正确的是( )A. ﹣2是﹣8的立方根B. 1的平方根是1C. (﹣1)2的平方根是﹣1D. 16的平方根是4 【答案】A【解析】【分析】根据平方根、立方根定义判断即可.【详解】A 、﹣2是﹣8的立方根,正确;B 、1的平方根为±1,错误;C 、(﹣1)2的平方根是±1,错误;D 、16的平方根为±4,错误,故选:A .【点睛】此题考查平方根、立方根的定义,熟记定义即可正确解答.2. 在实数217-0.518-,π3,0.101001⋯中,无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个 【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.π3,0.101001⋯共3个. 故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.3. 下列运算不正确的是 ( )A. 235·x x x =B. 236()x x =C. 3362x x x +=D. 33(2)8x x -=-【答案】C【解析】【分析】 根据同底数幂相乘,底数不变,指数相加;幂的乘方法则,底数不变,指数相乘逐项分析可得解.【详解】A. 235x x =x ,正确;B. 236()x x =,正确;C. 3332x x x +=,错误;D. 33(2)8x x -=-,正确;故选:C考点:同底数幂的计算.4. 已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD 的条件是 ( )A. AB =ACB. BD =CDC. ∠B =∠CD. ∠BDA =∠CDA【答案】B【解析】 试题分析:利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.解:A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD≌△ACD (AAS );故C 不符合题意; D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD≌△ACD (ASA );故D 不符合题意. 故选B .考点:全等三角形的判定.5.的结果是( )A. 3B. 7-C. 3-D. 7【答案】D【解析】【分析】先利用算术平方根及立方根定义计算,再根据有理数的减法法则计算即可得到结果.【详解】解:原式()52527=--=+=.故选D .【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.6. 如果(x+m )(x ﹣n )中不含x 的一次项,则m 、n 满足( ) A. m=nB. m=0C. m=﹣nD. n=0 【答案】A【解析】(x+m )(x-n )=x 2+(m-n )x-mn ,由式子不含x 的一次项,得m-n=0,则m=n.故选A.点睛:本题考查多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.7. 若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A. 6B. 7C. 8D. 9 【答案】C【解析】【分析】在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得等腰底边上的高.【详解】解:如图:BC=12.AB=AC=10,在△ABC中,AB=AC,AD⊥BC;则BD=DC=12BC=6;Rt△ABD中,AB=10,BD=6;由勾股定理,得:AD=8故选C.点睛:本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的高也是等腰三角形的中线.8. 如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A. 25B. 2235【答案】D【解析】【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【详解】由勾股定理可知,22251=5故选D.【点睛】本题考查了勾股定理的运用和如何在数轴上表示一个无理数的方法,解决本题的关键是根据勾股定理求出OB的长.9. 如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()cm.A. 9B. 12C. 15D. 18【答案】C【解析】【分析】 由△ABC 中,边AB 的中垂线分别交BC 、AB 于点D 、E ,AE =3cm ,根据线段垂直平分线的性质,即可求得AD =BD ,AB =2AE ,又由△ADC 的周长为9cm ,即可求得AC +BC 的值,继而求得△ABC 的周长.【详解】∵△ABC 中,边AB 的中垂线分别交BC 、AB 于点D 、E ,AE =3cm ,∴BD =AD ,AB =2AE =6cm ,∵△ADC 的周长为9cm ,∴AC +AD +CD =AC +BD +CD =AC +BC =9cm ,∴△ABC 的周长为:AB +AC +BC =15cm .故选C .【点睛】此题考查了线段垂直平分线的性质,三角形的周长等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.10. 如图,已知ABC ∆中,12PR PS ∠∠=,= ,PR AB R ⊥于,PS AC S ⊥于,则三个结论:①AS AR = ;②//QP AR ;③BRP QSP ∆∆≌中( )A. 全部正确B. ①和②正确 C . 仅①正确D. ①和③正确【答案】B【解析】【分析】易证Rt △ARP ≌Rt △ASP ,可得AS=AR ,∠RAP=∠1,再根据∠1=∠2,即可求得//QP AR ,即可解题.【详解】解:在Rt △ARP 和Rt △ASP 中,PR PS AP AP =⎧⎨=⎩∴Rt △ARP ≌Rt △ASP (HL )∴∠RAP=∠1,AS AR =,故①正确;∵∠1=∠2∴∠RAP=∠2∴//QP AR ,故②正确;∵△BRP 和△QSP 中,只有一个条件PR=PS ,没有其余条件可以证明BRP QSP ∆∆≌,故③错误;故选B【点睛】本题考查三角形全等的判定及性质,还涉及了平行线的判定,熟练掌握各个性质定理是解题关键.二.填空题(共10小题)11. 的平方根是 .【答案】±2.【解析】【分析】【±2. 故答案为±2. 12. 0=,则22012a b --= ______ . 【答案】109-【解析】 分析:先由非负性的性质得出3a +1=0,b ﹣1=0,求出a ,b 代入式子计算即可.详解:=0,∴3a +1=0,b ﹣1=0,∴a =﹣13,b =1,∴﹣a 2﹣b 2012=﹣(13)2﹣12012=﹣19﹣1=﹣109.故答案为﹣109. 点睛:本题是非负数的性质:算术平方根,主要考查了一元一次方程的解法,有理数的运算,解答本题的关键是求出a ,b .13. 因式分解:3x 3﹣12x=_____.【答案】3x (x+2)(x ﹣2)【解析】【分析】先提公因式3x ,然后利用平方差公式进行分解即可.【详解】3x 3﹣12x=3x (x 2﹣4)=3x (x+2)(x ﹣2),故答案为3x (x+2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14. 若a 、b 、c 是ABC 的三边,且a 3cm =,b 4cm =,c 5cm =,则ABC 最大边上的高是______cm .【答案】2.4【解析】【分析】根据勾股定理的逆定理,得ABC 是直角三角形,根据三角形的面积公式,求得斜边上的高即可.【详解】解:a 3cm =,b 4cm =,c 5cm =,ABC ∴是直角三角形,2ABC S 3426cm =⨯÷=,ABC S 5∴=⨯最大边上的高12=,ABC ∴最大边上的高是2.4cm .故答案为2.4.【点睛】本题考查了勾股定理的逆定理及三角形面积的计算.15. 已知22kxy 4x y -+是一个完全平方式,则k 的值是______.【答案】4±【解析】【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【详解】()222242x y kx y x y y kx -=+-+,∵22kxy 4x y -+是一个完全平方式,∴kxy=1224x y -±⨯⨯=±,∴k 4=±故答案为4±【点睛】此题考查完全平方公式,解题关键在于熟练掌握完全平方公式即可.16. 用简便方法计算20082﹣4016×2007+20072的结果是_____. 【答案】1.【解析】【分析】共三项,其中4016是2×2008,用完全平方公式分解因式即可解答. 【详解】20082﹣4016×2007+20072,=20082﹣2×2008×2007+20072,=(2008﹣2007)2,=1.【点睛】此题考查公式法在有理数计算中的应用,正确分析出所应用的公式是解题的关键.17. 某班课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90-110这一组的频率是______.【答案】0.2【解析】首先找出在90~110这一组的数据个数,再根据频率=频数÷总数可得答案.解:跳绳次数在90~110这一组的有9l ,93,100,102共4个数,频率是:4÷20=0.20.故答案为0.20.“点睛”此题主要考查了频率,关键是掌握频率=频数÷总数.18. 如图,在△ABC 中,C 90︒∠=,AD 平分CAB ∠,BC=8,BD=5,那么CD=________,点D 到线段AB 的距离是________【答案】(1). 3 (2). 3【解析】考点:角平分线的性质.分析:首先过点D作DE⊥AB于点E,由在△ABC中,∠C=90°,AD平分∠CAB,根据角平分线的性质,可得DE=CD,又由BC=8,BD=5,即可求得答案.解:过点D作DE⊥AB于点E,∵在△ABC中,∠C=90°,AD平分∠CAB,∴DE=CD,∵BC=8,BD=5,∴CD=BC-BD=3,∴DE=CD=3,即点D到线段AB距离是3.故答案为3,3.19. 用反证法证明“多边形中至少有三个锐角”,第一步应假设_____.【答案】同一多边形中最多有两个锐角.【解析】【分析】假设有两个锐角即可.【详解】用反证法证“多边形中至少有三个锐角”时,第一步应假设同一多边形中最多有两个锐角.故答案为:同一多边形中最多有两个锐角.【点睛】此题考查反证法,反证法的第一步是假设一个与结论相矛盾的条件,通过证明得到与已知相互矛盾,故假设不成立,原结论是正确的.20. (如图)一只蚂蚁从长为4cm、宽为3cm,高是5cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_______cm.【答案】74【解析】【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【详解】解:将长方体展开,如图1所示,连接A、B,根据两点之间线段最短,227574+;如图2所示,228480+,如图3所示,229390+=cm,748090<<∴74cm.74【点评】本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.三.解答题(共10小题)21. 解方程组(组):(1)4x2=9(2)3(x+1)2=27【答案】(1)x=32±;(2)x=﹣4或x=2.【解析】【分析】(1)用直接开平方法解方程;(2)应用直接开平方法解方程. 【详解】(1)∵4x2=9,∴x2=94,∴x=32±,∴x1=32,x2=-32.(2)∵3(x+1)2=27,∴(x+1)2=9,∴x1=﹣4,x2=2.【点睛】此题考查一元二次方程的解法,依据方程的特点选用恰当的方法解方程是解答的关键.22. 计算:(1)|﹣5|+(π﹣3014)0﹣(2)[(ab+1)(ab﹣1)﹣2a2b2+1]÷(﹣ab)【答案】(1)12;(2)ab.【解析】【分析】(1)先分别计算绝对值,零次幂,立方根和算数平方根,再计算加法;(2)先用平方差公式计算去掉小括号,再用多项式中的每一项去除以单项式.【详解】(1)|﹣5|+(π﹣3014)0,=5+1+4+2,=12;(2)[(ab+1)(ab﹣1)﹣2a2b2+1]÷(﹣ab)=(a2b2﹣1﹣2a2b2+1)÷(﹣ab)=﹣a2b2÷(﹣ab)=ab.【点睛】此题考查计算能力,(1)考查实数的混合计算;(2)考查整式的混合运算,注意运算顺序. 23. 分解因式:(1)(a2+b2)2﹣4a2b2(2)a3(x﹣y)+ab2(y﹣x)【答案】(1)(a+b)2(a﹣b)2;(2)a(x﹣y)(a+b)(a﹣b).【解析】【分析】(1)先用平方差公式分解因式,再用完全平方公式分解因式;(2)先提公因式a(x﹣y),再用平方差公式将(a2﹣b2)继续分解即可.【详解】(1)(a2+b2)2﹣4a2b2=(a2+b2﹣2ab)(a2+b2+2a b)=(a+b)2(a﹣b)2;(2)a3(x﹣y)+ab2(y﹣x)=a(x﹣y)(a2﹣b2)=a(x﹣y)(a+b)(a﹣b).【点睛】此题考查因式分解,因式分解时有公因式必须先提公因式,再利用公式法继续分解,分解到不能再分解为止.24. 化简求值:[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y,其中x=5,y=﹣2.【答案】﹣5y﹣2x,原式=0.【解析】【分析】先将多项式化简,然后将x、y 的值代入计算.【详解】原式=(x2﹣4y2﹣x2﹣8xy﹣16y2)÷4y=(﹣20y2﹣8xy)÷4y=﹣5y﹣2x,∵x=5,y=﹣2,∴原式=10﹣10=0.【点睛】此题考查整式的化简求值,先将整式化简,再将字母的值代入.25. 已知2x﹣1的平方根是±7,5x+y﹣1的立方根是5,求x2y的平方根.【答案】x2y的平方根±25.【解析】【分析】由已知条件得到2x﹣1=49,5x+y﹣1=125,计算得到x、y,代入x2y求得值为625,即可得到该数的平方根.【详解】∵2x﹣1的平方根为±7,5x+y﹣1的立方根是5,∴2x﹣1=49,5x+y﹣1=125.解得:x=25,y=1.∴x2y=252×1=625,∴x2y的平方根±25.【点睛】此题考查平方根、立方根的应用,根据平方根和立方根的定义列得方程求出x、y是解题的关键,最后求的是x2y的平方根而不是x2y,这是易错点.26. 如图,已知△ABC.(1)作边AB的垂直平分线;(2)作∠C的平分线;(要求:不写作法,保留作图痕迹)【答案】每一小题4分,共8分【解析】【分析】(1)分别以B、C为圆心,以大于12BC长为半径分别作弧,两弧交于M、N两点,过两点作直线MN,则MN为线段AB的垂直平分线.(2)根据作已知角的角平分线的作法作图即可.【详解】如图所示:27. 问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF2810①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)【答案】(1)72;(2)画图见解析;①△DEF是直角三角形,理由见解析;②2【解析】试题分析:(1)根据题目设置的问题背景,结合图形进行计算即可;(2)根据勾股定理,找到DE、EF、DF2810,由勾股定理的逆定理可判断△DEF 是直角三角形.解:(1)S△ABC=3×3﹣12×1×2﹣12×2×3﹣12×1×3=72;(2)如图所示:∵DE=2,EF =22,DF=10,∴DE2+EF2=DF2,∴△DEF是直角三角形.△DEF的面积=111 231122132 222⨯-⨯⨯-⨯⨯-⨯⨯=.点睛:本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.28. 学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?【答案】(1)200人(2)见解析(3)50人【解析】解:(1)由条形统计图知:C小组的频数为40,由扇形统计图知:C小组所占的百分比为20%,故调查的总人数为:40÷20%=200人;(2)B 小组的人数为:200×50%=100人,(3)1000×(1﹣50%﹣25%﹣20%)=50人,故该校对教学感到不满意的人数有50人(1)根据C 小组的频数和其所占的百分比求得总人数即可;(2)用调查的人数乘以B 小组所占的百分比即可求得B 组的频数;(3)用总人数乘以不满意人数所占的百分比即可.29. 如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求: (1)∠BAD 的度数;(2)四边形ABCD 的面积(结果保留根号).【答案】(1)135BAD ∠=︒;(2)21ABC ADC ABCD S S S ∆∆+=+=四边形【解析】【分析】 (1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.【详解】解:(1)连接AC,如图所示:∵AB=BC=1,∠B=90°∴AC=22112+=,又∵AD=1,DC=3,∴ AD2+AC2=3 CD2=(3)2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×12+1×2×12=1222+.【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.30. 如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①△BPD ≌△CQP ,理由见解析;②V 7.5Q =(厘米/秒);(2)点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD ,再根据∠B =∠C 证得△BPD ≌△CQP ;②根据V P ≠V Q ,使△BPD 与△CQP 全等,所以CQ =BD =10,再利用点P 的时间即可得到点Q 的运动速度; (2)根据V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程,设运动x 秒,即可列出方程1562202x x ,解方程即可得到结果. 【详解】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,∴BD =10(厘米)又∵PC =BC ﹣BP =16﹣6=10(厘米)∴PC =BD∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P、Q的运动时间84663BPt(秒),此时107.543QCQVt(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得156220 2x x,解得x=803(秒)此时P运动了8061603(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.。
