x1、x2……xk~N(μ,σ2)
uk
2
xi
分类资料为间断的,不连续分布。故计算的
2值不连续,对于四格表资料来说,当n≥40,且 有1≤T<5时,求出的概率可能偏小,因此需进
xi u u u i 1
2 2 1 2 2 2 k k
2
下右侧尾部面积为α时2 的界值;
0.0 0 1 2 3 4 5 2 6 7 8 9
4 2 值反映了理论频数和实际频数 10 的吻合程度;
Dec 1,2009
二、四格表的专用公式
对于四格表资料,通过推导可将式9-4转换 成四格表的专用公式:
组别 阳性数 阴性数 合计
I组
II组 合计
a
c a+c=n.1
合计 660 640 1300
患病率(%) 13.64 21.88 17.69
A: actual value 实际数
(A T) T
2
2
T: theoretical value 理论数
Dec 1,2009
如何求各个格子的理论数T?
• H0: 1=2= • 理论数T为假设的总合计率已知的条件下, 所估计的理论频数,在目前的情况下,将 样本现有的合计患病率作为总合计率的最 佳估计,即17.69%
Dec 1,2009
H0:=0 H1:>0 单侧=0.05 本例n=500,X=95,p=0.19,0=0.097, 得:
0.19 0.097 u 7.026 0.097 (1 0.097 ) / 500
因单u0.05=1.64, u>u0.05, p<0.05,按=0.05水准, 拒绝H0,接受H1