空调蓄冷方式的比较
- 格式:pdf
- 大小:132.78 KB
- 文档页数:4
蓄冷空调的五种工作模式蓄冷空调是一种节能环保的空调,可以将冷媒在夜间低峰期冷藏,白天使用时通过蒸发换热器将室内空气进行冷却。
由于蓄冷空调具有较高的节能效果和比普通空调更舒适的使用体验,已经成为了建筑节能标准的重要补充方式,而以下是蓄冷空调的五种工作模式。
1. 制冷模式制冷模式是蓄冷空调最主要的工作模式,它采用的是传统的空调制冷技术。
在这种模式下,蓄冷空调将夜间储存的冷媒通过循环系统送到室内蒸发换热器中,与室内空气进行换热,达到降温的效果。
2. 加湿模式加湿模式是蓄冷空调的另一种基本工作模式。
在较干燥的环境中,蓄冷空调可以利用这种模式增加室内空气的湿度,从而提高室内人体的舒适感。
它采用的是水箱蒸发器的技术,在空气与水箱蒸发器接触的过程中,水分子会逐渐转移到空气中,从而实现加湿的作用。
3. 换气模式换气模式是蓄冷空调解决室内空气污染问题的一种途径。
在这种模式下,蓄冷空调会将室内空气排出房间,而同时从室外吸入新鲜的空气,从而实现室内空气的循环更新,达到清新的效果。
4. 压缩变频模式压缩变频模式是一种节能稳定的空调工作模式。
它采用压缩机运行的状态进行调节,根据室内温度和需求自动控制压缩机的转速,以达到最佳的制冷效果和能耗的平衡。
5. 后送风模式后送风模式是一种相对复杂的工作模式,它能够在保证制冷量的同时,实现空气的动态平衡。
这种模式下,蓄冷空调不仅将冷媒带入室内进行降温,同时也会使热空气无法在室内聚积,保持室内的风动态平衡,提高室内空气的舒适度。
总的来说,蓄冷空调的五种工作模式都是以提高能源利用效率、提高舒适度和降低能耗为目标而研制的,而在实际使用中,根据实际需求进行选择,可以达到更好的效果。
冰蓄冷空调系统与常规空调系统的比较※采用冰蓄冷系统的前提:电力部门峰谷电价政策※冰蓄冷系统的运行:夜间利用低谷电蓄存冷量,白天在峰电期间把蓄存的冷量释放,转移高峰用电。
※冰蓄冷系统的运行装置较常规系统储冷装置,末端相同。
※冰蓄冷系统的一些优势:1、转移了制冷机用电时节省了运行费用,有的地方对采用低谷电给予一些优惠政策减收或免收电力增容费。
2、装机容量和配电减少,常规机组按峰值负荷选型,而冰蓄冷系统夜间蓄冷可满足部分或全部峰值负荷,这样装机容量减小,一般可减少20%—50%,相应配电费也减少。
3、制冷机组满负荷运行的比例增大,有利于提高机组的利用率和延长使用寿命。
4、谷电电压比较平稳,有利于延长机组的使用寿命。
5、有良好的应急能力,当负荷突然增大时,融冰放冷能够在短时间内达到供冷要求。
6、全自动控制。
工况切换,程序设定,运行图表,负荷情况等,还增加了网络功能,,可与智能楼宇的计算机系统相连,可以方便、直观、集中的控制。
7、冰蓄冷系统的投资费用较常规系统较高(仅机房部分,末端相同),但如果考虑配电费,有可能投资相当或增加不多,甚至降低。
列举:上海威海花园深圳野生动物园北京海淀新科技大厦杭州市交通银行金融大楼武汉华美达天禄酒店武汉科技会展中心长沙水利局漓水流域全球最大的冰蓄冷项目——横傧二十一世纪广场冰罐2200 m3。
STL 冰蓄冷系统较其他冰蓄冷系统的比较1、质量稳定。
STL冰蓄冷系统由法国自动流水生产线连续生成,有十几年生产和应用经验。
2、使用寿命长。
球壳为高密度聚烯烃材料,内装稳定的蓄冷液,经法国权威测试,使用寿命可达100年。
3、可靠性强。
与盘管蓄器相比,STL系统流通面积大,不易阻塞、腐蚀及结垢,即使个别蓄冰球破损,也不会影响系统性能,而盘管蓄冷器若一处破损,则系统蓄并失败。
4、换热效率高。
由于蓄冰球换热表面积大和独特的蓄冷液配方,STL系统具有极大的换热能力,可在短时间内大量放冷,使系统更具弹性。
浅谈冰蓄冷空调与常规中央空调的优缺点本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。
现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。
1)冰蓄冷中央空调系统特点冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。
该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。