2017年四川省巴中市中考数学试卷(含答案解析版)2017年四川省巴中市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)﹣2017的相反数是()A.﹣2017 B.﹣12017C.2017 D.120172.(3分)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.3.(3分)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.0.593×107B.5.93×106C.5.93×102D.5.93×1074.(3分)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定5.(3分)函数y=√3−x中自变量x的取值范围是()A.x<3 B.x≥3 C.x≤3 D.x≠36.(3分)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.等边三角形 C.钝角三角形 D.直角三角形7.(3分)下列运算正确的是()A.a2•a3=a6 B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a68.(3分)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°9.(3分)若方程组{2x+y=1−3k①x+2y=2②的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定10.(3分)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→CD̂→DO 的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB 的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A. B.C. D.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)分式方程2x−3=3x−2的解是x= .12.(3分)分解因式:a3﹣9a= .13.(3分)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是.14.(3分)若a、b、c为三角形的三边,且a、b满足√a−9+(b﹣2)2=0,第三边c为奇数,则c= .15.(3分)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为.16.(3分)如图,E是▱ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D= 度.17.(3分)如图,在△ABC中,AD,BE是两条中线,则S△EDC :S△ABC= .18.(3分)若一个圆锥的侧面展开图是半径为12cm的半圆,则这个圆锥的底面半径是cm.19.(3分)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来.20.(3分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为y=x2﹣2x﹣3,则半圆圆心M的坐标为.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)计算:2sin60°﹣(π﹣3.14)0+|1﹣√3|+(12)﹣1.22.(5分)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.23.(6分)先化简,再求值:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy,其中x=2y(xy≠0).24.(8分)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为;(3)画出△ABC关于点O的中心对称图形△A2B2C2.25.(10分)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A 、B 、C 、D 四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.等级人数 类别 A B CD农村 a 160 180 80 县镇 200 182 160 b 城市240 c 12248(注:等级A ,B ,C ,D 分别代表优秀、良好、合格、不合格)(1)请算出表中的a ,b ,c (直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A 等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D 等级的大约有多少人?26.(8分)如图,两座建筑物AD 与BC ,其地面距离CD 为60cm ,从AD 的顶点A 测得BC 顶部B 的仰角α=30°,测得其底部C 的俯角β=45°,求建筑物BC 的高(结果保留根号)27.(6分)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.28.(10分)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC 和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求FCAD的值.29.(10分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.30.(10分)如图,一次函数y=kx+b 与反比例函数y=4x(x >0)的图象交于A(m ,0),B (2,n )两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b ﹣4x>0中x 的取值范围;(3)求△AOB 的面积.31.(12分)如图,已知两直线l 1,l 2分别经过点A (1,0),点B (﹣3,0),且两条直线相交于y 轴的正半轴上的点C ,当点C 的坐标为(0,√3)时,恰好有l 1⊥l 2,经过点A 、B 、C 的抛物线的对称轴与l 1、l 2、x 轴分别交于点G 、E 、F ,D 为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,请直接写出点M 的坐标.2017年四川省巴中市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项种,只有一个选项是正确的,请使用2B铅笔将答题卡上对应题号的答案标号涂黑)1.(3分)(2017•巴中)﹣2017的相反数是()A.﹣2017 B.﹣12017C.2017 D.12017【考点】14:相反数.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:﹣2017的相反数是:2017.故选:C.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)(2017•巴中)如图是由5个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田子,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•巴中)我市在建的天星桥水库是以灌溉和城市供水为主的综合型水利工程,建成后,每年可向巴城供水593万立方米,将593万立方米用科学记数法表示为()立方米.A.0.593×107B.5.93×106C.5.93×102D.5.93×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将593万用科学记数法表示为:5.93×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•巴中)下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为1 2D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W7:方差;X1:随机事件.【分析】分别利用概率的意义以及抽样调查的意义以及方差的意义分别分析得出答案.【解答】解:A、“打开电视机,正在播放体育节目”是随机事件,故此选项错误;B、了解夏季冷饮市场上冰淇淋的质量情况应该采用抽样调查的方式,故此选项错误;C、抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12;正确;D、甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则甲的射击成绩较稳定,错误.故选:C.【点评】此题主要考查了概率的意义以及抽样调查的意义以及方差的意义,正确把握相关定义是解题关键.5.(3分)(2017•巴中)函数y=√3−x中自变量x的取值范围是()A.x<3 B.x≥3 C.x≤3 D.x≠3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列不等式求解即可.【解答】解:由题意得,3﹣x>0,解得x<3.故选A.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017•巴中)若一个三角形三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.等边三角形 C.钝角三角形 D.直角三角形【考点】K7:三角形内角和定理.【分析】利用三角形内角和定理判断即可确定出三角形形状.【解答】解:设一份为x,三内角分别为x,2x,3x,根据内角和定理得:x+2x+3x=180°,解得:x=30°,∴三内角分别为30°,60°,90°,则这个三角形为直角三角形,故选D【点评】此题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解本题的关键.7.(3分)(2017•巴中)下列运算正确的是()A.a2•a3=a6 B.√3+√2=√5C.(a+b)2=a2+b2D.(a2)3=a6【考点】4I:整式的混合运算;78:二次根式的加减法.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式不能合并,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=a6,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2017•巴中)如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上,若∠1=72°,∠2=48°,则∠ABC=()A.24°B.120°C.96°D.132°【考点】JA:平行线的性质.【分析】根据两直线平行,同位角相等可得∠3=∠1,内错角相等可得∠4=∠2,然后根据∠ABC=∠3+∠4计算即可得解.【解答】解:∵l1∥l2∥l3,∴∠3=∠1=72°,∠4=∠2=48°,∴∠ABC=∠3+∠4=72°+48°=120°.故选:B.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.9.(3分)(2017•巴中)若方程组{2x+y=1−3k①x+2y=2②的解满足x+y=0,则k的值为()A.﹣1 B.1 C.0 D.不能确定【考点】97:二元一次方程组的解.【分析】根据等式的性质,可得答案.【解答】解:①+②,得3(x+y)=3﹣3k,由x+y=0,得3﹣3k=0,解得k=1,故选:B.【点评】本题考查了二次元一次方程组的解,利用等式的性质是解题关键.10.(3分)(2017•巴中)如图,A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿CO→CD̂→DO的路线做匀速运动,当点P运动到圆心O时立即停止,设运动时间为t s,∠APB的度数为y度,则下列图象中表示y(度)与t(s)之间的函数关系最恰当的是()A. B.C.D.【考点】E7:动点问题的函数图象.【分析】根据圆周角定理以及动点移动的位置即可判断【解答】解:由于点P有一段是在CD̂上移动,此时∠APB=12∠AOB,∴此时y是定值,故图象是平行于x轴的一条线段,点P在CO上移动时,此时∠APB从90°一直减少,同理,点P在DO上移动时,此时∠APB不断增大,直至90°,故选(B)【点评】本题考查动点图象问题,解题的关键是熟练运用圆周角定理,本题属于基础中等题型.二、填空题(本大题共10个小题,每小题3分,共30分,将正确答案直接填在答题卡相应的位置上)11.(3分)(2017•巴中)分式方程2x−3=3x−2的解是x= 5 .【考点】B3:解分式方程.【分析】直接去分母进而解分式方程进而得出答案.【解答】解:∵2x−3=3x−2,去分母得:2(x﹣2)=3(x﹣3),解得:x=5,检验:当x=5时,(x﹣3)(x﹣2)≠0,故x=5是原方程的根.故答案为:5.【点评】此题主要考查了解分式方程,正确掌握解分式方程的方法是解题关键.12.(3分)(2017•巴中)分解因式:a3﹣9a= a(a+3)(a﹣3).【考点】55:提公因式法与公式法的综合运用.【分析】本题应先提出公因式a,再运用平方差公式分解.【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2017•巴中)一组数据2,3,x,5,7的平均数是5,则这组数据的中位数是 5 .【考点】W4:中位数;W1:算术平均数.【分析】求出x的值,然后将数据按照从小到大依次排列即可求出中位数.【解答】解:x=5×5﹣2﹣3﹣5﹣7=8,这组数据为2,3,5,7,8,故中位数为5.【点评】本题考查了中位数、平均数,将数据从小到大依次排列是解题的关键.14.(3分)(2017•巴中)若a、b、c为三角形的三边,且a、b满足√a−9+(b﹣2)2=0,第三边c为奇数,则c= 9 .【考点】K6:三角形三边关系;1F:非负数的性质:偶次方;23:非负数的性质:算术平方根.【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c 的取值范围,进而求出c的值.【解答】解:∵a、b满足√a−9+(b﹣2)2=0,∴a=9,b=2,∵a、b、c为三角形的三边,∴7<c<11,∵第三边c为奇数,∴c=9,故答案为9.【点评】本题主要考查了三角形三边关系以及非负数的性质,解题的关键是求出a和b的值,此题难度不大.15.(3分)(2017•巴中)已知x=1是一元二次方程x2+ax+b=0的一个根,则a2+2ab+b2的值为 1 .【考点】A3:一元二次方程的解.【分析】由x=1是一元二次方程x2+ax+b=0的一个根,可得1+a+b=0,推出a+b=﹣1,可得a2+2ab+b2=(a+b)2=1.【解答】解:∵x=1是一元二次方程x2+ax+b=0的一个根,∴1+a+b=0,∴a+b=﹣1,∴a2+2ab+b2=(a+b)2=1.故答案为1.【点评】本题考查一元二次方程的解,完全平方公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.(3分)(2017•巴中)如图,E是▱ABCD边BC上一点,且AB=BE,连结AE,并延长AE与DC的延长线交于点F,∠F=70°,则∠D= 40 度.【考点】L5:平行四边形的性质.【分析】利用平行四边形的性质以及平行线的性质得出∠1=∠2,进而得出其度数,利用平行四边形对角相等得出即可.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠F=70°.∵AB=BE,∴∠1=∠3=70°,∴∠B=40°,∴∠D=40°.故答案是:40.【点评】此题主要考查了平行四边形的性质以及平行线的性质等知识,熟练应用平行四边形的性质得出是解题关键.17.(3分)(2017•巴中)如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC :S △ABC = 1:4 .【考点】K3:三角形的面积.【分析】利用三角中位线的性质得出DE =∥12AB ,进而求出即可.【解答】解:∵在△ABC 中,AD ,BE 是两条中线,∴DE =∥12AB ,∴S △CED S △ABC =14, 故答案为:1:4.【点评】此题主要考查了三角形中位线的性质以及相似三角形的性质,得出DE =∥12AB 是解题关键.18.(3分)(2017•巴中)若一个圆锥的侧面展开图是半径为12cm的半圆,则这个圆锥的底面半径是 6 cm.【考点】MP:圆锥的计算.【分析】设该圆锥的底面半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=π•12,然后解一次方程即可.【解答】解:设该圆锥的底面半径为r,根据题意得2πr=π•12,解得r=6(cm).故答案为6.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.(3分)(2017•巴中)观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15…请你将发现的规律用含自然数n(n≥1)的代数式表达出来√n+1n+2=(n+1)√1n+2(n≥1).【考点】37:规律型:数字的变化类.