核外电子排布规律总结归纳
- 格式:doc
- 大小:103.00 KB
- 文档页数:6
原子核外电子的排布遵循的原理和规则原子核外电子的排布遵循一系列原理和规则,其中最重要的是泡利不相容原理、能级分裂、洪特规则和阿夫巴夫原理。
这些原理和规则对于预测和解释原子的化学性质和行为非常重要。
下面将详细介绍每个原理和规则以及它们的应用。
1.泡利不相容原理:由泡利提出的法则,它指出在一个原子的每个电子轨道中,只能有最多两个电子,且这两个电子的自旋方向必须相反。
这个原理的意思是,每个电子轨道只能容纳一对电子。
这样可以确保电子之间的空间位置和能量是最不相似的,从而使原子更加稳定。
2.能级分裂:能级是原子中电子的能量状态的一种表示。
按照能级的升序排列,从核心到外层,每个能级可以容纳一定数量的电子。
根据能级理论,电子趋向于填充最低能量的能级。
当原子有多个电子时,这些电子将分布在不同的能级上。
然而,原子内外层的电子受到不同的引力场作用,因此能级将分裂成若干个亚能级,其中每个亚能级可以容纳一对电子。
3.洪特规则:洪特规则描述了电子在亚能级中排布的顺序。
根据洪特规则,电子首先填充低能量亚能级,然后逐渐填充高能量亚能级。
在每个能级中,首先填充形状为s轨道的亚能级,然后是p、d、f轨道的亚能级。
例如,在3能级中,首先填充3s亚能级,然后填充3p亚能级。
这个规则保证电子填充亚能级的顺序使得原子更加稳定。
4.阿夫巴夫原理:根据阿夫巴夫原理,电子填充亚能级时,首先填满一个能级,然后再开始填充下一个能级。
这意味着,当同一能级有多个亚能级时,电子应忽略这些亚能级之间的能量差异,优先填充未被填满的亚能级。
例如,在4能级中,4s亚能级填满后,尽管4d亚能级能量更高,但电子仍然填充到4d亚能级中,而不是填充到下一个能级的3p亚能级中。
这个原则确保了电子填充能级的方式是最稳定的。
这些原理和规则为我们解释了原子核外电子排布的方式。
它们揭示了电子在原子中的分布模式,帮助我们理解元素周期表和元素化学性质的规律。
此外,它们还用于预测原子的反应性和化学键的形成方式,为我们设计和理解化学反应提供了基础。
核外电子排布规律:(1)电子尽量先排能量低的电子层,再排能量高的。
(2)每个电子层最多能容纳22n个电子(3)最外层不能超过8个(4)次外层不能超过18个,类推倒数第三层不能超过32个电子。
怎样确定原子的电子层排布唐荣德一、电子层容量原理在原子核外电子排布中,每个电子层最多容纳的电子数为2n2,这个规律在一些无机化学教材中叫做最大容量原理。
我认为,该原理并不能全面反映原子核外电子排布的真实情况,其一,它只适合于离核近的内电子层,且不是最大,而是等于2n2;其二,离核远的外电子层,实际排布的电子数则远远小于2n2,根本不能用此原理来描述。
离核近的内电子层与离核远的外电子层,各有其电子容量的规律,原子的电子层排布,就是这两种规律结合而成的。
为此,我总结出内电子层和外电子层的各自的容量规律,并将两者结合起来,称为“电子层容量原理”,其内容如下:设ω为原子的电子层数,n为从原子核往外数的电子层数,m为由原子最外层往里数的电子层数。
当n<22ω+时,为内电子层,每个电子层容纳的电子数=2n2。
当n≥22ω+时,为外电子层,每个电子层最多容纳的电子数=2(m+1)2。
核外只有k层时,最多容纳2个电子。
由上述两个关系组成的电子层排布如下:从以上图示可知,原子的电子排布是两头少,中间多。
应用电子层容量原理,可使外电子层不用2n2,避免出现太大偏差。
应用外电子层的公式,可以取代中学教材中的如下规律:(1)最外层电子数不超过8个(最外层为K层,则不超过2个)。
(2)次外层电子数不超过18个。
(3)外数第三层电子数不超过32个。