从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。
比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。
很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。
中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。
一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。
2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。
冰蓄冷空调从其原理和实践中可以看出它有如下特点优点:①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。
②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。
③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。
八、水蓄冷与冰蓄冷的比较一. 水蓄冷与冰蓄冷比较将水蓄冷与冰蓄冷进行比较,这二种蓄冷方式的最大不同就是水蓄冷是利用水的温度变化(显热变化)进行蓄冷,而冰蓄冷利用水的相态变化(相变所需的潜热)进行蓄冷。
因此,冰、水蓄冷系统在下列方面发生了变化。
(1)蓄冷系统制冷机的容量从冰蓄冷简介中知道:冰蓄冷制冷机组蓄冷工况下的制冷能力系数C f为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况低了0.4~0.35,也就是说冰蓄冷在希望利用蓄冷系统减少制冷机组容量的愿望很难实现。
而水蓄冷就不存在这一问题。
(2)蓄冷装置的蓄冷密度从冰蓄冷与水蓄冷的简介中知道:冰蓄冷槽的蓄冷密度为(40~50kW /m3),蓄冷水池的蓄冷密度为(7~11.6kW /m3)。
冰蓄冷槽的蓄冷密度是蓄冷水池蓄冷密度的5倍左右。
这里要说明一下,就是关于水蓄冷与冰蓄冷的占地问题。
通常在人们的心目中,一说起水蓄冷,就有水池容积大,要占用大块地方。
其实这是一种错觉。
产生这一错觉的原因是:以为冰蓄冷利用的是水的潜热,而物态变化的热潜热是比较大的(往往人们对凝固热不太熟悉,又经常与汽化热来衡量),认为蓄冰槽内冰的容积比例可为1,因此,远远夸大了蓄冰槽蓄冷密度。
而实际上蓄冰槽的蓄冷密度仅是蓄冷水池蓄冷密度的5倍左右,以目前使用最多的冰盘管为例,冰蓄冷槽需要安装在室内,并要求有一定的安装距离。
我们曾对某一冰蓄冷系统与水蓄冷系统进行比较,如果将蓄冰槽安装的场地全部空间改为蓄冷水池,再加上该建筑物的消防水池,二者的蓄冷能力近乎相当。
(3)蓄冷装置的兼容性水蓄冷系统的蓄冷水池冬季可作为蓄热水池使用,这一点对于热泵运行的制冷系统是特别有用的。
而冰蓄冷系统蓄冰槽则没有此功能。
(4)蓄冷系统的建设投资冰蓄冷与水蓄冷相比,一般来说,水蓄冷系统基本建设投资不高于常规空调系统,而冰蓄冷系统基本建设投资比常规空调系统高出20%以上。
冰蓄冷的缺点:冰蓄冷的用电量高于常规空调20%左右,水蓄冷则可节省制冷用电10%左右。
冰蓄冷空调系统可分为全部蓄能系统和部分蓄能系统。
当电费价格在不同时间里有差别时,可以将全部负荷转移到廉价电费的时间里运行。
可选用一台能蓄存足够能量的传统冷水机组,将整个负荷转移到高峰以外的时间去,这称之为“全部蓄能系统”。
这种方式常常用于改建工程中利用原有的冷水机组,只需加设蓄冷设备和有关的辅助装置,但需注意原有冷水机组是否适用于冰蓄冷系统1 冰蓄冷空调系统原理及主要特点冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 如用电高峰) 把冷量取出来进行利用。
由此可以实现对电网的“削峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。
冰蓄冷空调系统具有以下主要特点:(1) 降低空调系统的运行费用。
(2) 制冷机组的容量小于常规空调系统, 空调系统相应的冷却塔、水泵、输变电系统容量减少。
(3) 在某些常规空调系统配上冰蓄冷设备, 可以提高30%~50%的供冷能力。