【分析】观察分析可得:√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵√1+11+2=(1+1)√11+2;√2+12+2=(2+1)√12+2;∴√n +1n+2=(n+1)√1n+2(n ≥1). 故答案为:√n +1n+2=(n+1)√1n+2(n ≥1). 【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到√n +1n+2=(n+1)√1n+2(n ≥1).20.(3分)(2017•巴中)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,AB 为半圆的直径,且抛物线的解析式为y=x 2﹣2x ﹣3,则半圆圆心M 的坐标为 (1,0) .【考点】HA :抛物线与x 轴的交点.【分析】直接求出抛物线与x 轴的交点,进而得出其中点位置.【解答】解:当y=0时,0=x 2﹣2x ﹣3,解得:x 1=﹣1,x 2=3,故A (﹣1,0),B (3,0),则AB的中点为:(1,0).故答案为:(1,0).【点评】此题主要考查了抛物线与x轴的交点,正确得出A,B点坐标是解题关键.三、解答题(本大题共11小题,共90分,请把解答过程写在答题卡相应的位置上)21.(5分)(2017•巴中)计算:2sin60°﹣(π﹣3.14)0+|1﹣√3|+(12)﹣1.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=√3﹣1+√3﹣1+2=2√3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(5分)(2017•巴中)解不等式组{x3−1<0①x−1≤3(x+1)②,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:{x3−1<0①x−1≤3(x+1)②,解不等式①得,x<3,解不等式②得,x≥﹣2,所以,不等式组的解集是﹣2≤x<3在数轴上表示如下:【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.23.(6分)(2017•巴中)先化简,再求值:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy,其中x=2y(xy≠0).【考点】6D:分式的化简求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x=2y代入即可解答本题.【解答】解:(x2−y2x2−2xy+y2﹣xx−y)÷y2x2−xy=x2−y2−x(x−y)(x−y)2⋅x(x−y)y2=x2−y2−x2+xy(x−y)2⋅x(x−y)y2=y(x−y)(x−y)2⋅x(x−y)y2=x y ,当x=2y时,原式=2yy=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的计算方法.24.(8分)(2017•巴中)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy,△ABC的顶点都在格点上,请解答下列问题:(1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1;(2)若点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,则点M1的坐标为(a,b﹣5);(3)画出△ABC关于点O的中心对称图形△A2B2C2.【考点】R8:作图﹣旋转变换;Q4:作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移规律进而得出答案;(3)直接利用关于点对称的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)∵点M是△ABC内一点,其坐标为(a,b),点M在△A1B1C1内的对应点为M1,∴点M1的坐标为:(a,b﹣5);故答案为:(a,b﹣5);(3)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了旋转变换以及平移变换,正确得出对应点位置是解题关键.25.(10分)(2017•巴中)2017年5月教育部统一组织了国家义务教育阶段质量监测考试.四川省部分小学四年级学生参加了科学测试,测试成绩评定为A、B、C、D四个等级,为了解此次科学测试成绩情况,相关部门从四川省农村、县镇、城市三类群体的学生中共抽取2000名学生的科学测试成绩进行分析,相关数据如表和图所示.A B C D等级人数类别农村a16018080县镇200182160b城市240c12248(注:等级A,B,C,D分别代表优秀、良好、合格、不合格)(1)请算出表中的a,b,c(直接填数据,不写解答过程);(2)此次抽取的2000名学生的科学测试成绩为A等级的百分率是多少?(3)若此次在四川省抽查的所有四年级学生中农村学生共有16000人,试估计抽查的农村学生科学测试成绩为D等级的大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;VA:统计表.【分析】(1)分别求出农村、县镇、城市三类群体的学生的总人数,结合表格中的数据即可解决问题;(2)根据百分率的定义计算即可.(3)用样本估计总体的思想解决问题;【解答】解:(1)a=2000×30%﹣180﹣160﹣80=180,b=2000×30%﹣200﹣182﹣160=58,c=2000×40%﹣240﹣122﹣48=190.(2)A等级的百分率=180+200+2402000×100%=31%.答:此次抽取的2000名学生的科学测试成绩为A等级的百分率是31%.(3)估计抽查的农村学生科学测试成绩为D等级的大约有80800×16000=1600(人),答:估计抽查的农村学生科学测试成绩为D等级的大约有1600人.【点评】本题考查扇形统计图、统计表、样本估计总体、百分率等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.26.(8分)(2017•巴中)如图,两座建筑物AD与BC,其地面距离CD为60cm,从AD的顶点A测得BC顶部B的仰角α=30°,测得其底部C的俯角β=45°,求建筑物BC的高(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】由题意得AE⊥BC,AE=CD=60,然后在Rt△ACE和Rt△AEB中解答.【解答】解:由题意得AE⊥BC,AE=CD=60,在Rt△ACE中,∠β=45°,AE=60°,tan45°=CE 60,∴CE=60×1=60,在Rt△AEB中,∠α=30°,AE=60,tan30°=BE 60,∴BE=60×√33=20√3,∴BC=BE+CE=(60+20√3)m.答:建筑物BC的高为(60+20√3)m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决问题的关键是抽象出直角三角形,然后解直角三角形.27.(6分)(2017•巴中)巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,若两次下调的百分率相同,求平均每次下调的百分率.【考点】AD:一元二次方程的应用.【分析】设平均每次下调的百分率为x,根据调价前后的价格,即可得出关于x的一元二次方程,解之取小于1的正值即可得出结论.【解答】解:设平均每次下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次下调的百分率为10%.【点评】本题考查了一元二次方程的应用,根据调价前后的价格,列出关于x 的一元二次方程是解题的关键.28.(10分)(2017•巴中)如图,AH是⊙O的直径,AE平分∠FAH,交⊙O于点E,过点E的直线FG⊥AF,垂足为F,B为半径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.(1)求证:直线FG是⊙O的切线;(2)若AF=12,BE=6,求FCAD的值.【考点】S9:相似三角形的判定与性质;LB:矩形的性质;ME:切线的判定与性质.【分析】(1)连接OE,证明FG是⊙O的切线,只要证明∠OEF=90°即可;(2)先根据角平分线的性质得出EF=BE=6,再证明△ADF∽△FCE,根据相似三角形对应边成比例得出FCAD=EFAF=12.【解答】(1)证明:如图,连接OE,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠FAH,∴∠EAO=∠FAE,∴∠FAE=∠AEO,∴AF∥OE,∴∠AFE+∠OEF=180°,∵AF⊥GF,∴∠AFE=∠OEF=90°,∴OE⊥GF,∵点E在圆上,OE是半径,∴GF是⊙O的切线;(2)解:∵四边形ABCD是矩形,∴EB⊥AB,∵EF⊥AF,AE平分∠FAH,∴EF=BE=6,又∵四边形ABCD是矩形,∴∠D=∠C=90°,∴∠DAF+∠AFD=90°,又∵AF⊥FG,∴∠AFG=90°,∴∠AFD+∠CFE=90°,∴∠DAF=∠CFE,又∵∠D=∠C,∴△ADF∽△FCE,∴FCAD =EF AF,又∵AF=12,EF=6,∴FCAD =612=12.【点评】本题考查的是切线的判定,解决本题的关键是要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.也考查了相似三角形的判定与性质,矩形的性质.29.(10分)(2017•巴中)如图,在矩形ABCD中,对角线AC的垂直平分线EF 分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.【考点】LB:矩形的性质;KG:线段垂直平分线的性质;LA:菱形的判定与性质.【分析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=3﹣x,在Rt△ABF中,由勾股定理得出方程62+(8﹣x)2=x2,求出即可.【解答】(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,{∠EAO =∠FCOAO =CO∠AOE =∠COF ,∴△AEO ≌△CFO (ASA );∴OE=OF又∵OA=OC ,∴四边形AECF 是平行四边形,又∵EF ⊥AC∴平行四边形AECF 是菱形;(2)解:设AF=x ,∵EF 是AC 的垂直平分线,∴AF=CF=x ,BF=8﹣x ,在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,42+(8﹣x )2=x 2,解得 x=5.∴AF=5,∴菱形AECF 的周长为20.【点评】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.30.(10分)(2017•巴中)如图,一次函数y=kx+b 与反比例函数y=4x(x >0)的图象交于A (m ,0),B (2,n )两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b ﹣4x >0中x 的取值范围;(3)求△AOB 的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将点A 、点B 的坐标分别代入解析式即可求出m 、n 的值,从而求出两点坐标;(2)由图直接解答;(3)将△AOB 的面积转化为S △AON ﹣S △BON 的面积即可.【解答】解:(1)∵点A 在反比例函数y=4x 上,∴4m=4,解得m=1,∴点A 的坐标为(1,4),又∵点B 也在反比例函数y=4x 上,∴42=n ,解得n=2,∴点B 的坐标为(2,2),又∵点A 、B 在y=kx+b 的图象上,∴{k +b =42k +b =2,解得{k =−2b =6,∴一次函数的解析式为y=﹣2x+6.(2)x 的取值范围为1<x <2;(3)∵直线y=﹣2x+6与x 轴的交点为N ,∴点N 的坐标为(3,0),S △AOB =S △AON ﹣S △BON =12×3×4﹣12×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.31.(12分)(2017•巴中)如图,已知两直线l 1,l 2分别经过点A (1,0),点B (﹣3,0),且两条直线相交于y 轴的正半轴上的点C ,当点C 的坐标为(0,√3)时,恰好有l 1⊥l 2,经过点A 、B 、C 的抛物线的对称轴与l 1、l 2、x 轴分别交于点G 、E 、F ,D 为抛物线的顶点.(1)求抛物线的函数解析式;(2)试说明DG 与DE 的数量关系?并说明理由;(3)若直线l 2绕点C 旋转时,与抛物线的另一个交点为M ,当△MCG 为等腰三角形时,请直接写出点M 的坐标.【考点】HF :二次函数综合题.【分析】(1)设抛物线的函数解析式为y=ax 2+bx+c .将点A 、B 、C 的坐标代入,得到关于a 、b 、c 的方程组,解方程求出a 、b 、c 的值,进而得到抛物线的解析式;(2)利用待定系数法分别求出直线l 1、直线l 2的解析式,再求出G 、D 、E 的坐标,计算得出DG=DE=2√33;(3)当△MCG 为等腰三角形时,分三种情况:①GM=GC ;②CM=CG ;③MC=MG .【解答】解:(1)设抛物线的函数解析式为y=ax 2+bx+c .。
专题17 三角形与多边形考点总结【思维导图】【知识要点】知识点一三角形的概念三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
三角形特性(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”。
三角形按边分类:等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。
三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b考查题型一三角形的三边关系1.(2018·湖南中考真题)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 2.(2018·湖南中考真题)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.113.(2018·贵州中考真题)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.104.(2018·四川中考模拟)已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为() A.2a+2b-2c B.2a+2b C.2c D.0三角形的分类:三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)1.(2018·湖南中考模拟)下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°2.(2019·陕西中考模拟)等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm三角形的稳定性➢三角形具有稳定性➢四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
巴中市2018年高中阶段学校招生考试数学试题(满分150分,考试时间120分钟)一、选择题(本题有10个小题,每小题3分,共30分) 1. 43-的倒数是 A. 43 B. 34- C. 34 D. 43- 2. 下列各数:3π,sin30°,3-,4,其中无理数的个数是A. 1个B. 2个C. 3个D. 4个3. 三角形的下列线段中,能将三角形的面积分成相等两部分的是 A. 中线 B. 角平分线 C. 高D. 中位线4. 由5个相同的正方体搭成的几何体如图1所示,则它的左视图是5. 下列实验中,概率最大的是A. 抛掷一枚质地均匀的硬币,出现正面;B. 抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字1到6),掷出的点数为奇数;C. 在一副洗匀的扑克(背面朝上)中任取一张,恰好为方块;D. 三张同样的纸片,分别写有数字2,3,4,和匀后背面朝上,任取一张恰好为偶数6. 已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是A. 0<d<2B. 1<d<2C. 0<d<3D.0≤d<27. 如图2,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是8. 对于二次函数)3=xy,下列说法正确的是x(2-+)(1A. 图象的开口向下B. 当x>1时,y随x的增大而减小C. 当x<1时,y随x的增大而减小D. 图象的对称轴是直线1-=x9. 不能判定一个四边形是平行四边形的条件是A. 两组对边分别平行B. 一组对边平行,另一组对边相等C. 一组对边平行且相等D. 两组对边分别相等10. 如图3,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是A. AB=ACB. ∠BAC=90°C. BD=ACD. ∠B=45°二、填空题(共10个小题,每小题3分,共30分)11. 因式分解:92-x =______________12. 在2018年清明假期间,巴中火车站发送旅客1.6万余人次,将1.6万用科学计数法表示为________________13. 已知一个圆的半径为5cm ,则它的内接正六边形的边长为__________14. 函数xx y 31-=中,自变量x 的取值范围是__________ 15. 已知a ,b ,c 是△ABC 三边的长,且满足关系式0222=-+--b a b a c ,则△ABC 的形状为__________16. 在巴中创建“国家森林城市”的植树活动中初三某班某小组五名同学植树数分别为5,6,6,6,7,则这组数据的众数为__________17. 有一个底面半径为3cm ,母线长10cm 的圆锥,则其侧面积是__________cm 218. 观察下面一列数:1,-2,3,-4,5,-6,……,根据你发现的规律,第2018个数是__________19. 如图4,在等腰梯形ABCD 中,AD ∥BC ,BD ⊥DC ,点E 是BC 的中点,且DE ∥AB ,则∠BCD 的度数是__________20. 若关于x 的方程2222=-++-x m x x 有增根,则m 的值是__________三、计算(本题有4个小题,每小题5分,共20分)21. 计算:10)21()12(45cos 2---+︒22. 解方程:)3(3)3(2-=-x x x23. 解不等式组⎩⎨⎧+<+--≥+)1(21)1(323x x x x ,并写出不等式组的整数解24. 先化简,再求值:222)1()1(12)111(--+++⋅+-x x x x x x x 其中21=x四、操作(25题9分,26题10分,共19分)25. ①如图5,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕点O顺时针旋转90°,画出旋转后的△OA’B’;②折纸:有一张矩形纸片ABCD(如图6),要将点D沿某条直线翻折180°,恰好落在BC边上的点D’处,,请在图中作出该直线。