……因为这些规律可直接从外电子层的公式推出。
稀有气体原子的电子层排布则是很规整的相等关系,其内电子层电子数为2n2,外电子层电子数为2(m+1)2,因此,稀有气体元素原子的电子层结构是一种稳定结构。
主族元素的原子,最外层未达到2(m +1)2个电子(即8个电子),一般副族元素的原子,最外层和次外层的电子数均小于2(m +1)2。
核外电子排布规律总结1.周期性表现:元素的核外电子排布呈现周期性的特征,即每个周期(横行)中,核外电子的数量增加一格,直到达到最大值,然后重新从一开始增加。
这是因为每个周期都对应着一个新的能级,新的能级能够容纳更多的电子。
例如,第一周期(1s^2)能容纳的电子数最多为2个,第二周期(2s^2,2p^6)能容纳的电子数最多为8个,以此类推。
2.塞满次能级原理:每个次能级(能级中的电子轨道)先填满一个自旋相同的电子,然后再填入反自旋相反的电子。
这是因为同一次能级中的电子具有相同的能量,自旋相同的电子之间存在排斥,而反自旋的电子则可以共存。
例如,2s轨道中的两个电子的自旋相同,而2p轨道中的六个电子的自旋相反。
3.近核电子屏蔽原理:近核电子对核外电子的吸引力比较大,能够屏蔽核外电子与核之间的排斥作用。
因此,核外电子的有效吸引力与核电荷数并不完全成正比,而是受到近核电子屏蔽的影响。
例如,对于周期表中的同一周期来说,核外电子数量相同,但随着核电荷数的增加,核外电子的有效吸引力减小。
4.具体的元素周期表规律:根据元素周期表中的周期和族(纵列),我们可以总结出一些具体的规律。
例如,周期表中第一周期的元素(氢和氦)只有一个能级(1s),且最多只能容纳两个电子;第二周期的元素(锂、铍、硼、碳、氮、氧、氟、氖)具有两个能级(2s和2p),且最多只能容纳八个电子;第三周期的元素(钠、镁、铝、硅、磷、硫、氯、氩)具有三个能级(3s、3p和3d),且最多只能容纳十八个电子,以此类推。
此外,同一族的元素具有相似的核外电子排布,因为它们具有相似的化学性质。
5.化合价与核外电子数:化合价是元素的一个重要的化学性质,它与元素的核外电子数密切相关。
一般来说,阳离子的化合价等于核外电子数减去气体电子层(最高能级)的电子数,而阴离子的化合价等于气体电子层的电子数减去核外电子数。
这是因为阳离子通过失去核外电子来形成稳定的结构,而阴离子通过获得核外电子来形成稳定的结构。
原子核外电子排布规律①能量最低原理:电子层划分为K〈L<M<O<P〈Q,对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则。
②每个电子层最多只能容纳2n2个电子。
③最外层最多只能容纳 8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K层为次外层时不能超过2个倒数第三层最多只能容纳32个电子注意:多条规律必须同时兼顾、简单例子得结构特点:(1)离子得电子排布:主族元素阳离子跟上一周期稀有气体得电子层排布相同,如钠离子、镁离子、铝离子与氖得核外电子排布就是相同得。
阴离子更同一周期稀有气体得电子排布相同:负氧离子,氟离子与氖得核外电子排布就是相同得。
(2)等电子粒子(注意主要元素在周期表中得相对位置)①10电子粒子:CH、N、NH、NH、NH、O、OH、HO、HO、F、HF、Ne、Na、Mg、Al等。
②18电子粒子:SiH、P、PH、S、HS、HS、Cl、HCl、Ar、K、Ca、PH等。
特殊情况:F、HO、CH、CHOH③核外电子总数及质子总数均相同得阳离子有:Na、NH、HO等;阴离子有:F、OH、NH; HS、Cl等。
