闭区间套定理的应用_刘宪敏
- 格式:pdf
- 大小:34.35 KB
- 文档页数:1
闭区间套定理证明单调有界数列收敛定理闭区间套定理,又称为Cantor定理,是数学分析中非常重要的一个定理,它可以用来证明单调有界数列的收敛性。
在本文中,我们将详细讨论闭区间套定理的证明方法和应用。
首先,我们来介绍一下闭区间套定理的概念。
闭区间套定理是基于实数的完备性公理,在这里我们不过多地涉及实数的定义和性质,只需要知道实数满足完备性公理即可。
闭区间套定理的陈述如下:对于一系列的闭区间[a1, b1],[a2,b2],[a3, b3],...,满足以下两个条件:首先,对于任意的正整数n,都有[a(n+1), b(n+1)]是[a(n), b(n)]的子区间;其次,序列{b(n) - a(n)}是一个收敛的数列。
那么,存在唯一的实数x,它同时属于所有的闭区间[a(n), b(n)]。
证明闭区间套定理的关键是构造一个实数x,我们可以通过区间的中点来构造这个实数。
具体的证明步骤如下:首先,由于每个闭区间[a(n+1), b(n+1)]都是[a(n), b(n)]的子区间,所以这些闭区间形成了一个嵌套的闭区间序列。
根据实数的完备性公理,我们知道这个嵌套的闭区间序列一定存在一个实数x,它属于所有的闭区间。
接下来,我们来证明这个实数x是唯一的。
假设存在另一个实数y,它也同时属于所有的闭区间[a(n), b(n)]。
那么,根据实数的性质,我们知道x和y之间一定存在一个有理数q。
由于x和y都同时属于所有的闭区间,所以q同时属于所有的闭区间。
但我们知道每个闭区间的长度都趋近于零,所以q的存在与有理数的稠密性矛盾。
因此,实数x是唯一的。
最后,我们需要证明序列{b(n) - a(n)}是一个收敛的数列。
由于每个闭区间[a(n+1), b(n+1)]都是[a(n), b(n)]的子区间,所以这些闭区间的长度{b(n) - a(n)}一定是递减且非负的。
根据实数的性质,我们知道这个数列一定存在一个下界,即存在一个常数M,使得对于任意的正整数n,都有{b(n) - a(n)} ≥ M。
闭区间套定理证明单调有界数列收敛定理闭区间套定理(Nested Interval Theorem)是实数完备性的一个等价表述,可以用来证明单调有界数列的收敛性。
以下是对这个定理的证明:假设有一个单调递增的实数数列{a_n},同时它也被一个实数数列 {b_n} 上界限制。
我们要证明 {a_n} 收敛,并找到它的极限L。
这里的上界约束意味着对于每个n,a_n ≤b_n,其中{b_n} 是一个递减数列。
首先,我们观察到闭区间[a_1, b_1]。
由于{a_n} 单调递增,我们有 a_1 ≤ a_n ≤ b_n ≤ b_1。
这意味着每个闭区间都包含在前一个闭区间中。
接下来,我们构造一个数列{I_n},其中每个元素是之前闭区间的中点。
也就是说,I_n = (a_n + b_n) / 2。
由于 {a_n} 是递增的且 {b_n} 是递减的,我们可以得到 I_1 ≤ I_2 ≤ I_3 ≤ ...。
根据闭区间套定理(Nested Interval Theorem),存在唯一的实数 c,满足 c ∈⋂[a_n, b_n]。
也就是说,c 同时存在于每个闭区间 [a_n, b_n] 中。
我们现在证明 c 是该数列 {a_n} 的极限。
由于 {a_n} 单调递增,对于任何n,a_n ≤c。
另一方面,对于任何k,通过数列{I_n} 的构造方式,我们有 c ≤ I_k ≤ b_k。
而这意味着 c ≤ a_k ≤ b_k,对于所有的 k,得到 c ≤ a_k ≤ b_k ≤ b_1。
因此,c 是{a_n} 的上界。
接下来,我们证明 c 是 {a_n} 的最小上界,也就是它是数列的上确界。
假设存在一个上界 d,满足 d < c。
那么存在一个 n,使得 d < a_n ≤ c,这与 c ∈⋂[a_n, b_n] 矛盾。
因此,c 是 {a_n} 的上确界。
综上所述,我们证明了闭区间套定理可以用来证明单调有界数列的收敛性。
闭区间套定理证明单调有界数列收敛定理摘要:一、引言二、闭区间套定理简介三、单调有界数列收敛定理证明1.准备工作2.闭区间套定理应用3.推导过程4.结论四、实例分析五、总结与展望正文:一、引言在数学分析中,收敛定理是研究数列行为的重要工具。
其中,单调有界数列收敛定理是收敛定理的一个核心部分。
本文将通过对闭区间套定理的证明,揭示单调有界数列的收敛性,并通过实例分析加深对这一定理的理解。
二、闭区间套定理简介闭区间套定理是拓扑学中的一个重要定理,它揭示了闭区间序列的性质。
该定理表述如下:设(Ai)i∈N是一个闭区间序列,如果每个区间Ai都包含在某个更大的闭区间Bi中,那么存在一个极限点,使得极限点属于所有的Bi,但不属于任何Ai。
三、单调有界数列收敛定理证明(1)准备工作首先,我们需要明确单调有界数列的定义。