四川省巴中市2018年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣1+3的结果是()A.﹣4 B.4 C.﹣2 D.22.(3分)毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.3.(3分)下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=D.(3a2﹣6a+3)÷3=a2﹣2a4.(3分)2017年四川省经济总量达到3.698万亿元,居全国第6位,在全国发展大局中具有重要地位.把3.698万亿用科学记数法表示(精确到0.1万亿)为()A.3.6×1012 B.3.7×1012 C.3.6×1013 D.3.7×10135.(3分)在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是96.(3分)如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE.下列结论:①=;②=;③=;④=.其中正确的个数有()A.1个B.2个C.3个D.4个7.(3分)一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为 2.5m时,达到最大高度 3.5m,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=﹣x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m8.(3分)若分式方程+=有增根,则实数a的取值是()A.0或2 B.4 C.8 D.4或89.(3分)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.B.2 C.2 D.310.(3分)如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G.下列结论正确的是()A.CF=FG B.AF=AG C.AF=CF D.AG=FG二、填空题(本大题共10小题,每小题3分,共30分。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前四川省巴中市2016年高中阶段教育学校招生统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )ABCD 2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B CD3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( )A .64110-⨯B .54.110-⨯C .40.4110-⨯D .44.110-⨯ 4.下列计算正确的是( )A .2222()a b a b =B .623a a a ÷=C .2224(3)6xy x y =D .725()()m m m -÷-=- 5.下列说法正确的是( )A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件B .审查书稿中有哪些科学性错误适合用抽样调查C .甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是2=0.4s 甲,2=0.6s 乙,则甲的射击成绩较稳定D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为126.如图,点D ,E 分别为ABC △的边AB ,AC 的中点,则ADE △的面积与四边形BCED 的面积比为( )A .1:2B .1:3C .1:4D .1:17.不等式组311,2(21)51x x x x -+⎧⎨-+⎩<≤的最大整数解为( ) A .1B .3-C .0D .1-8.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A .斜坡AB 的坡度是10 B .斜坡AB 的坡度是tan10 C . 1.2tan10AC =米D . 1.2=cos10AB 米9.下列二次根式中,( ) ABCD10.如图是二次函数2y ax bx c =++图象的一部分,图象过点(3,0)A -,对称轴为直线=1x -,给出四个结论:①0c >;②若13(,)2B y -,25(,)2C y -为函数图象上的两点,则12y y <; ③20a b -=;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)④2404ac b a-<. 其中,正确结论的个数是( ) A .1B .2C .3D .4第Ⅱ卷(非选择题 共120分)二、填空题(本大题共10小题,每小题3分,共30分).把答案填写在题中的横线上) 11.|0.3|-的相反数等于 .12.函数y 的自变量x 的取值范围是 .13.已知:3a b +=,=2ab ,则2()=a b - .14.两组数据,6,m n 与1,,2,7m n 的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为 .15.已知二元一次方程组5,22x y x y -=-⎧⎨+=-⎩的解为4,1,x y =-⎧⎨=⎩则在同一平面直角坐标系中,直线1:5l y x =+与直线21:12l y x =--的交点坐标为 .16.如图,A ∠是O 的圆周角,=55OBC ∠,则=A ∠ . 17.如图,□ABCD 中,=8AC ,6BD =,AD a =,则a 的取值范围是 .18.如图,将边长为3的正六边形铁丝框ABCDEF 变形为以点A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形AFB (阴影部分)的面积为 .19.把多项式3216m mn -分解因式的结果是 .20.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,连接AE .如果30ADB =∠,则=E ∠ 度.三、解答题(本大题11小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤) 21.(本小题满分5分)计算:2012sin 453()|2|2016--+-+22.(本小题满分6分) 定义新运算:对于任意实数,m n 都有2m n m n n =+☆,等式右边是常用的加法、减法、乘法及乘方运算.例如:232(3)2220-=-⨯+=☆.根据上述知识及解决问题:若2a ☆的值小于0,请判断方程:220x bx a -+=的根的情况.23.(本小题满分5分)先化简:2221()211x x x x x x+÷--+-,然后再从22x -<≤的范围内选取一个合适的x 的整数值代入求值.24.(本小题满分7分)已知:如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE CD AD +=.连接CE ,求证:CE 平分BCD ∠.25.(本小题满分10分)为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完形填空、阅读理解、口语应用”进行了问卷调查.要求每位考生都自主选择其中一个类型.为此随机调查了各考点部分考生的意向.并将调查结果绘制如下的统计图表(问卷回收率100%,并均为有效问卷).被调查考生选择意向统计表 被调查考生选择意向条形统计图数学试卷 第5页(共6页) 数学试卷 第6页(共6页)根据统计图表中的信息,解答下列问题:(1)求本次被调查的考生总人数及,,a b c 的值; (2)将条形统计图补充完整;(3)巴中市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人?26.(本小题满分10分)如图,方格中,每个小正方形的边长都是单位1,ABC △在平面直角坐标系中的位置如图.(1)画出将ABC △向右平移2个单位得到的111A B C △; (2)画出将ABC △绕点O 顺时针方向旋转90得到的222A B C △; (3)求111A B C △与222A B C △重合部分的面积.27.(本小题满分7分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠.国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶.现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.28.(本小题满分8分)如图,在平面直角坐标系xOy 中,以点O 为圆心的圆分别交x 轴的正半轴于点M ,交y 轴的正半轴于点N .劣弧MN 的长为6π5.直线443y x =-+与x 轴、y 轴分别交于点,A B . (1)求证:直线AB 与O 相切;(2)求图中所示的阴影部分的面积(结果用π表示).29.(本小题满分10分)已知,如图,一次函数y kx b =+(,k b 为常熟,0k ≠)的图象与x 轴、y 轴分别交于,A B 两点,且与反比例函数ny x=(n 为常熟且0n ≠)的图象在第二象限交于点C .CD x ⊥轴,垂足为D .若236OB OA OD ===. (1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标;(3)直接写出不等式:n kx b x+≤的解集.30.(本小题满分10分)如图,随着巴中市铁路建设进程的加快,现规划从A 地到B 地有一条笔直的铁路通过,但在附近的C 处有一大型油库.现测得油库C 在A 地的北偏东60方向上,在B 地的西北方向上,AB的距离为1)米.已知在以油库C 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段建修铁路,油库C 是否会受到影响?请说明理由.31.(本小题满分12分)在平面直角坐标系中,抛物线245(0)y mx mx m m =+-<与x 轴交于点,A B (点A 在点B 的左侧),该抛物线的对称轴与直线y =相交于点E ,与x 轴相交于点D ,点P在直线y =上(不与原点重合),连接PD ,过点P 作PF PD ⊥交y 轴于点F ,连接DF.(1)如图1所示,若抛物线顶点的纵坐标为求抛物线的解析式;(2)求,A B 两点的坐标;(3)如图2所示,小红在探究点P 的位置发现:当点P 与点E重毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)合时,PDF ∠的大小为定值.进而猜想:对于直线y上任意一点P (不与原点重合),PDF ∠的大小为定值.请你判断该猜想是否正确,并说明理由.5 / 16四川省巴中市2016年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是“中”. 【提示】利用轴对称图形定义判断即可. 【考点】轴对称图形 2.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形.【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】简单组合体的三视图 3.【答案】B【解析】0.000041这个数用科学记数法表示为54.110⨯﹣.【提示】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯﹣,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【考点】科学记数法—表示较小的数 4.【答案】D【解析】A .积的乘方等于乘方的积,故A 错误,B .同底数幂的除法底数不变指数相减,故B 错误,C .积的乘方等于乘方的积,故C 错误,D .同底数幂的除法底数不变指数相减,故D 正确. 【提示】根据积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,可得答案. 【考点】整式的乘方与除法运算 5.【答案】C【解析】A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上不是必然事件,是随机事件,选项A 错误,B .审查书稿中有哪些学科性错误适合用全面调查法,选项B 错误,C .甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是20.4S =甲,20.6S =乙,则甲的射击成绩较稳定,选项C正确,D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为14,不是12,选项D 错误.数学试卷 第3页(共6页)数学试卷 第4页(共6页)【提示】由随机事件和必然事件的定义得出A 错误,由统计的调查方法得出B 错误,由方差的性质得出C 正确,由概率的计算得出D 错误,即可得出结论.【考点】列表法与树状图法,全面调查与抽样调查,算术平均数,方差,随机事件. 6.【答案】B【解析】,D E 分别为ABC △的边AB ,AC 上的中点,DE ∴是ABC △的中位线,12DE BC DE BC ∴=∥,,ADE ABC ∴△∽△,ADE ∴△的面积:ABC △的面积21142==():,ADE ∴△的面积:四边形BCED 的面积13=:,故选B . 【提示】证明DE 是ABC △的中位线,由三角形中位线定理得出1,2DEB C DE B C =∥,证出A D E ABC △∽△,由相似三角形的性质得出ADE △的面积:ABC △的面积14=:,即可得出结果. 【考点】相似三角形的判定与性质. 7.【答案】C【解析】解不等式311x x -+<,得:1x <,解不等式22151x x -≤+(),得:3x ≥-,则不等式组的解集为:31x -≤<,则不等式组的最大整数解为0.【提示】分别求出每一个不等式的解集,根据口诀“大小小大中间找”确定不等式组的解集,在解集内找到最大整数即可.【考点】一元一次不等式组的整数解. 8.【答案】B【解析】斜坡AB 的坡度是tan10BCAC︒=,故B 正确. 【提示】根据坡度是坡角的正切值,可得答案. 【考点】解直角三角形的应用—坡度坡角问题 9.【答案】B【解析】A故此选项错误,B是同类二次根式,故此选项正确,C故此选项错误,D是同类二次根式,故此选项错误.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案. 【提示】同类二次根式7 / 1610.【答案】B【解析】由抛物线交y 轴的正半轴,0c ∴>,故①正确;对称轴为直线1x =-,13(,)2B y ∴点-距离对称轴较近,抛物线开口向下,12y y ∴>,故②错误;对称轴为直线1x =﹣,12ba∴-=-,即20a b -=,故③正确,由函数图象可知抛物线与x 轴有2个交点,240b ac -∴>,即240ac b -<,0a <,2404ac b a-∴>,故④错误;综上,正确的结论是:③④.【提示】①根据抛物线y 轴交点情况可判断,②根据点离对称轴的远近可判断,③根根据抛物线对称轴可判断,④根据抛物线与x 轴交点个数以及不等式的性质可判断. 【考点】二次函数图象与系数的关系.第Ⅱ卷二、填空题 11.【答案】0.3-【解析】0.30|3|.-=,0.3的相反数是0.3-,3||0.∴-的相反数等于0.3-.【提示】根据绝对值定义得出||0.30.3-=,再根据相反数的定义:只有符号相反的两个数互为相反数作答. 【考点】绝对值,相反数 12.【答案】23x ≤【解析】根据题意得:230x -≥,解得23x ≤. 【提示】根据二次根式的意义,被开方数是非负数即可解答. 【考点】函数自变量的取值范围 13.【答案】1【解析】将3a b +=得:222()29a b a ab b +=++=,把2ab =代入得:225a b +=,则222()2541a b a a bb -=+=-=-. 【提示】将3a b +=两边平方,利用完全平方公式化简,将ab 的值代入求出a 2+b 2的值,所求式子利用完全平方公式展开,将各自的值代入计算即可求出值. 【考点】完全平方公式. 14.【答案】7数学试卷 第3页(共6页)数学试卷 第4页(共6页)【解析】组数据m ,6,n 与1,m ,2n ,7的平均数都是6,+61812724m n m n +=⎧∴⎨+++=⎩,解得:84m n =⎧∴⎨=⎩,若将这两组数据合并为一组数据,按从小到大的顺序排列为1,4,6,7,8,8,8,一共7个数,第四个数是7,则这组数据的中位数是7.【提示】根据平均数的计算公式先求出m 、n 的值,再根据中位数的定义即可得出答案. 【考点】中位数,算术平均数 15.【答案】(4,1)-【解析】二元一次方程组522x y x y -=-⎧⎨-=-⎩的解为41x x =-⎧⎨=⎩.121512l y x l y x ∴=+=--:与:的交点为(4,1)-.【提示】根据一次函数与二元一次方程组的关系进行解答即可. 