(4) 可以作为稳定的冷源供应, 提高空调系统的运行可靠性。
(5) 制冷设备大多处于满负荷的运行状况, 减少开停机次数, 延长设备寿命。
(6) 对电网进行削峰填谷, 提高于电网运行稳定性、经济性, 降低发电装机容量。
(7) 减少发电厂对环境的污染。
2 系统的组成及制冰方式分类2.1 系统组成冰蓄冷空调系统一般由制冷机组、蓄冷设备( 或蓄水池) 、辅助设备及设备之间的连接、调节控制装置等组成。
冰蓄冷空调系统设计种类多种多样, 无论采用哪种形式, 其最终的目的是为建筑物提供一个舒适的环境。
另外, 系统还应达到能源最佳使用效率, 节省运转电费, 为用户提供一个安全可靠的冰蓄冷空调系统。
2.2 制冰方式分类根据制冰方式的不同, 冰蓄冷可以分为静态制冰、动态制冰两大类。
此外还有一些特殊的制冰结冰, 冰本身始终处于相对静止状态, 这一类制冰方式包括冰盘管式、封装式等多种具体形式。
动态制冰方式在制冰过程中有冰晶、冰浆生成, 且处于运动状态。
冰蓄冷空调的原理和优缺点介绍一、冰蓄冷的技术原理:冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。
在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。
国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。
二、冰蓄冷技术与普通空调相比所具有的优势:1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。
2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。
3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。
B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。
4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。
b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。
c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。
三、冰蓄冷技术与普通空调相比所具有的缺点:1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。
2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。
3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。
4、与普通空调系统相比需增加水管和风管的保温费用。
5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。
水蓄冷与冰蓄冷比较将水蓄冷与冰蓄冷进行比较,这二种蓄冷方式的最大不同就是水蓄冷是利用水的温度变化(显热变化)进行蓄冷,而冰蓄冷利用水的相态变化(相变所需的潜热)进行蓄冷。
因此,冰、水蓄冷系统在下列方面发生了变化。
(1)蓄冷系统制冷机的容量从冰蓄冷简介中知道:冰蓄冷制冷机组蓄冷工况下的制冷能力系数C为0.60.65 (制冰温度为-6C时),其制冷能力比制冷机组在空调工况低了0.4〜0.35,也就是说冰蓄冷在希望利用蓄冷系统减少制冷机组容量的愿望很难实现。
而水蓄冷就不存在这一问题。
(2)蓄冷装置的蓄冷密度从冰蓄冷与水蓄冷的简介中知道:冰蓄冷槽的蓄冷密度为(40〜50kW/m3),蓄冷水池的蓄冷密度为(7〜11.6kW /m3)。
冰蓄冷槽的蓄冷密度是蓄冷水池蓄冷密度的5倍左右。
这里要说明一下,就是关于水蓄冷与冰蓄冷的占地问题。
通常在人们的心目中,一说起水蓄冷,就有水池容积大,要占用大块地方。
其实这是一种错觉。
产生这一错觉的原因是:以为冰蓄冷利用的是水的潜热,而物态变化的热潜热是比较大的(往往人们对凝固热不太熟悉,又经常与汽化热来衡量),认为蓄冰槽内冰的容积比例可为1,因此,远远夸大了蓄冰槽蓄冷密度。
而实际上蓄冰槽的蓄冷密度仅是蓄冷水池蓄冷密度的5倍左右,以目前使用最多的冰盘管为例,冰蓄冷槽需要安装在室内,并要求有一定的安装距离。
