傅里叶级数习题课
- 格式:ppt
- 大小:1.19 MB
- 文档页数:28
第十五章 傅里叶级数一.填空题1. 设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,2,0,0,0,2)(,则)(x f 的傅里叶系数=n a .2.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数()=++∑∞=10sin cos 2n n n nx b nx a a . 3. 设,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在π=x 处收敛于 .4. 设⎪⎩⎪⎨⎧≤<=<<--=ππx x x x x x f 0,,0,0,0,)(22,则此函数的傅里叶级数在0=x 处收敛于 .5. 设⎩⎨⎧<≤<≤-50,3,05,0)(x x x f ,则此函数的傅里叶级数在0=x 处收敛于 .6. )(x f 是以π2为周期的连续函数,且在],[ππ-上按段光滑,则()=++∑∞=10sin cos 2n n n nx b nx a a . 二.选择题1.下列说法正确的是( ).A 若)(x f 是以π2为周期的函数,且在],[ππ-上可积,则)(x f 的傅里叶系数中的⎰-=ππnxdx x f b n sin )(, ,3,2,1=n.B 若)(x f 是以l 2为周期的函数,且在],[l l -上可积,则)(x f 的傅里叶系数中的⎰-=lln dx lxn x f a πcos)(, ,3,2,1=n .C 若)(x f 是以π2为周期的偶函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成余弦级数∑∞=1cos n n nx a ..D 若)(x f 是以π2为周期的奇函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成正弦级数∑∞=1sin n n nx b .2.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,4,0,0,0,4)(,则下列说法错误的是( ).A )(x f 在),(ππ-上可以展开成傅里叶级数. .B )(x f 的傅里叶展式在π=x 处收敛于4π. .C )(x f 的傅里叶展式在0=x 处收敛于0. .D )(x f 的傅里叶系数0=n a .3.设函数)(x f 满足)()(x f x f -=+π,则该函数的傅里叶级数具有性质( ).A 0=n a .B 0=n b .C 022==n n b a .D 01212==--n n b a4.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎩⎨⎧<≤<<--=ππx x x f 0,4,0,4)(,则下列说法正确的是( ).A )(x f 的傅里叶展式在0=x 处收敛于4..B )(x f 的傅里叶展式在π-=x 处收敛于-4. .C )(x f 的傅里叶展式在π=x 处收敛于4. .D )(x f 的傅里叶展式在π±=x 处均收敛于0.5.将⎩⎨⎧<<-≤<-=42,3,20,1)(x x x x x f 在)4,0(上展开成余弦级数,则下面关说法错误的是( ).A )(x f 的傅里叶展式在2=x 处收敛于-1..B )(x f 的傅里叶展式在0=x 处收敛于1. .C )(x f 的傅里叶展式在4=x 处收敛于1. .D )(x f 的傅里叶展式在3=x 处收敛于1.6. 若将函数x x f =)(在)2,0(内展成正弦级数,则下列说法正确的是( ).A 40=a.B )(x f 的正弦级数展式在2=x 处收敛于2. .C 当)2,0(∈x 时,展成的正弦级数收敛于)(x f 本身. .D )(x f 在)2,0(内不能展成余弦级数三.判断题1. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],[ππ-上的正交函数系. ( )2.若)(x f 是以π2为周期的函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数收敛于)(x f 本身. ( )3.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成傅里叶级数. ( )4.