【考点】一次函数与二元一次方程组. 16.【答案】35°【解析】55,55,180555570,OB OC OBC OCB BOC =∠=︒∴∠=︒∴∠=︒-︒-︒=︒, 由圆周角定理得,1352A BOC ∠=∠=︒.【提示】根据等腰三角形的性质和三角形内角和定理求出BOC ∠的度数,根据圆周角定理计算即可. 【考点】圆周角定理 17.【答案】17a <<.【解析】∵四边形ABCD 是平行四边形,114,322OA AC OD BD ∴====,在AOD △中,由三角形的三边关系得:4343AD -+<>.【提示】由平行四边形的性质得出4,3OA OD ==,再由三角形的三边关系即可得出结果. 【考点】平行四边形的性质,三角形三边关系 18.【答案】18 【解析】正六边形ABCDEF的边长为3,3AB BC CD DE EF FA ∴======,3633=12BAF ∴=⨯--的长,∴扇形AFB (阴影部分)的面积1123182=⨯⨯=.【提示】由正六边形的性质得出BAF 的长=12,由扇形的面积12=弧长⨯半径,即可得出结果.9 / 16【考点】正多边形和圆,扇形面积的计算 19.【答案】(4)4)m m n m n +-(【解析】原式22(16)m m n -=(4)(4)m m n m n =+-.【提示】先提公因式,再利用平方差公式进行因式分解即可. 【考点】提公因式法与公式法的综合运用 20.【答案】15 【解析】连接AC,,30,,,,,,30,15.ABCD AD BE AC BD ADB CAD E DAE BD CE CE CA E AE CAD CAE DAE E E E ∴=∠=∠=︒∴∠=∠=∴=∴∠=∠∠=∠+∠∴∠+∠=︒∠=︒四边形是矩形∥,且即【提示】连接AC ,由矩形性质可得E DAE ∠=∠、BD AC CE ==,知E C A E ∠=∠,而30,A D B C A D E ∠=∠=︒∠可得度数.【考点】矩形的性质. 三、解答题 21.【答案】3【解析】原式112123299=⨯-++-=. 【提示】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及算术平方根定义计算即可得到结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值 22.【答案】2a ☆的值小于0,22500a a a a ∴+=<<,解得:. 在方程220x bx a +=-中,数学试卷 第3页(共6页)数学试卷 第4页(共6页)2()8580b a a ∆-=--≥>,∴方程220x bx a +=-有两个不相等的实数根.【提示】根据2a ☆的值小于0结合新运算可得出关于a 的一元一次不等式,解不等式可得出a 的取值范围,再由根的判别式得出2()8b a ∆=--,结合a 的取值范围即可得知∆的正负,由此即可得出结论. 【考点】根的判别式 23.【答案】4【解析】2222221()211(1)2(1)(1)(1)(1)(1)(1)11x x x x x x x x x x x x x x x x x x x x x +÷--+-+--=÷--+-=⨯-+=- 2222241121x x x x x ===---将代入中得:.【提示】先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x 的取值范围得出合适的x 的值,将其代入化简后的代数式中即可得出结论. 【考点】分式的化简求值24.【答案】四边形ABCD 是平行四边形,,,,,,.AB CD AB CD AD BC E DCE AE CD AD BE BC E BCE DCE BCE CE BCD ∴==∴∠=∠+=∴=∴∠=∠∴∠=∠∠∥,,,即平分 【提示】由平行四边形的性质得出AB CD AB CD AD BC ==∥,,,由平行线的性质得出E DCE ∠=∠,由已知条件得出BE=BC ,由等腰三角形的性质得出E BCE ∠=∠,得出DCE BCE ∠=∠即可. 【考点】平行四边形的性质.25.【答案】(1)根据题意得:28035%800÷=,即本次被调查的考生总人数为800; 完形填空的百分比160800100%20b =÷⨯=,口语训练的百分比40800100%5c =÷⨯=,则135%10%20%5%3a =----=,(2)根据题意得:听力部分人数为80030%240⨯=,阅读理解人数为80010%80⨯=,补全统计图,如图所示:(3)根据题意得:4200035%14700⨯=.则全市考生中最喜欢做“单项选择”这类客观题的考生有14700人.【提示】(1)由单项填空的人数除以占的百分比,求出总人数,确定出a ,b ,c 的值即可;(2)求出听力部分与阅读理解的人数,补全条形统计图即可;(3)根据单项选择的百分比乘以42000即可得到结果.【考点】条形统计图,用样本估计总体26.【答案】(1)如图,111A B C △为所作;(2)如图,222A B C △为所作,(3)2211,B C A B 相交于点E ,2211,B A A B 相交于点F ,如图,数学试卷 第3页(共6页)数学试卷 第4页(共6页)()221120,1,(2,3),(1,0),(2,5),(5,0),B C B A A∴直线1155,A B y x =-为直线221,B C y x =+为 直线22115A B y x =-+为, 3552,15235(,),22155513,11015131510(,)13513313911531509.22222222621313676313BEF x y x y x y E y x x y x y F S ⎧=⎪=-⎧⎪⎨⎨=+⎩⎪=⎪⎩∴⎧=-=⎧⎪⎪⎪⎨⎨=-+⎪⎪=⎩⎪⎩∴∴=⨯---=△由解得点由解得点. 1112221509676A B C A B C ∴△与△重合部分的面积为. 【提示】(1)将ABC △向右平移2个单位即可得到111A B C △.(2)将ABC △绕点O 顺时针方向旋转90°即可得到222A B C △.(3)22B C 与11A B 相交于点E ,22B A 与11A B 相交于F ,如图,求出112222,,A B B C B A ,列出方程求出点E ,F坐标即可解决问题.【考点】作图—旋转变换,作图—平移变换27.【答案】设该种药品平均每场降价的百分率是x ,由题意得:2200(1)98x -=解得:1 1.7x =(不合题意舍去),20.330%x ==.【提示】设该种药品平均每场降价的百分率是x ,则两个次降价以后的价格是2200(1)x -据此列出方程求解即可.【考点】一元二次方程的应用28.【答案】(1)证明:作OD AB D ⊥于,如图所示:65MN π劣弧的长为, 9061805OM ππ⨯∴=, 解得:125OM =, 即⊙O 的半径为125, 443y x =-+与x 轴,y 轴分别相交于点A 与B , 03;04y x x y ∴====,,,(3,0),(0,4)3,4,A B OA OB ∴∴== AB ∴ 1122125AOB AB OD OA OB OA OB OD OM AB ==⨯∴===△的面积半径 ∴直线AB 与⊙O 相切(2)解:图中所示的阴影部分的面积21136341624252()5OMN AOB S S ππ==⨯⨯-⨯=-扇形△-.【提示】(1)作OD AB D ⊥于,由弧长公式和已知条件求出半径OM =125,由直线解析式求出点A 和B 的坐标,得出3,4OA OB ==,由勾股定理求出5AB =,再由AOB △面积的计算方法求出OD ,即可得出结论.(2)阴影部分的面积AOB OMN S S =-△扇形,即可得出结果.数学试卷 第3页(共6页)数学试卷 第4页(共6页)【考点】切线的判定,一次函数图象上点的坐标特征,弧长的计算,扇形面积的计算.29.【答案】(1)236,6,3,2,,,OB OA OD OB OA OD CD OA DC OB ===∴===⊥∴∥ ,63,510.OB AO CD ADOD CD ∴=∴=∴= ∴点C 为()()()2,10,0,6,3,0B A -6302626(2,10)2020b k b k b y x n y C xn y x=⎧∴⎨+=⎩=-⎧∴⎨=⎩∴=-+=-∴=-∴=- 经过点 (2)262025104y x y x x x y y =-+⎧⎪⎨=-⎪⎩=-=⎧⎧⎨⎨==-⎩⎩由或 故另一个交点坐标为(5,4)-.(3)由图象可知nkx b x+≤的解集:205x x -≤<或≥.【提示】(1)先求出A B C 、、坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.【考点】反比例函数与一次函数的交点问题.30.【答案】过点C CD AB D ⊥作于,cot45,cot30,AD CD CD BD CD ∴=︒==︒=1),1),BD AD AB CD +==+=250250200CD ∴=,米>米.【提示】根据题意,在ABC △中,30ABC ∠=︒,45BAC ∠=︒,1)AB =米,是否受到影响取决于C 点到AB 的距离,因此求C 点到AB 的距离,作CD AB D ⊥于点.【考点】解直角三角形的应用-方向角问题.31.【答案】(1)245y mx mx m =+-,2(45)(5)(1)y m x x m x x ∴=+-=+-,令0(5)(1)0y m x x =+-=得:,0m ≠,51x x ∴=-=或,(5,0)(1,0)A B ∴-,∴抛物线的对称轴为2x =-,∴抛物线的顶点坐标为,9m ∴-=m ∴=∴抛物线的解析式为2y +=. (2)(5,0)(1,0)A B -、数学试卷 第3页(共6页)数学试卷 第4页(共6页)(3)如图所示:OP的解析式为y x =, 30,60,AOP PBF ∴∠=︒∴∠=︒ ,90,PD PF FO OD DPF FOD ⊥⊥∴∠=∠=︒,180DPF FOD ∴∠+∠=︒,∴点O D P F ,,,共圆,,60.PDF PBF PDF ∴∠=∠∴∠=︒【提示】(1)先提取公式因式将原式变形为2(45)y m x x =+-,然后令0y =可求得函数图象与x 轴的交点坐标,从而可求得点A 、B 的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为2x =-,故此可知当2x =-时,y =,于是可求得m 的值,(2)由(1)的可知点A ,B 的坐标,(3)先由一次函数的解析式得到PBF ∠的度数,然后再由,PD PF FO OD ⊥⊥,证明点O ,D ,P ,F 共圆,最后依据圆周角定理可证明60PDF ∠=︒.【考点】二次函数综合题。
2019年四川省巴中市中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一个选项是正确的)1.下列四个算式中,正确的是()A.a+a=2a B.a5÷a4=2a C.(a5)4=a9D.a5﹣a4=a【答案】A【解析】A.a+a=2a,故本选项正确;B.a5÷a4=a,故本选项错误;C.(a5)4=a20,故本选项错误;D.a5﹣a4,不能合并,故本选项错误.故选:A.2.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3)B.(4,3)C.(4,﹣3)D.(﹣4,3)【答案】C【解析】∵点A(﹣4,3),点A与点B关于原点对称,∴点B(4,﹣3).故选:C.3.企业家陈某,在家乡投资9300万元,建立产业园区2万余亩.将9300万元用科学记数法表示为()A.93×108元B.9.3×108元C.9.3×107元D.0.93×108元【答案】C【解析】将9300万元用科学记数法表示为:9.3×107元.故选:C.4.如图是由一些小立方体与圆锥组合成的立体图形,它的主视图是()A.B.C.D.【答案】C【解析】如图所示,它的主视图是:.故选:C.5.已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.0【答案】B【解析】将代入得:,∴a+b=2;故选:B.6.下列命题是真命题的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是矩形C.对角线互相垂直的矩形是正方形D.四边相等的平行四边形是正方形【答案】C【解析】A.对角线相等的平行四边形是矩形,所以A选项错误;B.对角线相等的平行四边形是矩形,所以B选项错误;C.对角线互相垂直的矩形是正方形,所以C选项正确;D.四边相等的菱形是正方形,所以D选项错误.故选:C.7.如图所示,是巴中某校对学生到校方式的情况统计图.若该校骑自行车到校的学生有200人,则步行到校的学生有()A.120人B.160人C.125人D.180人【答案】B【解析】学生总数:200÷25%=800(人),步行到校的学生:800×20%=160(人),故选:B.8.如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC于点G,则S△DEG:S△CFG=()A.2:3 B.3:2 C.9:4 D.4:9【答案】D【解析】设DE=x,∵DE:AD=1:3,∴AD=3x,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=3x,∵点F是BC的中点,∴CF=BC=x,∵AD∥BC,∴△DEG∽△CFG,∴=()2=()2=,故选:D.9.如图,圆锥的底面半径r=6,高h=8,则圆锥的侧面积是()A.15πB.30πC.45πD.60π【答案】D【解析】圆锥的母线l===10,∴圆锥的侧面积=π•10•6=60π,故选:D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b ﹣c>0,④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④【答案】A【解析】①∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;②由二次函数图象可知,a<0,b<0,c>0,∴abc>0,故②错误;③∵对称轴:直线x=﹣=﹣1,∴b=2a,∴2a+b﹣c=4a﹣c,∵a<0,4a<0,c>0,﹣c<0,∴2a+b﹣c=4a﹣c<0,故③错误;④∵对称轴为直线x=﹣1,抛物线与x轴一个交点﹣3<x1<﹣2,∴抛物线与x轴另一个交点0<x2<1,当x=1时,y=a+b+c<0,故④正确.故选:A.二、填空题(本大题共5个小题,每小题4分,共20分)11.函数y=的自变量x的取值范围x≥1,且x≠3.【解析】根据题意得:,解得x≥1,且x≠3,即:自变量x取值范围是x≥1,且x≠3.12.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为.【解析】根据题意,得:=a,解得:a=5,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为×[(4﹣5)2+(5﹣5)2+(5﹣5)2+(3﹣5)2+(8﹣5)2]=,故答案为:.13.如图,反比例函数y=(x>0)经过A、B两点,过点A作AC⊥y轴于点C,过点B 作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连结AD,已知AC=1、BE=1、S矩形BDOE=4.则S△ACD=.【解析】过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,如图:∵S矩形BDOE=4,反比例函数y=(x>0)经过B点,∴k=4,∴S矩形ACOH=4,∵AC=1,∴OC=4÷1=4,∴CD=OC﹣OD=OC﹣BE=4﹣1=3,∴S矩形ACDF=1×3=3,∴S△ACD=,故答案为:.14.若关于x的分式方程+=2m有增根,则m的值为1.【解析】方程两边都乘x﹣2,得x﹣2m=2m(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1,故m的值是1,故答案为1.15.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP =10.则S△ABP+S△BPC=24+16.【解析】如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16,故答案为:24+16.三、解答题(本大题共11个小题,共90分)16.(5分)计算(﹣)2+(3﹣π)0+|﹣2|+2sin60°﹣.解:原式=.17.(5分)已知实数x、y满足+y2﹣4y+4=0,求代数式•÷的值.解:•÷=••=,∵+y2﹣4y+4=0,∴+(y﹣2)2=0,∴x=3,y=2,∴原式==.18.(8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=a,CD=AE=b,∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.19.(8分)△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);②如图,△A2B2C为所作;③OB==,点B经过的路径长==π.20.(8分)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?解:①设乙种物品单价为x元,则甲种物品单价为(x+10)元,由题意得:=,解得x=90,经检验,x=90符合题意,∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y件,则乙种物品购进(55﹣y)件,由题意得:5000≤100y+90(55﹣y)≤5050,解得5≤y≤10,∴共有6种选购方案.21.(10分)如图表示的是某班部分同学衣服上口袋的数目.①从图中给出的信息得到学生衣服上口袋数目的中位数为4,众数为4.②根据如图信息,在给出的图表中绘制频数条形统计图,由此估计该班学生衣服上口袋数目为5≤x<7的概率.解:①由图可知,学生衣服上口袋的数目分别为:3,4,2,6,5,5,3,1,4,2,4,6,10,7,1,4,5,6,2,10,3.按从小到大的顺序排列为:1,1,2,2,2,3,3,3,4,4,4,4,5,5,5,6,6,6,7,10,10.故中位数为4,众数为4,故答案为4,4.