前18号元素原子结构得特殊性:(1)原子核中无中子得原子:H(2)最外层有1个电子得元素:H、 Li、Na;最外层有2个电子得元素:Be、Mg、He(3)最外层电子总数等于次外层电子数得元素:Be、Ar(4)最外层电子数等于次外层电子数2倍得元素:C ;就是次外层电子数3倍得元素:O ;就是次外层电子数4倍得元素:Ne(5)最外层电子数就是内层电子数一半得元素:Li、P(6)电子层数与最外层电子数相等得元素:H、Be、Al(7)电子总数为最外层电子数2倍得元素:Be(8)次外层电子数就是最外层电子数2倍得元素:Li、Si元素周期表得规律:(1)最外层电子数大于或等于3而又小于8得元素一定就是主族元素,最外层电子数为1或2得元素可能就是主族、副族或0族元素,最外层电子数为8得元素就是稀有气体(He例外)(2)在元素周期表中,同周期得ⅡA、ⅢA族元素得原子序数差别有:①第2、3周期(短周期)元素原子序数都相差1;②第4、5周期相差11;③第6、7周期相差25(3)同主族、邻周期元素得原子序数差①位于过渡元素左侧得主族元素,即ⅠA、ⅡA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素总数;相差得数分别为2,8,8,18,18,32②位于过渡元素左侧得主族元素,即ⅢA~ⅦA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素种数。
核外电子的分层排布规律:1、第一层不超过2个,第二层不超过8个;2、最外层不超过8个。
每层最多容纳电子数为2n2个(n代表电子层数),即第一层不超过2个,第二层不超过8个,第三层不超过18个;3、最外层电子数不超过8个(只有1个电子层时,最多可容纳2个电子)。
4、最低能量原理:电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。
5、泡利原理:每个原子轨道里最多只能容纳2个电子,且自旋状态相反。
6、洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是优先单独占据一个轨道,且自旋状态相同。
扩展资料一、核外电子排布与元素性质的关系1、金属元素原子的最外层电子数一般小于4,较易失去电子,形成阳离子,表现出还原性,在化合物中显正化合价。
2、非金属元素原子的最外层电子数一般大于或等于4,较易获得电子,活泼非金属原子易形成阴离子。
在化合物中主要显负化合价。
3、稀有气体元素的原子最外层为8电子(氦为2电子)稳定结构,不易失去或得到电子,通常表现为0价。
4、核外电子排布的几条规律之间既相互独立又相互统一,不能孤立地应用其中一条,如当M层不是最外层时,最多排布的电子数为2×32=18个,而当M 层是最外层时,则最多只能排布8个电子。
5、书写原子结构示意图时要注意审题和书写规范:看清是原子还是离子结构示意图,勿忘记原子核内的“+”号。
二、1~18号元素原子结构的特征1、原子核中无中子的原子:H。
2、最外层有1个电子的元素:H、Li、Na。
3、最外层有2个电子的元素:Be、Mg、He。
4、最外层电子数等于次外层电子数的元素:Be、Ar。
5、最外层电子数是次外层电子数2倍的元素:C;是次外层3倍的元素:O;是次外层4倍的元素:Ne。
6、电子层数与最外层电子数相等的元素:H、Be、Al。
7、电子总数为最外层电子数2倍的元素:Be。
8、次外层电子数是最外层电子数2倍的元素:Li、Si。
核外电子的排布规律集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-核外电子的排布规律一、能量最低原理所谓能量最低原理是,原子核外的电子,总是尽先占有能量最低的原子轨道,只有当能量较低的原子轨道被占满后,电子才依次进入 能量较高的轨道,以使原子处于能量最低的稳定状态。