设(an)n∈N是一个实数数列,如果满足以下条件:1.单调性:对于任意的n,有an+1 ≤ an;2.有界性:存在实数M,使得对于任意的n,有-M ≤ an ≤ M。
(2)闭区间套定理应用根据闭区间套定理,我们可以找到一个极限点,使得极限点属于所有的闭区间[an, M],但不属于任何[an+1, M]。
这里,闭区间[an, M]表示数列(an)n∈N的有界区间。
(3)推导过程根据极限点的定义,我们有:lim(n→∞) an = λ其中,λ表示极限点。
(4)结论由于数列(an)n∈N是有界单调递减的,所以当n趋向于无穷大时,an 的极限存在且唯一。
这就证明了单调有界数列收敛定理。
四、实例分析为了更好地理解这一定理,我们可以举一个具体的例子。
考虑数列(an)n∈N,其中an = n - 4。
这个数列是有界且单调递减的。
我们可以找到一个极限点,例如λ = 2,使得数列(an)n∈N收敛于2。
五、总结与展望本文通过对闭区间套定理的证明,揭示了单调有界数列的收敛性。
这一定理在数学分析中具有广泛的应用,是研究数列行为的重要工具。
应用闭区间套定理的步骤及方法作者:张珅作者单位:上海中华职业技术学院刊名:新课程学习(基础教育)英文刊名:JOURNAL OF NEW CURRICULUM LEARNING年,卷(期):2010,""(4)被引用次数:0次1.华东师范大学数学系数学分析 19912.宋国柱分析中的基本定理和典型方法 20043.李莲洁实数连续性等价命题的证明及应用 2002(2)4.胡丽平实数集连续性定理的证明 2001(3)5.周明用闭区间套定理证明闭区间上连续函数的性质 1998(2)1.期刊论文常进荣.王林闭区间套定理的推广及应用-石家庄职业技术学院学报2003,15(6)将实分析中的闭区间套定理作了推广,并给出了三个应用实例.2.期刊论文毛一波.MAO Yi-bo闭区间套定理的推广-渝西学院学院(自然科学版)2005,4(2)从两个方面对实数集R1上的闭区间套定理进行了推广,得到了一般完备度量空间上的闭区间套定理,而一般实数集Rn空间上的闭区间套定理为其特例,并利用Rn空间上的闭区间套定理得到了Rn空间上的聚点定理.3.期刊论文毛青松.MAO Qing-song赋Γ收敛结构的模糊数空间上的两个基本定理-黑龙江大学自然科学学报2009,26(6)首先介绍关于模糊数和Γ收敛的相关概念和结论,然后给出具有小于等于关系的模糊数之间的Hausdorff距离的一个不等式.设u,v,w∈E,若u≤v≤w,则d_H(end u,end v)≤d+H(end u,end w).在此基础上证明了在赋Γ收敛结构的模糊数空间上成立单调收敛定理和闭区间套定理.这一结论推广了实数理论的相关结果.4.期刊论文谢振肖两个特殊命题的证明-高等数学研究2009,12(4)利用闭区间套定理精确证明幂级数收敛半径的存在性问题.利用有限覆盖定理证明一含参变量积分问题.5.期刊论文刘宪敏.段庆斌.李海春闭区间套定理的应用-辽宁教育行政学院学报2007,24(4)闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中.在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理.6.期刊论文李莲洁实数连续性等价命题的证明及应用-淮北煤师院学报(自然科学版)2002,23(2)本文以闭区间套定理为基础,证明实数连续性的其他等价命题,并给出它们的应用及有关的评议.7.期刊论文朱俊恭关于闭区间套定理-遵义师范学院学报2002,4(1)对闭区间套定理的条件作一些变动或增加,可以得到相同的结论.8.期刊论文许静波.XU Jing-bo实数连续性理论在平面几何上的应用-吉林师范大学学报(自然科学版)2006,27(4)本文利用实数的连续性理论解决了平面几何方面的问题,具体用闭区间套定理证明了平面上任给一个三角形都存在任意方向上的一条直线,可将该三角形分成面积相等的两部分,进一步又得到:对于一个三角形和一个多边形,至少存在一条直线可将它们同时分成面积相等的两部分.9.期刊论文韩云芷.田艳先.HAN Yun-zhi.TIAN Yan-xian积分中值定理的构造性证明-保定师范专科学校学报2007,20(4)利用闭区间套定理证明定积分中值定理,并利用定积分中值定理证明二重积分中值定理.10.期刊论文李响.李春明闭区间套定理的延伸-齐齐哈尔大学学报(自然科学版)2008,24(4)区间套定理是数学分析的基本定理之一,也是一个刻划实数连续性的等价命题,它常常报某区间上满足的性质采用对分法归结为某点的局部性质,这种方法往往简单而有效,因而引起人们研究的兴趣,在文献[1]中给出了R"空间的区域套定理,本文将进一步延伸到度量空间.本文链接:/Periodical_xkcxx-jcjy201004105.aspx授权使用:中共汕尾市委党校(zgsw),授权号:eb648148-bd61-4072-88ab-9dcd014e68ab下载时间:2010年8月9日。