(2)条形图如图所示:估计该班学生衣服上口袋数目为5≤x<7的概率==.22.(8分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两不相等的实数根.①求m的取值范围.②设x1,x2是方程的两根且x12+x22+x1x2﹣17=0,求m的值.解:①根据题意得:△=(2m+1)2﹣4(m2﹣1)>0,解得:m,②根据题意得:x1+x2=﹣(2m+1),x1x2=m2﹣1,x12+x22+x1x2﹣17=﹣x1x2﹣17=(2m+1)2﹣(m2﹣1)﹣17=0,解得:m1=,m2=﹣3(不合题意,舍去),∴m的值为.23.(8分)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE=,∴AE==,∴BE=300﹣,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=CF,即:300﹣=414﹣x,解得:x=214,故:点D到AB的距离是214m.24.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0,x>0)的图象交于点A(m,8)与点B(4,2).①求一次函数与反比例函数的解析式.②根据图象说明,当x为何值时,k1x+b﹣<0.解:①把点B(4,2)代入反比例函数y2=(k2≠0,x>0)得,k2=4×2=8,∴反比例函数的解析式为y2=,将点A(m,8)代入y2得,8=,解得m=1,∴A(1,8),将A、B的坐标代入y1=k1x+b(k1、b为常数,k1≠0)得,解得,∴一次函数的解析式为y1=﹣2x+10;②由图象可知:当0<x<1或x>4时,y1<y2,即k1x+b﹣<0.25.(10分)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.解:①过点O作OG⊥CD,垂足为G,在菱形ABCD中,AC是对角线,则AC平分∠BCD,∵OH⊥BC,OG⊥CD,∴OH=OG,∴OH、OG都为圆的半径,即DC是⊙O的切线;②∵AC=4MC且AC=8,∴OC=2MC=4,MC=OM=2,∴OH=2,在直角三角形OHC中,HO=CO,∴∠OCH=30°,∠COH=60°,∴HC=,S阴影=S△OCH﹣S扇形OHM=CH•OH﹣OH2=2﹣;③作M关于BD的对称点N,连接HN交BD于点P,∵PM=NP,∴PH+PM=PH+PN=HN,此时PH+PM最小,∵ON=OM=OH,∠MOH=60°,∴∠MNH=30°,∴∠MNH=∠HCM,∴HN=HC=2,即:PH+PM的最小值为2,在Rt△NPO中,OP=ON tan30°=,在Rt△COD中,OD=OC tan30°=,则PD=OP+OD=2.26.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.解:①∵点B、C在直线为y=x+n上,∴B(﹣n,0)、C(0,n),∵点A(1,0)在抛物线上,∴,∴a=﹣1,b=6,∴抛物线解析式:y=﹣x2+6x﹣5;②由题意,得,PB=4﹣t,BE=2t,由①知,∠OBC=45°,∴点P到BC的高h为BP sin45°=(4﹣t),∴S△PBE=BE•h==,当t=2时,△PBE的面积最大,最大值为2;③由①知,BC所在直线为:y=x﹣5,∴点A到直线BC的距离d=2,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设N(m,﹣m2+6m﹣5),则H(m,0)、P(m,m﹣5),易证△PQN为等腰直角三角形,即NQ=PQ=2,∴PN=4,Ⅰ.NH+HP=4,∴﹣m2+6m﹣5﹣(m﹣5)=4解得m1=1,m2=4,∵点A、M、N、Q为顶点的四边形是平行四边形,∴m=4;Ⅱ.NH+HP=4,∴m﹣5﹣(﹣m2+6m﹣5)=4解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m>5,∴m=,Ⅲ.NH﹣HP=4,∴﹣(﹣m2+6m﹣5)﹣[﹣(m﹣5)]=4,解得m1=,m2=,∵点A、M、N、Q为顶点的四边形是平行四边形,m<0,∴m=,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.。
2024年四川省巴中市中考数学试卷(附答案)一、选择题1.(3分)在0,1,﹣1,π中最小的实数是()A.0B.﹣1C.1D.π【答案】B.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】D.3.(3分)函数自变量的取值范围是()A.x>0B.x>﹣2C.x≥﹣2D.x≠﹣2【答案】:C.4.(3分)下列运算正确的是()A.3a+b=3ab B.a3•a2=a5C.a8÷a2=a4(a≠0)D.(a﹣b)2=a2﹣b2【答案】:B.5.(3分)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b<0C.|a|>|b|D.a﹣b<0【答案】D.6.(3分)如图,直线m∥n,一块含有30°的直角三角板按如图所示放置.若∠1=40°,则∠2的大小为()A.70°B.60°C.50°D.40°【答案】A.7.(3分)如图,▱ABCD的对角线AC、BD相交于点O,点E是BC的中点,AC=4.若▱ABCD的周长为12,则△COE的周长为()A.4B.5C.6D.8【答案】:B.8.(3分)某班学生乘汽车从学校出发去参加活动,目的地距学校60km,一部分学生乘慢车先行0.5h,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km,求慢车的速度?设慢车的速度为x km/h,则可列方程为()A.B.C.D.【答案】A.9.(3分)一组数据﹣10,0,11,17,17,31,若去掉数据11,下列会发生变化的是()A.平均数B.中位数C.众数D.极差【解答】B.10.(3分)“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问:水深几何?”这是我国数学史上的“葭生池中”问题.即AC=5,DC=1,BD=BA,则BC=()A.8B.10C.12D.13【答案】C.11.(3分)如图,是用12个相似的直角三角形组成的图案.若OA=1,则OG=()A.B.C.D.【答案】C.12.(3分)如图,在△ABC中,D是AC的中点,CE⊥AB,BD与CE交于点O,且BE=CD.下列说法错误的是()A.BD的垂直平分线一定与AB相交于点EB.∠BDC=3∠ABDC.当E为AB中点时,△ABC是等边三角形D.当E为AB中点时,【答案】D.二、填空题13.(3分)27的立方根是3.【分析】根据立方根的定义解答即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】本题考查了立方根,熟练掌握立方根的定义是解题的关键.14.(3分)从五边形的一个顶点出发可以引2条对角线.【分析】根据多边形的对角线性质列式计算即可.【解答】解:从五边形的一个顶点出发可以引的对角线条数为5﹣3=2(条),故答案为:2.【点评】本题考查多边形的对角线,熟练掌握其性质是解题的关键.15.(3分)已知方程x2﹣2x+k=0的一个根为﹣2,则方程的另一个根为4.【分析】利用一元二次方程根与系数的关系即可解决问题.【解答】解:令方程的另一个根为m,因为方程的一个根为﹣2,所以﹣2+m=2,解得m=4,所以方程的另一个根为4.故答案为:4.【点评】本题主要考查了根与系数的关系及一元二次方程的解,熟知一元二次方程根与系数的关系是解题的关键.16.(3分)如图,四边形ABCD为⊙O的内接四边形.若四边形ABCO为菱形,则∠ADC的大小为60°.【分析】根据圆内接四边形的性质得到∠B+∠D=180°,根据圆周角定理得到∠D=∠AOC,根据菱形的性质得到∠B=∠AOC,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠B+∠D=180°,由圆周角定理得:∠D=∠AOC,∵四边形ABCO为菱形,∴∠B=∠AOC,∴∠AOC+∠AOC=180°,解得:∠AOC=120°,∴∠ADC=60°,故答案为:60°.【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,熟记圆内接四边形的对角互补是解题的关键.17.(3分)如图,矩形ABCD的对角线AC与BD交于点O,DE⊥AC于点E,延长DE与BC交于点F.若AB=3,BC=4,则点F到BD的距离为.【分析】过点F作FH⊥DB,垂足为H,利用勾股定理求出AC的长,利用角的余弦值求出DF的长,再利用勾股定理求出FC,从而得出BF,利用三角形面积求出FH即可.【解答】解:如图,过点F作FH⊥DB,垂足为H,∵四边形ABCD为矩形,∴∠BAD=∠BCD=90°,AC=BD,∵AB=3,BC=4,∴AC=BD===5,=AD•DC=AC•DE,即×4×3=×5×DE,∴S△ADC解得:DE=,∴cos∠EDC==,即=,解得:DF=,∴FC===,∴BF=BC−FC=4−=,=BD•FH=BF•DC,即×5×FH=××3,∴S△BDF解得:FH=,故答案为:.【点评】本题考查了矩形的性质,勾股定理,解直角三角形的相关知识,熟练掌握各知识点是解题的关键.18.(3分)若二次函数y=ax2+bx+c(a>0)的图象向右平移1个单位长度后关于y轴对称.则下列说法正确的序号为①③④.①;②当时,代数式a2+b2﹣5b+8的最小值为3;③对于任意实数m,不等式am2+bm﹣a+b≥0一定成立;④P(x1,y1),Q(x2,y2)为该二次函数图象上任意两点,且x1<x2,当x1+x2+2>0时,一定有y1<y2.【分析】依据题意,由二次函数y=ax2+bx+c(a>0)的图象向右平移1个单位长度后关于y轴对称,从而可得二次函数y=ax2+bx+c(a>0)的对称轴是直线x=﹣1,故﹣=﹣1,即b=2a,再结合二次函数的性质,逐个进行判断可以得解.【解答】解:∵二次函数y=ax2+bx+c(a>0)的图象向右平移1个单位长度后关于y轴对称,∴二次函数y=ax2+bx+c(a>0)的对称轴是直线x=﹣1.∴﹣=﹣1.∴b=2a.∴=2,故①正确.将b=2a代入a2+b2﹣5b+8,∴a2+b2﹣5b+8=a2+4a2﹣5×2a+8=5(a2﹣2a+1)+3=5(a﹣1)2+3.∵,∴当a=时,a2+b2﹣5b+8取最小值为5×(﹣1)2+3=,故②错误.∵b=2a,∴am2+bm﹣a+b=am2+2am﹣a+2a=am2+2am+a=a(m2+2m+1)=a(m+1)2.∵a>0,(m+1)2≥0,∴am2+bm﹣a+b=a(m+1)2≥0,即am2+bm﹣a+b≥0,故③正确.∵x1+x2+2>0,∴>﹣1.∴x1,x2的中点在对称轴的右侧.∵x1<x2,∴点P离对称轴的距离比Q离对称轴的距离近.∵抛物线开口向上,∴y1<y2,故④正确.故答案为:①③④.【点评】本题主要考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、二次函数图象与几何变换、二次函数的最值,解题时要熟练掌握并能灵活运用是关键.三、解答题19.(16分)(1)计算:.(2)求不等式组的解集.(3)先化简,再求值:,其中.【分析】(1)根据特殊角的三角函数值、二次根式的性质、绝对值、零指数幂计算;(2)利用解一元一次不等式的一般步骤分别解出不等式,确定不等式组的解集;(3)根据分式的减法法则、除法法则把原式化简,把x的值代入计算得到答案.【解答】解:(1)原式=2×+2+5﹣1=1+2+5﹣1=2+5;(2)解不等式①,得x>﹣6,解不等式②,得x≤13,∴不等式组的解集为﹣6<x≤13;(3)原式=(﹣)•=•=,当x=+1时,原式==.【点评】本题考查的是实数的运算、一元一次不等式组的解法、分式的化简求值,掌握实数的混合运算法则、解一元一次不等式组的一般步骤、分式的混合运算法则是解题的关键.20.(10分)为了解全校学生对篮球、足球、乒乓球、羽毛球四项球类运动的喜爱情况,在全校随机抽取了m名学生进行问卷调查,每名学生只选择一项球类运动填写问卷.将调查结果绘制成如图统计图,请你根据图中所提供的信息解答下列问题.(1)求m=200,并补全条形统计图.(2)若该校共有1200名学生,请估计喜欢乒乓球运动的学生有多少名?(3)学校羽毛球队计划从甲、乙、丙、丁四名同学中挑选两名同学加入球队.请用画树状图或列表的方法计算恰好选中甲、乙两名同学的概率.【分析】(1)根据喜爱篮球的人数和所占的百分比即可求出m,然后求出喜欢乒乓球的人数即可;(2)用该校的总人数乘以最喜爱乒乓球的学生的人数所占的百分比即可;(3)画出树状图即可解决问题.【解答】解:(1)m=44÷22%=200(名),喜欢乒乓球的人数;200﹣44﹣16﹣88=52(名),补全统计图:故答案为:200;(2)1200×=336(名),答:估计喜欢乒乓球运动的学生有336名;(3)画树状图得:∵一共有12种等可能出现的结果,符合条件的结果有2种,∴恰好选中甲、乙两名同学的概率为.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.(10分)某兴趣小组开展了测量电线塔高度的实践活动.如图所示,斜坡BE的坡度,BE =6m,在B处测得电线塔CD顶部D的仰角为45°,在E处测得电线塔CD顶部D的仰角为60°.(1)求点B离水平地面的高度AB.(2)求电线塔CD的高度(结果保留根号).【分析】(1)根据题意可得:BA⊥AE,再根据已知易得:在Rt△ABE中,tan∠BEA=,从而可得∠BEA=30°,然后在Rt△ABE中,利用含30度角的直角三角形的性质进行计算,即可解答;(2)过点B作BF⊥CD,垂足为F,根据题意可得:AB=CF=3m,BF=AC,然后设EC=x米,则BF=AC=(x+3)米,分别在Rt△CDE和Rt△BDF中,利用锐角三角函数的定义求出CD和DF 的长,从而列出关于x的方程,进行计算即可解答.【解答】解:(1)由题意得:BA⊥AE,∵斜坡BE的坡度,∴==,在Rt△ABE中,tan∠BEA==,∴∠BEA=30°,∵BE=6m,∴AB=BE=3(m),AE=AB=3(m),∴点B离水平地面的高度AB为3m;(2)过点B作BF⊥CD,垂足为F,由题意得:AB=CF=3m,BF=AC,设EC=x米,∵AE=3米,∴BF=AC=AE+CE=(x+3)米,在Rt△CDE中,∠DEC=60°,∴CD=CE•tan60°=x(米),在Rt△BDF中,∠DBF=45°,∴DF=BF•tan45°=(x+3)米,∵DF+CF=CD,∴x+3+3=x,解得:x=6+3,∴CD=x=(6+9)米,∴电线塔CD的高度为(6+9)米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,坡度坡角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.(10分)如图,在平面直角坐标系中,直线y=x+2与反比例函数的图象交于A、B两点,点A的横坐标为1.(1)求k的值及点B的坐标.(2)点P是线段AB上一点,点M在直线OB上运动,当时,求PM的最小值.【分析】(1)把x=1代入y=x+2,得出y=3,所以A(1,3),代入反比例函数解析式即可求出k,联立解析式求出B即可;(2)根据确定点P的坐标,然后确定OB的解析式,进而确定PM的解析式,求出交点坐标即可.【解答】解:(1)把x=1代入y=x+2,得出y=3,∴A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=,联立解析式得,解得或,∴B(﹣3,﹣1);(2)∵,∴P是AB的中点,∴P(﹣1,1),∴OB的解析式为y=x,当PM取得最小值时,PM⊥OB,∴设直线PM的解析式为y=﹣3x+b,代入p(﹣1,1)得3+b=1,解得b=﹣2,∴直线PM为y=﹣3x﹣2,联立解析式得,解得,∴M(﹣,﹣),∴PM的最小值为:=.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是掌握求反比例函数与一次函数的交点坐标,就是把两个函数关系式联立成方程组求解.23.(12分)如图,△ABC内接于⊙O,点D为的中点,连接AD、BD,BE平分∠ABC交AD于点E,过点D作DF∥BC交AC的延长线于点F.(1)求证:DF是⊙O的切线.(2)求证:BD=ED.(3)若DE=5,CF=4,求AB的长.【分析】(1)连接OD,根据垂径定理的推论即可得出OD⊥BC,由DF∥BC得出OD⊥DF,于是问题得证;(2)由等弧所对的圆周角相等得出∠DBC=∠BAD,由角平分线的定义得出∠ABE=∠CBE,根据三角形外角的性质及角的和差关系可证得∠DEB=∠DBE,于是得出BD=ED;(3)连接CD,先证∠ABD=∠DCF,∠ADB=∠F,即可得到△ABD∽△DCF,即可求出AB的长.【解答】(1)证明:如图,连接OD,∵点D为的中点,O为圆心,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∵OD为⊙O的半径,∴DF是⊙O的切线;(2)证明:∵点D为的中点,∴,∴∠DBC=∠BAD,∵BE平分∠ABC,∴∠ABE=∠CBE,∵∠DEB是△ABE的外角,∴∠DEB=∠BAE+∠ABE,∵∠DBE=∠CBE+DBC,∴∠DEB=∠DBE,∴BD=ED;(3)解:如图,连接CD,∵四边形ABDC是圆内接四边形,∴∠ABD+∠ACD=180°,∵∠DCF+∠ACD=180°,∴∠ABD=∠DCF,∵DF∥BC,∴∠ACB=∠F,∵∠ACB=∠ADB,∴∠ADB=∠F,∴△ABD∽△DCF,∴,∵点D为的中点,∴,∴BD=CD,由(2)知BD=ED,∴CD=BD=DE=5,∵CF=4,∴,∴AB=.【点评】本题考查了相似三角形的判定与性质,垂径定理及推论,圆周角定理及推论,切线的判定与性质,圆内接四边形的性质,等腰三角形的判定等知识,涉及的知识点较多,需熟练掌握.24.(12分)综合与实践(1)操作与发现平行四边形和梯形都可以剪开拼成一个矩形,拼接示意图如图1、图2.在图2中,四边形ABCD为梯形,AB∥CD,E、F是AD、BC边上的点.经过剪拼,四边形GHK为矩形.则△EDK ≌△EAG.