原子轨道能量的高低为:1.当n 相同,l 不同时,轨道的能量次序为s <p <d <f 。
例如,E 3S <E 3P <E 3d 。
2.当n 不同,l 相同时,n 愈大,各相应的轨道能量愈高。
例如,E 2S <E 3S <E 4S 。
3.当n 和l 都不相同时,轨道能量有交错现象。
即(n -1)d 轨道能量大于ns 轨道的能量,(n-1)f 轨道的能量大于np 轨道的能量。
在同一周期中,各元素随着原子序数递增核外电子的填充次序为ns ,(n -2)f ,(n -1)d ,np 。
核外电子填充次序如图1所示。
图1 电子填充的次序图2 多电子原子电子所处的能级示意图最外层最多能容纳8电子,次外层最多能容纳18电子。
每个电子层最多容纳的电子数为2n2个(n为电子层数的数值)如:各个电子层中电子的最大容纳量从表可以看出,每个电子层可能有的最多轨道数为n2,而每个轨道又只能容纳2个电子,因此,各电子层可能容纳的电子总数就是2n2。
二、鲍利(Pauli)不相容原理鲍利不相容原理的内容是:在同一原子中没有四个量子数完全相同的电子,或者说在同一原子中没有运动状态完全相同的电子。
例如,氦原子的1s轨道中有两个电子,描述其中一个原子中没有运动状态的一组量子数(n,l,m,ms)为1,0,0,+1/2,另一个电子的一组量子数必然是1,0,0,-1/2,即两个电子的其他状态相同但自旋方向相反。
根据鲍利不相容原理可以得出这样的结论,在每一个原子轨道中,最多只能容纳自旋方向相反的两个电子。
于是,不难推算出各电子层最多容纳的电子数为2n2个。
核外电子的排布规律多
电子原子核外电子的排布应遵循以下三个原理:①能量最低原理,核外电子总是首先占据能量最低的轨道,按照近似能级图,电子由低到高进入轨道的顺序为
1s2s2p3s3p4s3d4p5s4d5p……。
因能级交错,其中E4s<E3d……,电子先排满4s后再进入3d,例如钪元素核外21个电子依次填充的轨道为1s22s22p63s23p64s23d1。
②保里不相容原理,在同一原子中没有运动状态完全相同的电子,即同一个原子中的电子,描述其运动状态的四个方面不可能完全相同,在同一轨道上的电子必须自旋方向相反,每个轨道只能容纳2个电子。
根据保里不相容原理,各电子层最多容纳的电子总数为2n2;周期表中各周期含有元素的数目以及填充的能级如下:
③洪特规则,电子进入同一亚层的各个轨道(也称等价轨道)时,总是尽先分占不同轨道,而且自旋方向相同,例如氮原子核外电子排布的轨道表示式为:N原子的价电子中有3个未成对电子,这与N原子的成键情况和化合物的组成、结构有密切的关系。
洪特还指出,等价轨道上的电子排布处于以下状态比较稳定。
例如铬原子的电子排布式是ls22s22p63s23p63d54s1,而不是ls22s22p63s23p63d44s2。
核外电子排布规律总结归纳1.克里夫电子排布规则:由于内层电子的屏蔽效应,外层电子与核的吸引力减弱,因此外层电子排布时遵循克里夫电子排布规则。
该规则指出,不同能级的电子容量按照2n^2的顺序增加。
例如,1s能级容纳2个电子,2s、2p能级容纳8个电子,3s、3p、3d能级容纳18个电子。
2.阿尔夫文电子排布规则:根据能量顺序填充电子的规则,也称为能级顺序排布规则。
该规则指出,电子填充原子中的能级时,优先填充能量较低的能级。
能级的顺序为1s、2s、2p、3s、3p、4s、3d、4p、5s、4d、5p等。
按照这个规则填充电子有助于使原子更加稳定。
3.泡利不相容原理:根据泡利不相容原理,同一能级的轨道最多容纳两个电子,这两个电子必须有相反自旋(即一个为正自旋,一个为负自旋)。
正自旋常用↑表示,负自旋常用↓表示。
