北师大版一次函数知识点
- 格式:doc
- 大小:86.00 KB
- 文档页数:4
北师大版一次函数复习资料北师大版一次函数复习资料一、引言数学是一门抽象而又具有普适性的学科,而一次函数作为数学中的基础概念之一,对于学习数学的同学来说,是一个必须掌握的内容。
本文旨在为大家提供一份北师大版一次函数的复习资料,希望能够帮助大家更好地理解和掌握一次函数的相关知识。
二、一次函数的定义与性质一次函数是指形如y=ax+b的函数,其中a和b是常数,且a≠0。
一次函数的图象是一条直线,具有以下几个重要性质:1. 斜率:斜率是一次函数的重要特征,它表示了函数图象的倾斜程度。
斜率为正表示函数图象向右上方倾斜,斜率为负表示函数图象向右下方倾斜,斜率为零表示函数图象是水平的。
2. 截距:截距是一次函数与y轴的交点坐标,它可以通过函数的表达式直接得到。
截距可以帮助我们确定函数图象的位置。
3. 增减性:一次函数的增减性取决于斜率的正负。
当斜率为正时,函数图象是递增的;当斜率为负时,函数图象是递减的。
4. 零点:一次函数的零点是指函数图象与x轴的交点坐标,可以通过解一元一次方程得到。
零点对应的函数值为0,可以帮助我们确定函数的解。
三、一次函数的图象与表示方法一次函数的图象是一条直线,可以通过以下几种方法进行表示:1. 函数表达式:一次函数的函数表达式可以直接描述函数的特征,例如y=2x+1表示斜率为2,截距为1的一次函数。
2. 斜率截距形式:斜率截距形式是一种常用的表示方法,形如y=kx+b,其中k 表示斜率,b表示截距。
3. 点斜式:点斜式是通过给定一点和斜率来表示一次函数的方法,形如y-y₁=k(x-x₁),其中(x₁,y₁)为已知点,k为斜率。
4. 两点式:两点式是通过给定两个点来表示一次函数的方法,形如y-y₁=(y₂-y₁)/(x₂-x₁)(x-x₁),其中(x₁,y₁)和(x₂,y₂)为已知点。
四、一次函数的应用一次函数在实际生活中有着广泛的应用,以下是一些常见的应用场景:1. 直线运动:物体在匀速直线运动时,其位移与时间的关系可以用一次函数来表示。
初二函数知识点知识点一、平面直角坐标系一、平面直角坐标系在平面内画两条彼此垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;成立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部份,别离叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
二、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能倒置。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
知识点二、不同位置的点的坐标的特点一、各象限内点的坐标的特点点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x点P(x,y)在第三象限0,0<<⇔y x点P(x,y)在第四象限0,0<>⇔y x二、坐标轴上的点的特点点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特点点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数4、和坐标轴平行的直线上点的坐标的特点位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
五、关于x 轴、y 轴或远点对称的点的坐标的特点点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数六、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念一、变量与常量在某一转变进程中,能够取不同数值的量叫做变量,数值维持不变的量叫做常量。
初二(上)第四章一次函数一.变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.①常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化; ②常量和变量是相对于变化过程而言的.可以互相转化;③不要认为字母就是变量,例如π是常量.二.函数的定义:设在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量.说明:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.三.用来表示函数关系的等式叫做函数解析式,也称为函数关系式. 注意:①函数解析式是等式.②函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.③函数的解析式在书写时有顺序性,列y=x+9时表示y 是x 的函数,若写成x=-y+9就表示x 是y 的函数.四.函数自变量的取值范围自变量的取值范围必须使含有自变量的表达式都有意义.①当表达式的分母不含有自变量时,自变量取全体实数.例如y=65x 2-中的x . ②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=5x 67-. ③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.五.函数值函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.注意:①当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程;②当自变量确定时,函数值是唯一确定的.