(2)探究与证明探究将任意一个四边形剪开拼成一个平行四边形,拼接示意图如图3、图4、图5.在图5中,E、F、G、H是四边形ABCD边上的点.OJKL是拼接之后形成的四边形.①通过操作得出:AE与EB的比值为1.②证明:四边形OJKL为平行四边形.(3)实践与应用任意一个四边形能不能剪开拼成一个矩形?若能,请将四边形ABCD剪成4块,按图5的方式补全图6,并简单说明剪开和拼接过程.若不能,请说明理由.【分析】(1)由题意可证明△EDK≌△EAG;(2)①如图5,由操作知,点E为AB中点,将四边形EBFO绕点E旋转180°得到四边形EAQL,得到AE=BE,故;②先证明K,Q、L三点共线,K,P,J三点共线,由操作得∠2=∠L,∠3=∠J,根据∠1+∠2=180°,∠1+∠3=180°,得出∠1+∠L=180°,∠1+∠J=180°,得到OJ∥KL,OL∥KJ,从而证明四边形OJKL为平行四边形;(3)取AB、BC、CD,DA为中点为E、H、G、F,连接FH,过点E,点G分别作EM⊥FH,GN⊥FH,垂足为点M,N,将四边形EBHM绕点E旋转180°至四边形EAH′M′,将四边形FDGN绕点F旋转180°至四边形FAG′N′,将四边形NGCH放置左上方,使得点C与点A重合,CG与AG′重合,CH与AH′重合,点N的对应点为点N″,则四边形MM′N″N′即为所求矩形.【解答】(1)解:如图2,∵AB∥CD,∴∠GAE=∠D,由题意得E为AD中点,∴EA=ED°,∵∠AEG=∠DEK,∴△EDK≌△EAG,故答案为:△EAG;(2)①解:如图5,由操作知,点E为AB中点,将四边形EBFO绕点E旋转180°得到四边形EAQL,∴AE=BE,,故答案为:1;②证明:如图5,由题意得,E、F、G、H是AB、BC,CD,DA的中点,操作为将四边形EBFO绕点E旋转180°得到四边形EAQL,将四边形OHDG绕点H旋转180°得到四边形JHAP,将四边形OGCF放在左上方,则AQ=BF=CF,AP=DG=CG,∠BFO=∠AQL,∵∠DAB+∠B+∠C+∠D=360°,∠QAE=∠B,∠PAH=∠D,∠DAB+∠QAE+∠PAH+∠PAQ=360°,∴∠PAQ=∠C,∵∠BFO+∠CFO=180°,∴∠AQL+∠AQK=180°,∴K,Q、L三点共线,同理K,P,J三点共线,由操作得∠2=∠L,∠3=∠J,∵∠1+∠2=180°,∠1+∠3=180°,∴∠1+∠L=180°,∠1+∠J=180°,∴OJ∥KL,OL∥KJ,∴四边形OJKL为平行四边形;(3)解:如图,取AB、BC、CD,DA为中点为E、H、G、F,连接FH,过点E,点G分别作EM⊥FH,GN⊥FH,垂足为点M,N,将四边形EBHM绕点E旋转180°至四边形EAH′M′,将四边形FDGN绕点F旋转180°至四边形FAG′N′,将四边形NGCH放置左上方,使得点C与点A重合,CG与AG′重合,CH与AH′重合,点N的对应点为点N″,则四边形MM′N″N′即为所求矩形.由题意得∠EMF=∠EMH=∠M′=90°,∠GNH=∠GNF=∠N'=90°,∴∠N'=∠M′MH=90°,H′M′∥N′M,∴N′G′∥MM′,由操作得,∠1=∠4,∠2=∠3,∵∠1+∠2=180°,∴∠3+∠4=180°,∴N″,H′,M′三点共线,同理N′,G′,N″三点共线,∵∠N'=∠EMF=∠M'=90°,∴四边形MM′N″N为′矩形,如图,连接AC,EF,FG,GH,EH,∵E,H为BA,BC中点,∴EH∥AC,EH=AC,同理FG∥AC,FG=AC,∴FG∥EH,FG=EH,∴∠EHM=∠GFN,∵∠EMF=∠GNH=90°,∴△EHM≌△GFN(AAS),∴EM=GN,MH=NF,∴FM=NH,由操作得,AH′=BH,而BH=CH,∴AH′=CH,同理,AG′=CG,∵∠BAD+∠D+∠C+∠B=360°,∠D=∠G′AF,∠B=∠H′AE,∠BAD+∠H′AE+∠G′AF+∠H′AG′=360°,∴∠H′AG′=∠C,∵四边形MM′N″N′为矩形,∴N′N″=MM′,N″M′=N″M,∴N′F+FM=H′M′+H′N″,∴MF+NF=MF+MH=M'H′+N″H',∴NH=N″H′,同理NG=N″G',∴四边形NGCH能放置左上方,∴按照以上操作可以拼成一个矩形.【点评】本题考查了平行线的性质,全等三角形的判定与性质,图形的旋转,三角形的中位线,正确理解题意是解题的关键.25.(14分)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(﹣1,0),B(3,0)两点,与y 轴交于点C,点P是抛物线上一动点,且在直线BC的上方.(1)求抛物线的表达式.(2)如图1,过点P作PD⊥x轴,交直线BC于点E,若PE=2ED,求点P的坐标.(3)如图2,连接AC、PC、AP,AP与BC交于点G,过点P作PF∥AC交BC于点F.记△ACG、△PCG、△PGF的面积分别为S1,S2,S3.当取得最大值时,求sin∠BCP的值.【分析】(1)将点A(﹣1,0),B(3,0)代入解析式中,求出a和b的值,得到抛物线解析式为y=﹣x2+2x+3;(2)设P(m,﹣m2+2m+3),则PD=﹣m2+2m+3,DE=﹣m+3,PE=PD﹣DE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,根据PE=2ED,得出﹣m2+3m=2(﹣m+3),解得m1=2,m2=3(不合题意舍去),得出m=2,得到P(2,3);(3)设P(n,﹣n2+2n+3),则Q(n,﹣n+3),PQ=﹣n2+3n,先求出,得出最大值,再证明△CPQ∽△ACB,得出∠BCP =∠CAB,得到.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)∵当x=0时,y=﹣x2+2x+3=3,∴C(0,3),设直线BC的解析式为y=kx+n,∴,解得:,∴直线BC的解析式为y=﹣x+3,设P(m,﹣m2+2m+3),则PD=﹣m2+2m+3,∵PD⊥x轴于点D,∴E(m,﹣m+3),D(m,0),∴DE=﹣m+3,∴PE=PD﹣DE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∵PE=2ED,∴﹣m2+3m=2(﹣m+3),解得m1=2,m2=3(此时B,D重合,不合题意舍去),∴m=2,∴P(2,3);(3)∵PF∥AC,∴△ACG∽△PFG,∴,∴,,∴,作AN∥BC交y轴于N,作PQ∥y轴交BC于Q,∵直线BC的解析式为y=﹣x+3,AN∥BC,∴直线AN的解析式为y=﹣x+b′,将A(﹣1,0)代入y=﹣x+b′,得:0=﹣(﹣1)+b′,解得:b′=﹣1,∴直线AN的解析式为y=﹣x﹣1,当x=0时,y N=﹣1,∴N(0,﹣1),∴ON=1,CN=ON+CO=4,∵AN∥BC,PQ∥y,∴∠PQF=∠NCB=∠ANC,∠PFC=∠ACF,∵∠PFC=∠FPQ+∠PQF,∠ACF=∠NCB+∠ACN,∴∠FPQ=∠ACN,∴△CAN∽△PFQ,∴,设P(n,﹣n2+2n+3),则Q(n,﹣n+3),∴PQ=﹣n2+3n,∴,∴当时,有最大值,此时,∴,,∵ON=OA=1,OB=OC=3,∴∠OBC=∠ANC=45°,∵∠ANC=∠PQF,∴∠OBC=∠PQF,∵,AB=4,∴,∴,∴△CPQ∽△ACB,∴∠BCP=∠CAB,∵,∴.第21页(共21页)。
知识点2:平均数,中位数,众数,方差一、选择题1.(2008年浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;2.(2008淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙D、不能确定3.(2008浙江义乌)国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003年至2007年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是( )A.6969元B.7735元C.8810元D.10255元4.(2008湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,255.(2008年浙江省绍兴市)在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为8.7,6.5,9.1,7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.(2008年四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案:A7.(2008年四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为( )A.14.15 B.14.16 C.14.17 D.14.20答案:B8.(2008年陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中8位工作者的捐款分别是5万,10万,10万,10万,20万,20万,50万,100万.这组数据的众数和中位数分别是()A.20万,15万B.10万,20万C.10万,15万D.20万,10万答案:C9.(2008北京)众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是()A.50,20 B.50,30 C.50,50 D.135,50答案:C10.(2008湖北鄂州)数据的众数为,则这组数据的方差是()A.2 B.C.D.答案:B11.(2008年浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(2008年山东省枣庄市)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.98答案:B13.(2008山东济南)“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60张B.80张C.90张D.110答案:B14.(2008湖北黄石)若一组数据2,4,,6,8的平均数是6,则这组数据的方差是()A.B.8 C.D.40答案:B15.(2008 湖南益阳)某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )A. 23,25B. 23,23C. 25,23D. 25,25答案:D16.(2008 重庆)数据2,1,0,3,4的平均数是()A、0B、1C、2D、3答案:C17.(08厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案:C18.(08乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案:B19.(08绵阳市)某校初三·一班6名女生的体重(单位:kg)为:35 36 38 40 42 42则这组数据的中位数等于().A.38 B.39 C.40 D.42答案:B20.(2008浙江金华)金华火腿闻名遐迩。
2018年四川省巴中市中考数学试卷与答案解析一、试卷概述本文将介绍2018年四川省巴中市中考数学试卷的整体概况和题型构成。
1.1 试卷结构本次中考数学试卷共分为两个部分,分别为选择题和非选择题。
其中,选择题包括单选和多选两种题型。
非选择题由大题和小题两种构成,主要包括填空题和解答题。
1.2 试题分布本试卷共计80分,试卷分值表如下:类型题数分值单选10题10分多选5题10分填空6题18分解答3题42分二、试题解析2.1 选择题2.1.1 单选题单选题是试卷中比较基础的题型,也是比较容易得分的部分。
本次试卷中的单选题主要涉及算式的化简、几何形体的计算以及常见数学固定用语的理解等方面。
例如,第2题要求学生根据已知面积和边长,求解正方形的对角线长度。
解题思路需要思考利用三角函数的知识和勾股定理,难度较大。
2.1.2 多选题多选题是本次试卷中相对较难的部分。
多选题较单选题更考验学生对数学知识点的掌握、理解和应用。
例如,第12题是一道涉及倍数关系和图形比较的综合性问题,解题难度较高。
2.2 非选择题2.2.1 填空题填空题主要考察数学基本运算和代数式的化简运算。
本次试卷中,填空题难度较大,题目中涉及到了分式的计算、简单的代数式求解、长方形、圆形等几何图形的计算等。
需要考生针对题目内容认真分析,进行正确的计算和归纳。
例如,第21题所求的整式需要运用多项式加减法以及分子分母的化简,涉及到知识点较多,难度较大。
2.2.2 解答题解答题是本次试卷中难度最大的部分,包括证明和应用两种类型。
考生需要熟练掌握数学知识点、懂得自由发挥和灵活运用。
例如,第28题涉及到了概率知识的运用,需要考生熟练掌握基本概率公式,以及对于细节部分的理解和推导。
三、对于本次试卷的分析可以发现,本试卷难度整体较大,题目涉及的知识点较为广泛,需要考生具备丰富的数学基础知识以及较强的运算能力。
对于应对本试卷的要求,考生应在平时的学习中注意知识点的积累、习题的巩固,同时也要注重细节的分析与推导,审题、答题的态度要保持端正和认真,才能在考试时发挥自己的水平。
2015年四川省巴中市中考数学试卷一、选择题(本大题共10道小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的.) 1.﹣2的倒数是( ) A . 2B .21 C . ﹣21 D . ﹣22.下列计算正确的是( )A . 633a =)a ( B .236a =a ÷a C . 2a+3b=5abD . 532a =a a •3.如图所示的几何体的俯视图是( )A .B .C .D .4.若单项式2b+a 2yx 与﹣4b ﹣a y x 31是同类项,则a ,b 的值分别为( ) A . a=3,b=1 B . a=﹣3,b=1 C . a=3,b=﹣1 D . a=﹣3,b=﹣15.在函数y=21-x 中,自变量x 的取值范围是( ) A . x ≠﹣2 B . x >2 C . x <2 D . x ≠26.某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( )A . 560=)x +1(2315 B . 560=)x -1(2315 C . 5602)2x ﹣1(=315 D . 560(1﹣2x )=3157.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间t (分钟)之间关系的大致图象是( )A .B .C .D .8.下列说法中正确的是( )A . “打开电视,正在播放新闻节目”是必然事件B . “抛一枚硬币,正面进上的概率为21”表示每抛两次就有一次正面朝上 C . “抛一枚均匀的正方体骰子,朝上的点数是6的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在61附近D . 为了解某种节能灯的使用寿命,选择全面调查9.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC=50°,则∠OAB 的度数为( )A . 25°B . 50°C . 60°D . 30°10.已知二次函数y=a 2x +bx+c (a ≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论: ①abc <0;②2a+b=0;③a ﹣b+c >0;④4a ﹣2b+c <0 其中正确的是( )A . ①②B . 只有①C . ③④D . ①④二、填空题(本大题共10个小题,每小题3分,共30分)11.从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8400万元,请你将8400万元用科学记数记表示为 元.12.分解因式:22a ﹣4a+2= .13.若a 、b 、c 为三角形的三边,且a 、b 满足()2229-+-b a =0,则第三边c 的取值范围是 .14.分式方程xx 223=+=的解为x= .15.若正多边形的一个外角为30°,则这个多边形为正 边形.16.有一组数据:5,4,3,6,7,则这组数据的方差是 .17.圆心角为60°,半径为4cm 的扇形的弧长为 cm . 18.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB= .19.如图,在△ABC 中,AB=5,AC=3,AD 、AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连结DH ,则线段DH 的长为 .20.a 是不为1的数,我们把a -11称为a 的差倒数,如:2的差倒数为211-=﹣1;﹣1的差倒数是21)1(11-=--;已知1a =3,2a 是1a 的差倒数,3a 是2a 的差倒数.4a 是3a 差倒数,…依此类推,则2015a = .三、解答题(本大题共11小题,共90分.)21.计算:|2﹣3|﹣+)π﹣2015(02sin60°+131-⎪⎭⎫⎝⎛.22.解不等式:312-x ≤423+x ﹣1,并把解集表示在数轴上. 23.化简:12+a a ﹣1422--a a ÷1222+--a a a . 24.)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC (项点是网格线的交点). (1)先将△ABC 竖直向上平移6个单位,再水平向右平移3个单位得到△111C B A ,请画出△111C B A ;(2)将△111C B A 绕B1点顺时针旋转90°,得△212C B A ,请画出△212C B A ; (3)线段11C B 变换到21C B 的过程中扫过区域的面积为 .25.如图,在平面直角坐标系xOy 中,一次函数1y =ax+b (a ,b 为常数,且a ≠0)与反比例函数x y π=2=(m 为常数,且m ≠0)的图象交于点A (﹣2,1)、B (1,n ). (1)求反比例函数和一次函数的解析式; (2)连结OA 、OB ,求△AOB 的面积;(3)直接写出当1y <2y <0时,自变量x 的取值范围.26.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.27.