重庆三峡学院数学分析课程论文闭区间套定理的证明、推广及应用院系数学与统计学院专业数学与应用数学(师范)姓名姜清亭年级 2009级学号 ************指导教师刘学飞2011年5月闭区间套定理的证明、推广及应用姜清亭(重庆三峡学院 数学与统计学院 09级数本(1)班)摘 要 闭区间套定理是数学分析中一个重要定理,可以应用到数学教学、科学研究及日常生活中。
同时得到与之相应的若干定理,并使闭区间套定理得到推广。
其中在数学教学中的应用最突出的地方是证明某些数学定理,如零点定理。
关键词 开区间套定理 闭区闭套定理 聚点定理证明 有界性定理证明1 空间上的区间套定理定理1 (闭区间套定理) 设有闭区间列{[],n n a b }若1 [][][]1122,,....,....n n a b a b a b ⊃⊃⊃2 lim()0n n n b a →∞-=则存在唯一数属于l 。
所有的闭区间(即[]1,n n n a b l ∞==),且lim lim n n n n a b l →∞→∞== 证明:由条件1可知,数列增加有上界1b ,数列{n b }单调减少有下界1a ,1221.........n n a a a b b b ≤≤≤≤≤≤根据公理,数列{n a }收敛,设lim n n a →∞=l .由条件2 有()lim lim ()lim lim 0n n n n n n n n nx n n b b a a b a a l l →∞→∞→∞→∞=-+=-+=+=于是,lim lim n n n n a b l →∞→∞==,对任意取定的,n k N k +∈∀,有k nn k a a b b ≤≤,从而,lim lim k n n k n n a a l b b →∞→∞≤==≤, 或k k a l b ≤≤,即l 属于所有的闭区间.证明l 唯一性.假设还有一个'l 也属于所有的闭区间,从而'',,,,n n n n n N l l a b l l b a +⎡⎤∀∈∈-≤-⎣⎦有有有条件2),有'l l =即l 是唯一的.2 闭区间套定理的推广定理2 (开区间套定理)若开区间列{(),n n a b },若1 [][][]1122,,....,....n n a b a b a b ⊃⊃⊃2 )(lim n n n a b -∞→= nn ab 2lim-∞→=0对每个闭区间[n n b a ,],有)()(n n b f a f <0,根据闭区间套定理知,存在唯一数l 属于所有的闭区间,且n n a ∞→lim =n n b ∞→lim =l证:由条件⑴知:1221b b b a a a n n ≤≤⋅⋅⋅⋅≤≤⋅⋅⋅⋅⋅≤≤⋅⋅⋅⋅⋅≤≤, 即{}()的数列,是单调增加有上界1b a n {}的数列。
解析高考数学中的区间套定理及应用高考中的数学学科不仅是考试中的一个科目,更是学生学习中的核心学科之一。
其中,区间套定理是高考数学中的重要概念之一。
本文将深入解析区间套定理及其应用。
一、区间套定理的定义区间套定理是指,当一个闭区间序列{l_n}满足两个条件时,其中必存在一个实数c,该实数同时位于所有的闭区间中。
1.所有闭区间长度收敛于02.所有闭区间互相包含,即若i<j,则l_i包含于l_j中。
该定理看似无趣,但实际上应用广泛。
在高等数学和实分析中,区间套定理被用作连续函数和序列极限的证明。
二、区间套定理的应用1. 證明收緊性定理收缩映射定理是指,对于一个收缩映射f,如果有一个不动点,那么这个不动点是唯一的。
根据区间套定理,我们可以证明收缩映射定理的原理。
假设我们要证明该定理,我们可以选择一个初始点c,并通过递归地应用收缩映射f来构建一个闭区间序列。
由于该序列必须互相包含且长度必须趋于零,因此我们知道该序列收敛到一个不动点。
同时,由于f是一个收缩映射,它必须收缩区间的长度,并将其映射到自身上,从而满足定理的条件。
2. 证明序列的极限另一个区间套定理的应用是证明序列的极限。
如果我们有一个收敛的序列{a_n},则我们可以构建一个闭区间序列{[a_n, a_n+1]}。
由于{a_n}收敛,我们知道该闭区间序列的长度趋向于零。
根据区间套定理,我们也知道存在一个实数c,它同时包含于所有闭区间中。
此时,我们可以推断出该实数c即为该序列的极限。
3. 求解方程区间套定理还可用于求解方程。
如果我们要解一个方程f(x) = 0,我们可以选择两个不同的实数a和b,然后构建一个闭区间序列{[a, b]}。
我们接下来计算出f(c)的值,其中c是该闭区间的中间点。
如果f(c)为0,则我们已经找到了方程的解。
否则,我们可以根据f(c)的符号和中间点c的位置递归地选择一个新的子区间。
我们不断重复这一过程,直到我们找到一个f(c) = 0的解。