但当函数值唯一确定时,对应的自变量可以是多个.六.函数的图象定义.对于一个函数,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.注意:①函数图形上的任意点(x,y)都满足其函数的解析式;②满足解析式的任意一对x、y的值,所对应的点一定在函数图象上;③判断点P(x,y)是否在函数图象上的方法是:将点P(x,y)的x、y的值代入函数的解析式,若能满足函数的解析式,这个点就在函数的图象上;如果不满足函数的解析式,这个点就不在函数的图象上七.一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.①由一次函数的定义可知:函数为一次函数⇔其解析式为y=kx+b(k≠0,k、b是常数)的形式.②一次函数解析式的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.③一般情况下自变量的取值范围是任意实数.④若k=0,则y=b(b为常数),此时它不是一次函数.八.一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.九.正比例函数的定义:(1)一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注意:正比例函数的定义是从解析式的角度出发的,注意定义中对比例系数的要求:k是常数,k≠0,k是正数也可以是负数十.正比例函数图象的性质当k>0时,直线y=kx依次经过第三、一象限,从左向右上升,y随x的增大而增大;当k <0时,直线y=kx依次经过第二、四象限,从左向右下降,y随x的增大而减小.十一.待定系数法求一次函数解析式待定系数法求一次函数解析式一般步骤是:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.十二.一次函数的对称直线y=kx+b,(k≠0,且k,b为常数)①关于x轴对称,就是x不变,y变成-y:-y=kx+b,即y=-kx-b;(关于X轴对称,横坐标不变,纵坐标是原来的相反数)②关于y轴对称,就是y不变,x变成-x:y=k(-x)+b,即y=-kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)③关于原点对称,就是x和y都变成相反数:-y=k(-x)+b,即y=kx-b.(关于原点轴对称,横、纵坐标都变为原来的相反数)一次函数的平移一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:上加下减,左加右减;③两条直线相交,其交点都适合这两条直线一次函数平行问题直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条线段重合.(1)两条直线的交点问题两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.(2)两条直线的平行问题若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.例如:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.一次函数的图象的画法:经过两点(0,y)、(x,0)作直线y=kx+b.注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b 分别是与y轴,x轴平行的直线,就不是一次函数的图象.。
北师大版八年级数学上册《一次函数》知识总结!第四章一次函数一、函数1、变量的定义:在某一变化过程中,我们称数值发生变化的量为变量。
注意:变量还分为自变量和因变量。
2、常量的定义:在某一变化过程中,有些量的数值始终不变,我们称它们为常量。
3、函数的定义:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数,y的值称为函数值。
4、函数的三种表示法:(1)表达式法(解析式法);(2)列表法;(3)图象法。
a、用数学式子表示函数的方法叫做表达式法(解析式法)。
b、由一个函数的表达式,列出函数对应值表格来表示函数的方法叫做列表法。
c、把这些对应值(有序的)看成点坐标,在坐标平面内描点,进而画出函数的图象来表示函数的方法叫做图像法。
5、求函数的自变量取值范围的方法。
(1)要使函数的表达式有意义:a、整式(多项式和单项式)时为全体实数;b、分式时,让分母≠0;c、含二次根号时,让被开方数≠0。
(2)对实际问题中的函数关系,要使实际问题有意义。
注意可能含有隐含非负或大于0的条件。
6、求函数值方法:把所给自变量的值代入函数表达式中,就可以求出相应的函数值。
7、描点法画函数图象的一般步骤如下:Step 1:列表(表中给出一些自变量的值及其对应的函数值);Step 2:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);Step 3:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、判断y不是x的函数的题型:A、给出解析式让你判断:可给x值来求y的值,若y的值唯一确定,则y 是x的函数;否则不是。
B、给出图像让你判断:过x轴做垂线,垂线与图像交点多余一个(≥2)时,y不是x的函数;否则y是x的函数。
二、正比例函数1、正比例函数的定义:一般地,形如y= kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
数学北师大版一次函数知识点
一次函数在数学上也被称为线性函数,其一般形式为y = kx + b,其中k和b为常数,x为自变量,y为因变量。