函数)(x f 是在],[ππ-上的周期函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成正弦级数. ( )5.函数)(x f 的傅里叶级数在连续点处收敛于该点的函数值. ( )6.设函数,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在x π=-处收敛于0.( )7. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],0[π上的正交函数系. ( ) 8.x x f =)(在)2,0(上不能展成余弦级数. ( ) 9.2cos)(xx f =在],0[π上不能展成正弦级数. ( ) 10.若级数()∑∞=++10||||2||n n n b a a 收敛,则级数()∑∞=++10sin cos 2n n n nx b nx a a 在整个数轴上一致收敛. ( ) 四.计算题1.(1)将2)(xx f -=π在]2,0[π上展开成傅里叶级数;(2)利用展开式证明: +-+-=71513114π2.将x x f =)(在)1,1(-上展开成傅里叶级数.3.(1)将x x f =)(在]1,0[上展开成余弦级数; (2)根据展开式求()211.21n n ∞=-∑4.将x e x f =)(在],0[π上展开成正弦级数.5.求⎩⎨⎧<≤<<-=T x x T C x f 0,0,0,)((C 是常数)在),[T T -上的傅里叶展开式.五.证明题1.设)(x f 在],[ππ-上可积或绝对可积,若对],[ππ-∈∀x ,成立)()(x f x f =+π,证明:01212==--n n b a .2.设周期为π2的可积函数)(x f 在],[ππ-的傅里叶系数为n n b a ,,函数)(x g 的傅里叶系数为n n b a ~,~,且)()(x f x g -=,证明:n n n n b b a a ==~,~.3.根据2)1()(-=x x f 在)1,0(的余弦级数展开式证明631211222π=+++ .4.已知帕萨瓦尔等式为∑⎰∞=-++=122202)(2)]([1n n n b a a dx x f πππ,(n n b a ,为)(x f 的傅里叶系数),利用),(,cos )1(431222πππ-∈-+=∑∞=x nx n x n n证明9031211444π=+++ . 5.已知),(,cos )1(431222πππ-∈-+=∑∞=x nx nx n n,利用逐项积分法证明3x 在),(ππ-的傅里叶级数为x n n n n sin )6()1(21322∑∞=--π第十六章——第十七章一、判断题1、设平面点集{}(,),D x y x y Z =∈,则(0,0)为其内点。
数学分析2部分习题解析傅里叶级数部分第3节部分习题1、设f 以2π为周期且具有二阶连续的导数,证明f 的傅里叶级数在(),-∞+∞上一致收敛于f 。
证明由条件知,f 一定是以2π为周期的连续函数且在一个周期区间[],ππ-上按段光滑,所以由收敛定理得,在(),-∞+∞上有()011cos sin ()2n n n a a nx b nx f x ∞=++=∑,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
由三角级数一致收敛的判别法,下证()0112n n n a a b ∞=++∑收敛即可。
事实上,记0a ',n a ',nb '为导函数()f x '的傅里叶系数,由()f x 与()f x '的傅里叶系数的关系得0a '=,n n a nb '=,n n b na '=-。
所以,()()22211112n n n n n n a b b a a b n n n ⎛⎫''''+=+≤++ ⎪⎝⎭。
又由傅里叶系数满足的贝塞尔不等式得,()()()221nn n a b ∞=''+∑收敛,再注意到211n n∞=∑收敛,所以()0112n n n a a b ∞=++∑收敛,故结论成立。
2、设f 为[],ππ-上的可积函数,证明:若f 的傅里叶级数在[],ππ-上一致收敛于f ,则成立帕塞瓦尔等式:()22220111()d 2n n n f x x a a b πππ∞-==++∑⎰,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。
证明由f 在[],ππ-上可积得,f 在[],ππ-上有界,从而由题设可得()2011()()cos ()sin ()2n n n a f x a f x nx b f x nx f x ∞=++=∑,在[],ππ-上一致成立。