这个原理保证了电子能够在同一轨道中相互区分。
4.洪特规则:根据洪特规则,当填充相同能级的不同轨道时,应尽量使电子数量相等。
同一能级的轨道包括s、p、d、f轨道,它们的容量分别为2、6、10、14个电子。
具体来说,当填充p轨道时,应先填充一半的轨道,再依次填充其余轨道。
5.电子自旋规则:根据电子自旋规则,电子自旋方向是随机的。
这意味着在填充电子时,自旋方向可能是↑或↓。
在填充轨道时,应尽量使自旋方向相同的电子数目最少,以使原子更加稳定。
6.主量子数规律:主量子数n表示能级的大小,较大的n对应着较高的能级。
根据主量子数规律,电子填充原子中的能级时,应当按照从低到高的顺序填充。
具体来说,先填充1s能级,再填充2s、2p能级,然后依次填充下一个主量子数的能级。
总的来说,上述规律描述了电子在原子中的排布方式,从而揭示了电子排布对原子性质的影响。
这些规律为理解化学反应、研究原子性质以及预测元素化合物等提供了重要的理论基础。
核外电子的排布规律一、能量最低原理所谓能量最低原理是,原子核外的电子,总是尽先占有能量最低的原子轨道,只有当能量较低的原子轨道被占满后,电子才依次进入能量较高的轨道,以使原子处于能量最低的稳定状态。
原子轨道能量的高低为:1•当n相同,l不同时,轨道的能量次序为sVpVdVf。
例如,EVEVE。
3S3P3d 2•当n不同,l相同时,n愈大,各相应的轨道能量愈高。
例如,EVEVEo2S3S4S3.当n和l都不相同时,轨道能量有交错现象。
即(n—1)d轨道能量大于ns轨道的能量,(n-1)f 轨道的能量大于np轨道的能量。
在同一周期中,各元素随着原子序数递增核外电子的填充次序为ns,(n—2)f,(n—1)d,np。
核外电子填充次序如图1所示。
图1电子填充的次序□3S□2iI.L6d1.L J4di i!i 4P 3d2P□图2多电子原子电子所处的能级示意图最外层最多能容纳8电子,次外层最多能容纳18电子。
每个电子层最多容纳的电子数为2m个(n为电子层数的数值)如:各个电子层中电子的最大容纳量电子层(n) K(1) L⑵M(3) N(4)电子亚层s s P s P d s P d f亚层中的轨道数1 1 3 1 3 5 1 3 5 7亚层中的电子数2 2 6 2 6 10 2 6 10 14K 最多能容:(2逖:MN0P18.315011-(2迸码(苏®4$(2豁弓(2毬沖弓从表可以看出,每个电子层可能有的最多轨道数为m,而每个轨道又只能容纳2个电子,因此,各电子层可能容纳的电子总数就是2m。
、鲍利(Pauli)不相容原理鲍利不相容原理的内容是:在同一原子中没有四个量子数完全相同的电子,或者说在同一原子中没有运动状态完全相同的电子。
例如,氦原子的Is轨道中有两个电子,描述其中一个原子中没有运动状态的一组量子数(n,l,m,ms)为1,0,0,+1/2,另一个电子的一组量子数必然是1,0,0,—1/2,即两个电子的其他状态相同但自旋方向相反。
核外电子排布规律总结1.电子能级规则:电子能级是指原子中不同能量的轨道或壳层。
根据电子能级规则,电子会首先填充能量低的轨道,然后才能填充能量较高的轨道。
这个规则被称为"Aufbau"原则。
具体来说,首先填充1s轨道,然后填充2s轨道,接着填充2p轨道,依次类推。
这个规则可以用来解释元素周期表的结构。
2.布尔排斥原理:根据布尔排斥原理,每个轨道最多只能容纳两个电子,且这两个电子的自旋方向必须相反。
这个规则既适用于同一能量级的轨道,也适用于不同能量级的轨道。
3.海森堡不确定原理:根据海森堡不确定原理,无法同时确定电子的位置和动量。
这个原理说明电子不能完全按照轨道的形式存在,而是以概率密度云的形式存在。
这意味着我们只能通过电子在不同能级之间跃迁的概率来描述电子的行为。