以下是一次函数的一些重要知识点:
1. 斜率:斜率k表示函数图像的倾斜程度。
斜率为正时,函数图像向上倾斜;斜率为
负时,函数图像向下倾斜;斜率为0时,函数图像水平。
2. 截距:截距b表示函数图像与y轴相交的位置。
当x=0时,函数的值为截距b。
3. 零点:一次函数的零点表示函数图像与x轴相交的点,即使得y=0的x的值。
4. 平行与垂直:两个一次函数平行(或垂直)意味着它们具有相同(或互为倒数的相反)的斜率。
5. 点斜式:点斜式表示一次函数通过给定的点(x1, y1)且具有斜率k的方程为y - y1 = k(x - x1)。
6. 一般式:一般式表示一次函数的一般方程形式为Ax + By + C = 0,其中A、B、C
为常数,A和B不同时为0。
7. 平移与缩放:对一次函数进行平移或缩放可以改变函数的斜率和截距,从而改变函
数图像的位置和形状。
这些知识点是学习一次函数的基础,通过掌握它们可以更好地理解和分析一次函数的
性质和图像。
数学北师大版一次函数知识点数学北师大版一次函数知识点1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,那么称y是x的一次函数(x为自变量,y 为因变量)。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x 的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
4.两点坐标求函数解析式:待定系数法一次函数是初中学生学习函数的开场,也是今后学习其它函数知识的基石。
在学习本章内容时,老师应该多从实际问题出发,引出变量,从详细到抽象的认识事物。
培养学生良好的变化与对应意识,体会数形结合的思想。
在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。
学习数学有哪些常见问题思维才能的提升孩子进入初中后学习数学最常见的问题就是根底知识不结实,对于一些根底的知识点没有方法去灵敏的运用。
这是因为相对于小学数学的学习内容,初中数学更多的是对于初一学生抽象才能的运用,可是这同时也使得大局部的初一学生不可以快速的进入到学习的状态。
初中数学公式无法掌握同样的上了初中的学生在学习数学上另一个比拟常见的问题,就是对于初一数学公式记不住,这样在运用上就会非常困难。
而大局部的初一学生对于数学公式都会存在死记硬背的情况,其实这样很不利于初一学生的学习。
初中生在记数学公式的时候,一定要在理解的根底上去记忆。
初中数学一元一次方程知识点1.定义:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。
初二函数知识点
知识点一、平面直角坐标系
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
点P(x,y)在第一象限0,0>>⇔y x
点P(x,y)在第二象限0,0><⇔y x
点P(x,y)在第三象限0,0<<⇔y x
点P(x,y)在第四象限0,0<>⇔y x
2、坐标轴上的点的特征
点P(x,y)在x 轴上0=⇔y ,x 为任意实数
点P(x,y)在y 轴上0=⇔x ,y 为任意实数
点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)
3、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等
点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数
4、和坐标轴平行的直线上点的坐标的特征
位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征
点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数
点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数
点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数
6、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x 轴的距离等于y
(2)点P(x,y)到y 轴的距离等于x
(3)点P(x,y)到原点的距离等于22y x +
知识点三、函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
知识点四、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
2、一次函数的图像 所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
4、正比例函数的性质
一般地,正比例函数kx y =有下列性质:
(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大,图像从左之右上升;
(2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小,图像从左之右下降。
5、一次函数的性质
一般地,一次函数b kx y +=有下列性质:
(1)当k>0时,y 随x 的增大而增大
(2)当k<0时,y 随x 的增大而减小
(3)当b>0时,直线与y 轴交点在y 轴正半轴上
(4)当b<0时,直线与y 轴交点在y 轴负半轴上
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。
解这类问题的一般方法是待定系数法。