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC 分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.28.如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边m,求小路的宽.的方向纵、横各修建一条等宽的小路,要使种植面积为1140229.如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C、D、B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:2≈1.414,3≈1.732)30.如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.31.如图,在平面直角坐标系xOy中,二次函数y=a2x+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2015年四川省巴中市中考数学试卷参考答案与试题解析一、选择题(本大题共10道小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的.) 1.C 解析:﹣2的倒数是﹣21. 故选:C .点评: 主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.D 解析:A 、933a =)a ( ,原式计算错误,故本选项错误; B 、336a =a ÷a ,原式计算错误,故本选项错误; C 、2a 和3b 不是同类项,不能合并,故本选项错误; D 、532a =a a •,原式正确,故本选项正确.故选D .点评: 本题考查了同底数幂的除法、合并同类项、同底数幂的乘法、幂的乘方和积的乘方等知识,掌握运算法则在是解答本题的关键.3.B 解析:从上往下看,易得几何体的俯视图是.故选:B .点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.A 解析:∵单项式b+a 2y 2x 与﹣4b﹣a y x是同类项,∴,解得:a=3,b=1, 故选A .点评: 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.B 解析:根据题意,有x ﹣2≠0, 解可得x ≠2; 故选D .点评: 本题考查了函数自变量的取值范围问题,掌握分式有意义的条件是分母不等于0是解题的关键.6.B 解析:设每次降价的百分率为x ,由题意得: 5602x )-(1=315, 故选:B .点评: 此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.7.B 解析:根据题中信息可知,相同的路程,跑步比漫步的速度快;在一定时间内没有移动距离,则速度为零.故小华的爷爷跑步到公园的速度最快,即单位时间内通过的路程最大,打太极的过程中没有移动距离,因此通过的路程为零,还要注意出去和回来时的方向不同,故B 符合要求. 故选B点评: 此题考查函数图象问题,关键是根据速度的物理意义和比较物体运动快慢的基本方法.8.C 解析:A 、“打开电视,正在播放新闻节目”是随机事件,故本选项错误; B 、“抛一枚硬币正面朝上的概率为21”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在21附近,故本选项错误; C 、“抛一枚均匀的正方体骰子,朝上的点数是6的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在61附近,该说法正确,故本选项正确; D 、为了解某种节能灯的使用寿命,选择抽样调查,故本选项错误. 故选C .点评: 此题主要考查了概率的意义、全面调查和抽样调查的概念等知识,正确理解各知识点的概念是解题关键.9.A 解析:∵∠BOC=2∠BAC ,∠BOC=50°, ∴∠BAC=25°, ∵AC ∥OB ,∴∠BAC=∠B=25°, ∵OA=OB ,∴∠OAB=∠B=25°, 故选:A .点评: 此题考查了圆周角定理以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用.10.D 解析:∵抛物线的开口向上, ∴a >0, ∵﹣ab2<0, ∴b >0,∵抛物线与y 轴交于负半轴, ∴c <0,∴abc <0,①正确; ∵对称轴为直线x=﹣1,∴﹣ab2=﹣1,即2a ﹣b=0,②错误; ∴x=﹣1时,y <0, ∴a ﹣b+c <0,③错误; ∴x=﹣2时,y <0,∴4a ﹣2b+c <0,④正确; 故选D .点评: 本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题共10个小题,每小题3分,共30分) 11. 8.4×710 解析:将8400万用科学记数法表示为8.4×710. 故答案为8.4×710.点评: 本题考查科学记数法的表示方法.科学记数法的表示形式为a ×n10的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.2()21-a 解析:22a ﹣4a+2,=2(2a ﹣2a+1), =2()21-a .故答案为:2()21-a点评: 本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.1<c <5 解析:由题意得,2a ﹣9=0,b ﹣2=0,解得a=3,b=2, ∵3﹣2=1,3+2=5, ∴1<c <5.故答案为:1<c <5.点评: 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.14.4 解析:去分母得:3x=2x+4, 解得:x=4,经检验x=4是分式方程的解. 故答案为:4.点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.12 解析:正多边形的边数是:360÷30=12.点评: 本题主要考查了多边形的外角和定理,任何多边形的外角和都是360度.16.2 解析:5576345=++++=x ,,2=])5﹣7(+)5﹣6(+)5﹣3(+)5﹣4(+)5﹣5( [ 51=S 222222故答案为:2. 点评: 本题考查方差的计算,关键是掌握:一般地设n 个数据,1x ,2x ,…n x 的平均数为,则方差])(...)()[(1222212x x x x x x nS n -++-+-=. 17.34π 解析:L=180R n π=180460⨯π=34π. 故答案为:34π.点评: 本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L=180Rn π. 18.21解析:过点A 作AD ⊥OB 垂足为D , 如图,在直角△ABD 中,AD=1,OD=2, 则tan ∠AOB=OD AD =21. 故答案为21.点评: 本题考查了锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.19.1 解析:∵AE 为△ABC 的角平分线,CH ⊥AE , ∴△ACF 是等腰三角形, ∴AF=AC , ∵AC=3,∴AF=AC=3,HF=CH ,∵AD 为△ABC 的中线,∴DH 是△BCF 的中位线,∴DH=21BF , ∵AB=5, ∴BF=AB ﹣AF=5﹣3=2.∴DH=1,故答案为1.点评: 本题考查了等腰三角形的判定以及三角形的中位线定理,正确证明HF=CH 是关键.20. -21 解析:1a =3,2a 是1a 的差倒数,即2a =311-=﹣21,3a 是2a 的差倒数,即3a =2111+=32,4a 是3a 差倒数,即4a =3, …依此类推,∵2015÷3=671…2,∴2015a =﹣21. 故答案为:﹣21. 点评: 此题考查了规律型:数字的变化类,以及新定义,找出题中的规律是解本题的关键.三、解答题(本大题共11小题,共90分.)21.解析:根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可. 解:原式=2﹣3﹣1+2×23+3 =1+3=4.点评: 本题考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.22.解析:先去分母,再去括号,移项、合并同类项,把x 的系数化为1即可. 解:去分母得,4(2x ﹣1)≤3(3x+2)﹣12,去括号得,8x ﹣4≤9x+6﹣12,移项得,8x ﹣9x ≤6﹣12+4,合并同类项得,﹣x ≤﹣2,把x 的系数化为1得,x ≥2.在数轴上表示为:.点评: 本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.23.解析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解:原式=12+a a ﹣)1)(1()2(2-+-a a a •2)1(2--a a =12+a a ﹣1)1(2+-a a =12+a . 点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.24.解析:(1)根据图形平移的性质画出△111C B A ;(2)根据旋转的性质画出△212C B A ;(3)利用扇形面积公式求出即可.解:(1)(2)如图:(3)∵BC=3,∴线段11C B 变换到21C B 的过程中扫过区域的面积为:3603902⨯π=49π. 故答案为49π. 点评: 此题主要考查了扇形面积公式以及图形的平移、旋转变换等知识,熟练掌握扇形面积公式是解题关键.25.解析:(1)将A 坐标代入反比例函数解析式中求出m 的值,即可确定出反比例函数解析式;将B 坐标代入反比例解析式中求出n 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式中求出a 与b 的值,即可确定出一次函数解析式;(2)设直线AB 与y 轴交于点C ,求得点C 坐标,COB △AOC △AOB △S +S =S ,计算即可;(3)由图象直接可得自变量x 的取值范围.解:(1)∵A (﹣2,1),∴将A 坐标代入反比例函数解析式x y π=2中,得m=﹣2,∴反比例函数解析式为y=﹣x 2; 将B 坐标代入y=﹣x2,得n=﹣2, ∴B 坐标(1,﹣2),将A 与B 坐标代入一次函数解析式中,得, 解得a=﹣1,b=﹣1,∴一次函数解析式为1y =﹣x ﹣1;(2)设直线AB 与y 轴交于点C ,令x=0,得y=﹣1,∴点C 坐标(0,﹣1),∵COB △AOC △AOB △S +S =S =21×1×2+21×2×1=2; (3)由图象可得,当1y <2y <0时,自变量x 的取值范围x >1.点评: 本题属于反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求函数解析式,三角形面积的求法,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.26.解析:(1)根据等级为A 的人数除以所占的百分比求出总人数,根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(2)求出等级B 的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率. 解:(1)根据题意得:3÷15%=20(人),表示“D 等级”的扇形的圆心角为204×360°=72°; C 级所占的百分比为208×100%=40%, 故m=40,故答案为:20,72,40.(2)故等级B 的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(2)列表如下:男 男 女 女 女男 (男,男) (男,男) (女,男) (女,男) (女,男) 男 (男,男) (男,男) (女,男) (女,男) (女,男) 女 (男,女) (男,女) (女,女) (女,女) (女,女)所有等可能的结果有15种,其中恰好是一名男生和一名女生的情况有8种,则女生恰好是一名男生和一名P =158. 点评: 此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.27.解析:(1)根据四边形ABCD 是菱形,判断出AD ∥BC ,AO=OC ,即可推得OM=ON .(2)首先根据四边形ABCD 是菱形,判断出AC ⊥BD ,AD=BC=AB=6,进而求出BO 、BD 的值是多少;然后根据DE ∥AC ,AD ∥CE ,判断出四边形ACED 是平行四边形,求出DE=AC=6,即可求出△BDE 的周长是多少.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AO=OC ,∴1==OCAO ON OM , ∴OM=ON .(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,AD=BC=AB=6,∴BO=22AO AB -=()22286÷-=25,∴,∵DE ∥AC ,AD ∥CE ,∴四边形ACED 是平行四边形,∴DE=AC=6,∴△BDE 的周长是:BD+DE+BE=BD+AC+(BC+CE ) =45+8+(6+6) =20+45即△BDE 的周长是20+45.点评: (1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了三角形的周长的含义以及求法,以及勾股定理的应用,要熟练掌握.28.解析:本题可设小路的宽为xm ,将4块种植地平移为一个长方形,长为(40﹣x )m ,宽为(32﹣x )m .根据长方形面积公式即可求出小路的宽.解:设小路的宽为xm ,依题意有(40﹣x )(32﹣x )=1140,整理,得2x ﹣72x+140=0.解得1x =2,2x =70(不合题意,舍去).答:小路的宽应是2m .点评: 本题考查了一元二次方程的应用,应熟记长方形的面积公式.另外求出4块种植地平移为一个长方形的长和宽是解决本题的关键.29.解析:先设AB=x ;根据题意分析图形:本题涉及到两个直角三角形Rt △ACB 和Rt △ADB ,应利用其公共边BA 构造等量关系,解三角形可求得DB 、CB 的数值,再根据CD=BC ﹣BD=80,进而可求出答案.解:设AB=x ,在Rt △ACB 和Rt △ADB 中,∵∠C=30°,∠ADB=45°,CD=80∴DB=x ,AC=2x ,BC=()222x x -=3x ,∵CD=BC ﹣BD=80, 3x ﹣x=80, ∴x=40(3+1)≈109.2米.答:该大厦的高度是109.2米.点评: 本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.30.解析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC 的长.(1)证明:连接OC ,∵∠CEA=∠CBA ,∠AEC=∠ODC ,∴∠CBA=∠ODC ,又∵∠CFD=∠BFO ,∴∠DCB=∠BOF ,∵CO=BO ,∴∠OCF=∠B ,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD 为⊙O 的切线;(2)解:连接AC ,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠DCO=∠ACB ,又∵∠D=∠B∴△OCD ∽△ACB ,∵∠ACB=90°,AB=5,BC=4,∴AC=3, ∴BC CD AC CO =, 即435.2CD =, 解得;DC=310.点评: 此题主要考查了切线的判定以及相似三角形的判定与性质,得出△OCD ∽△ACB 是解题关键.31.解析:(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC 的解析式为y=21x ﹣4,则可设E (m ,21m ﹣4),然后分三种情况讨论即可求得; (3)利用△PBD 的面积S=PFD △BOD △梯形S ﹣S ﹣S 即可求得. =解:(1)∵二次函数y=a 2x +bx ﹣4(a ≠0)的图象与x 轴交于A (﹣2,0)、C (8,0)两点, ∴,解得⎪⎪⎩⎪⎪⎨⎧-==2341b a ,∴该二次函数的解析式为y=x x 23412-﹣4;(2)由二次函数y=x x 23412-﹣4可知对称轴x=3,∴D (3,0),∵C (8,0),∴CD=5,由二次函数y=x x 23412-﹣4可知B (0,﹣4),设直线BC 的解析式为y=kx+b , ∴,解得,∴直线BC 的解析式为y=21x ﹣4,设E (m ,21m ﹣4),当DC=CE 时,2EC =222)421()8(CD m m =-+-, 即2225)421()8(=-+-m m ,解得1m =8﹣25,2m =8+25(舍去),∴E (8﹣25,﹣5);当DC=DE 时,2ED =222)421()3(CD m m =-+-即2225)421()3(=-+-m m ,解得3m =0,4m =8(舍去),∴E (0,﹣4);当EC=DE 时,2222)421()3()421()8(-+-=-+-m m m m 解得m5=5.5,∴E (211,﹣45).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣25,﹣5)、(0,﹣4)、(211,﹣45). (3)过点P 作y 轴的平行线交x 轴于点F ,∵P 点的横坐标为m ,∴P 点的纵坐标为412m ﹣23m ﹣4, ∵△PBD 的面积S=PFD △BOD △梯形S ﹣S ﹣S =21m[4﹣(412m ﹣23m ﹣4)]﹣21(m ﹣3)[﹣(412m ﹣23m ﹣4)]﹣21×3×4 =﹣83+411m=﹣832311⎪⎭⎫ ⎝⎛-m +24121 ∴当m=311时,△PBD 的最大面积为24121, ∴点P 的坐标为(311,﹣1277). 点评: 此题考查了学生的综合应用能力,要注意数形结合,认真分析,仔细识图.注意待定系数法求函数的解析式,注意函数交点坐标的求法,注意三角形面积的求法.。