我们曾对某一冰蓄冷系统与水蓄冷系统进行比较,如果将蓄冰槽安装的场地全部空间改为蓄冷水池,再加上该建筑物的消防水池,二者的蓄冷能力近乎相当。
(3)蓄冷装置的兼容性水蓄冷系统的蓄冷水池冬季可作为蓄热水池使用,这一点对于热泵运行的制冷系统是特别有用的。
而冰蓄冷系统蓄冰槽则没有此功能。
(4)蓄冷系统的建设投资冰蓄冷与水蓄冷相比,一般来说,水蓄冷系统基本建设投资不高于常规空调系统, 而冰蓄冷系统基本建设投资比常规空调系统高出20%以上。
冰蓄冷的缺点:冰蓄冷的用电量高于常规空调20%左右,水蓄冷则可节省制冷用电10%左右。
中央空调蓄冷技术应用分析在城市建筑能耗加速增长的背景下,中央空调采用蓄冷技术对电网负荷移峰填谷正在逐渐地受到市场的重视。
文章分析了中央空调四种主要蓄冷技术的特点及优缺点,并从经济性角度着重探讨了实际应用比较成熟的水蓄冷和冰蓄冷两种技术。
标签:中央空调;水蓄冷;冰蓄冷;经济性1 中央空调主要蓄冷技术目前的中央空调蓄冷技术主要包括水蓄冷、冰蓄冷、共晶盐蓄冷和气体水合物蓄冷等。
1.1 水蓄冷技术利用4℃~7℃的低温水进行显热蓄冷。
通过管道及阀门的切换,满足蓄冷和放冷工况的需求,如图1所示。
1.2 冰蓄冷技术选用蓄冰和低温送风系统相结合的蓄冷、供冷方式,可节省初投资、运行费用,已成为建筑空调技术发展的方向之一。
冰蓄冷系统流程图如图2所示。
(1)优点:蓄冷槽融冰放冷属恒温相变过程,水温稳定,冰蓄冷槽的冷损失小。
(2)缺点:蒸发温度降低,使压缩机COP减小;设备与管路比水蓄冷的复杂,常规空调系统改造,用冰蓄冷困难较大。
1.3 共晶盐蓄冷技术共晶盐蓄冷技术是常见的中央空调蓄冷技术中的一种,与上述两种技术相比有着比较明显的优点。
共晶盐蓄冷又被称为共晶盐相变蓄冷,能够通过共晶盐材料提升制冷剂运转效率。
因此,该系统不仅有着冰蓄冷系统的优势,还有着水蓄冷系统的优势。
当前我国对共晶盐蓄冷技术开展的研究主要集中在共晶盐相变材料的研发、选择、配比、组装等方面,并且已经取得了一定的成效。
1.4 气体水合物蓄冷技术该技术在环保节能方面有着比较突出的表现,是一种新型的蓄冷方式,能够避免出现冰蓄冷技术效率不高、水蓄冷技术密度较低、共晶盐蓄冷技术交换律不高等问题,被认为是最为理想的蓄冷技术选择。
该技术的原理主要是利用了气体水化物的特征,气体水化物实质是一种包络状的晶体,将来自外界的气体分子全部紧紧的包裹在自身的水分子网格状结构中,通过物理力量、分子间的作用力,相互吸引,并且使得水在0℃之上构成比较牢固稳定的晶体,达到蓄冷的目的。
当前对这项技术的研究主要集中在系统研发、组装方面,并且从力学的角度对其展开研究,希望找到能效更高的添加剂应用在这一系统中。
水蓄冷、冰蓄冷空调系统浅析蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。
目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。
正文随着现代工业的发展和人民生活水平的提高。
中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。
解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。
一、冰蓄冷顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。
蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。
因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况,1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为qc=Q/(N1+CfN2) Qs=N2Cfqc,式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH;N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。
Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。