4.电子云模型:根据电子云模型,电子在原子周围形成类似于云的形态。
这个模型的核心概念是轨道,表示了电子可能存在的区域。
不同轨道形状不同,包括球形的s轨道和沿着不同方向延伸的p、d和f轨道。
电子云模型可以用来解释和预测电子在原子内的行为。
5.黄金法则:根据黄金法则,电子倾向于填充能量最低的轨道。
这意味着电子倾向于首先填充s轨道,然后是p、d和f轨道。
这个规则解释了为什么元素周期表上的元素倾向于按照一定的模式填充电子。
6.朗道规则:根据朗道规则,电子在填充轨道时倾向于遵循一定的顺序。
具体来说,朗道规则说明电子首先填充满相同自旋方向的轨道,然后再填充相反自旋方向的轨道。
这个规则解释了为什么大多数原子中的电子向上自旋和向下自旋的数量差异相对较小。
综上所述,核外电子排布规律可以归纳为电子能级规则、布尔排斥原理、海森堡不确定原理、电子云模型、黄金法则和朗道规则等。
这些规律帮助我们理解原子的电子结构,解释元素周期表的结构,以及预测和解释原子的化学性质和反应活性。
这些规律的发现和总结对化学和其他科学领域的发展有着重要的意义。
精心整理原子核外电子排布规律①能量最低原理:电子层划分为K<L<M<O<P<Q,对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则.②每个电子层最多只能容纳2n2个电子。
③最外层最多只能容纳8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K层为次外层时不能超过2个倒数第三层最多只能容纳32个电子注意:多条规律必须同时兼顾。
简单例子的结构特点:(1)离子的电子排布:主族元素阳离子跟上一周期稀有气体的电子层排布相同,如钠离子、镁离子、铝离子和氖的核外电子排布是相同的。
阴离子更同一周期稀有气体的电子排布相同:负氧离子,氟离子和氖的核外电子排布是相同的。
(2)等电子粒子(注意主要元素在周期表中的相对位置)①10电子粒子:CH4、N-3、NH-2、NH3、NH+4、O-2、OH-、H2O、H3O+、F-、HF、Ne、Na+、Mg+2、Al+3等。
②18电子粒子:SiH4、P-3、PH3、S-2、HS-、H2S、Cl-、HCl、Ar、K+、Ca+2、PH+4等。
特殊情况:F2、H2O2、C2H6、CH3OH③核外电子总数及质子总数均相同的阳离子有:Na+、NH+4、H3O+等;阴离子有:F-、OH-、NH-2;HS-、Cl-等。
前18号元素原子结构的特殊性:(1)原子核中无中子的原子:11H(2)最外层有1个电子的元素:H、Li、Na;最外层有2个电子的元素:Be、Mg、He(3)最外层电子总数等于次外层电子数的元素:Be、Ar(4)最外层电子数等于次外层电子数2倍的元素:C;是次外层电子数3倍的元素:O;是次外层电子数4倍的元素:Ne(5)最外层电子数是内层电子数一半的元素:Li、P(6)电子层数与最外层电子数相等的元素:H、Be、Al(7)电子总数为最外层电子数2倍的元素:Be(8)次外层电子数是最外层电子数2倍的元素:Li、Si元素周期表的规律:(1)最外层电子数大于或等于3而又小于8的元素一定是主族元素,最外层电子数为1或2的元素可能是主族、副族或0族元素,最外层电子数为8的元素是稀有气体(He例外)(2)在元素周期表中,同周期的ⅡA、ⅢA族元素的原子序数差别有:①第2、3周期(短周期)元素原子序数都相差1;②第4、5周期相差11;③第6、7周期相差25(3)同主族、邻周期元素的原子序数差①位于过渡元素左侧的主族元素,即ⅠA、ⅡA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素总数;相差的数分别为2,8,8,18,18,32②位于过渡元素左侧的主族元素,即ⅢA~ⅦA族,同主族、邻周期元素原子序数之差为下一周期元素所在周期所含元素种数。
例如,氯和溴的原子序数之差为35-17=18(溴所在第四周期所含元素的种数)。
相差的数分别为8,18,18,32,32.③同主族非县令的原子序数差为上述连续数的加和,如H和Cs的原子序数为2+8+8+18+18=54 (4)元素周期表中除Ⅷ族元素之外,原子序数为奇数(偶数)的元素,所属所在族的序数及主要化合价也为奇数(偶数)。
如:氯元素的原子序数为17,而其化合价有-1、+1、+3、+5、+7,最外层有7个电子,氯元素位于ⅦA族;硫元素的原子序数为16,而其化合价有-2、+4、+6价,最外层有6个电子,硫元素位于ⅥA族。
(5)元素周期表中金属盒非金属元素之间有一分界线,分界线右上方的元素为非金属元素,分界线左下方的元素为非金属元素(H除外),分界线两边的元素一般既有金属性也有非金属性。
每周期的最右边金属的族序数与周期序数相等,如:Al为第三周期ⅢA族。
元素周期律:(1)原子半径的变化规律:同周期主族元素自左向右,原子半径逐渐增大;同主族元素自上而下,原子半径逐渐增大。
(2)元素化合价的变化规律:同周期自左向右,最高正价:+1~+7,最高正价=主族序数(O、F除外),负价由-4~-1,非金属负价=-(8-族序数)(3)元素的金属性:同周期自左向右逐渐减弱;同主族自上而下逐渐增强。
(4)元素的非金属性:同周期制作仙游逐渐增强;同主族自上而下逐渐减弱。
(5)最高价化合物对应水化物的酸、碱性:同周期自左向右酸性逐渐增强,碱性逐渐减弱;同主族自上而下酸性逐渐减弱,碱性逐渐增强。
(6)非金属气态氢化物的形成难以、稳定性:同周期自左向右形成由难到易,稳定性逐渐增强;同主族自上而下形成由易到难,稳定性逐渐减弱。
原子核外电子按照轨道式排布时遵守下列次序:1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p规律总结:s有1个轨道,最多容纳2个电子p有3个轨道,最多容纳6个电子d有5个轨道,最多容纳10个电子f有7个轨道,最多容纳14个电子每一个轨道可以容纳两个自选方向相反的电子s<p<d(N+1)s<Nd(N+1)p<(N+2)s<Nf<(N+1)d原子核外电子排布规律1、泡利不相容原理:每个轨道最多只能容纳两个电子,且自旋相反配对2、能量最低原理:电子尽可能占据能量最低的轨道3、洪特规则:简并轨道(能级相同的轨道)只有被电子逐一自旋平行地占据后,才能容纳第二个电子另外:等价轨道在全充满、半充满或全空的状态是比较稳定的,亦即下列电子结构是比较稳定的:全充满---p6或d10或f14半充满----p3或d5或f7全空-----p0或d0或f0还有少数元素(如某些原子序数较大的过渡元素和镧系、锕系中的某些元素)的电子排布更为复杂,既不符合鲍林能级图的排布顺序,也不符合全充满、半充满及全空的规律。
而这些元素的核外电子排布是由光谱实验结构得出的,我们应该尊重光谱实验事实。
对于核外电子排布规律,只要掌握一般规律,注意少数例外即可。
处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。
1.最低能量原理电子在原子核外排布时,要尽可能使电子的能量最低。
怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。
这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。
电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。
当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。
一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。
这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p……2.保里不相容原理我们已经知道,一个电子的运动状态要从4个方面来进行描述,即它所处的电子层、电子亚层、电子云的伸展方向以及电子的自旋方向。
在同一个原子中没有也不可能有运动状态完全相同的两个电子存在,这就是保里不相容原理所告诉大家的。
根据这个规则,如果两个电子处于同一轨道,那么,这两个电子的自旋方向必定相反。
也就是说,每一个轨道中只能容纳两个自旋方向相反的电子。
这一点好像我们坐电梯,每个人相当于一个电子,每一个电梯相当于一个轨道,假设电梯足够小,每一个电梯最多只能同时供两个人乘坐,而且乘坐时必须一个人头朝上,另一个人倒立着(为了充分利用空间)。
根据保里不相容原理,我们得知:s亚层只有1个轨道,可以容纳两个自旋相反的电子;p亚层有3个轨道,总共可以容纳6个电子;f亚层有5个轨道,总共可以容纳10个电子。
我们还得知:第一电子层(K层)中只有1s亚层,最多容纳两个电子;第二电子层(L层)中包括2s和2p两个亚层,总共可以容纳8个电子;第3电子层(M层)中包括3s、3p、3d三个亚层,总共可以容纳18个电子……第n层总共可以容纳2n2个电子。
3.洪特规则从光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于全满(s2、p6、d10、f14)半满(s1、p3、d5、f7)全空(s0、p0、d0、f0)时比较稳定。
这类似于我们坐电梯的情况中,要么电梯是空的,要么电梯里都有一个人,要么电梯里都挤满了两个人,大家都觉得比较均等,谁也不抱怨谁;如果有的电梯里挤满了两个人,而有的电梯里只有一个人,或有的电梯里有一个人,而有的电梯里没有人,则必然有人产生抱怨情绪,我们称之为不稳定状态。
二、核外电子排布的方法对于某元素原子的核外电子排布情况,先确定该原子的核外电子数(即原子序数、质子数、核电荷数),如24号元素铬,其原子核外总共有24个电子,然后将这24个电子从能量最低的1s亚层依次往能量较高的亚层上排布,只有前面的亚层填满后,才去填充后面的亚层,每一个亚层上最多能够排布的电子数为:s亚层2个,p亚层6个,d亚层10个,f亚层14个。
最外层电子到底怎样排布,还要参考洪特规则,如24号元素铬的24个核外电子依次排列为1s22s22p63s23p64s23d4根据洪特规则,d亚层处于半充满时较为稳定,故其排布式应为:1s22s22p63s23p64s13d5最后,按照人们的习惯“每一个电子层不分隔开来”,改写成1s22s22p63s23p63d54s1即可。
《原子核外电子排布应遵循的三大规律》(一)泡利不相容原理:1.在同一个原子里,没有运动状态四个方面完全相同的电子存在,这个结论叫泡利不相容原理。
2.根据这个原理,如果有两个电子处于一个轨道(即电子层电子亚层电子云的伸展方向都相同的轨道),那么这两个电子的自旋方向就一定相反。
3.各个电子层可能有的最多轨道数为,每个轨道只能容纳自旋相反的两个电子,各电子层可容纳的电子总数为2个。
(二)能量最低原理:1.在核外电子的排布中,通常状况下,电子总是尽先占有能量最低的原子轨道,只有当这些原子轨道占满后,电子才依次进入能量较高的原子轨道,这个规律叫能量最低原理。
2.能级:就是把原子中不同电子层和亚层按能量高低排布成顺序,象台阶一样叫做能级。
(1)同一电子层中各亚层的能级不相同,它们是按s,p,d,f的次序增高。