第3章周期信号的傅里叶级数表示基本题3.1 有一实值连续时间周期信号x(t),其基波周期了T=8,x(t)的非零傅里叶级数系数为a1=a-1=2,a3=a-3=4j。
试将x(t)表示成:解:3.2 有一实值离散时间周期信号x[n],其基波周期N=5,x[n]的非零傅里叶级数系数为,试将x[n]表示成:解:3.3 对下面连续时间周期信号求基波频率ω0和傅里叶级数系数a k,以表示成解:即非零的傅里叶级数系数为3.4 利用傅里叶级数分析式计算下连续时间周期信号(基波频率ω0=π)的系数a k:解:因ω0=π,故3.5 设x1(t)是一连续时间周期信号,其基波频率为叫ω1,傅里叶系数为a k,已知x2(t)=x1(1-t)十x1(t-1),问x2(t)的基波频率ω2与ω1是什么关系?求x2(t)的傅里叶级数系数b k与系数a k之间的关系。
解:x1(1-t)和x1(t-1)的基波频率都是ω1,则它们的基波周期都是T1=2π/π。
因为x2(t)是x1(1-t)和x1(t-1)的线性组合,所以x2(t)的基波周期,即ω2=ω1。
又故即3.6 有三个连续时间周期信号,其傅里叶级数表示如下:利用傅里叶级数性质回答下列问题:(a)三个信号中哪些是实值的?(b)哪些又是偶函数?解:(a)与式对照可知,对于x1(t),有由共轭对称性可知,若x1(t)为实信号,则有显然故x1(t)不是实信号。
同理,对于x2(t),对于x3(t),由于故可知x2(t)和x3(t)都是实信号。
(b)由于偶函数的傅里叶级数是偶函数,由上可知,只有x2(t)的a k是偶函数,故只有x2(t)是偶信号。
3.7 假定周期信号x(t)有基波周期为T,傅里叶系数为,的傅里叶级数系数为b k。
已知,试利用傅里叶级数的性质求a k用b k和T表达的表达式。
解:当k=0时,故3.8 现对一信号给出如下信息:(1)x(t)是实的且为奇函数;(2)x(t)是周期的,周期T=2,傅里叶级数为a k;(3)对|k|>1,a k=0;(4)试确定两个不同的信号都满足这些条件。
第十五章 傅里叶级数习题课一 疑难解析与注意事项1.如何求一周期函数的傅立叶级数? 答 一般可按下列步骤进行:1)确定函数的奇偶性,连续点与不连续点;2)根据周期为2π或2l ,是否奇,偶函数,计算相应的傅里叶系数; 3 写出相应的傅立叶级数; 4)应用收敛定理.(1)将()f x 在[,]ππ-上展开成傅里叶级数的步骤: 1)求系数;()dx x f a ⎰-=πππ10; ()⎰-=πππnxdx x f a n cos 1, ()⎰-=πππnxdx x f b n sin 1,2)写展开式()()∑∞=++10sin cos 2n n n nx b nx a a x f ~;3)用收敛定理(2)将()f x 在[0,2]π上展开成傅里叶级数的步骤: 1)求系数;2001()a f x dx ππ=⎰, 201()cos n a f x nxdx ππ=⎰, 201()sin n b f x nxdx ππ=⎰,2)写展开式()()∑∞=++10sin cos 2n n n nx b nx a a x f ~;3)用收敛定理(3)奇函数()f x 在[](),,ππππ--展开成傅里叶级数的步骤: 1)求系数;()010a f x dx πππ-==⎰;()1cos 0n a f x nxdx πππ-==⎰,()()012sin sin n b f x nxdx f x nxdx πππππ-==⎰⎰,2)写展开式()1sin n n f x b nx ∞=∑~;3)用收敛定理()()1,sin 0 n n f x x b nx x πππ∞=⎧∈-⎪=⎨=±⎪⎩∑(4)偶函数()f x 在[](),,ππππ--展开成傅里叶级数的步骤: 1)求系数;()()0012a f x dx f x d πππππ-==⎰⎰;()()012cos cos n a f x nxdx f x nxdx πππππ-==⎰⎰,()1sin 0n b f x nxdx πππ-==⎰,2)写展开式()01cos 2n n a f x a nx ∞=+∑~;3)用收敛定理()[]01cos ,,2n n a a nx f x x ππ∞=+=∈-∑ (5)奇函数()f x 在[](),,l l l l --展开成傅里叶级数的步骤: 1)求系数;()010lla f x dx l -==⎰; ()1cos 0l n l n xa f x dx l lπ-==⎰, ()()012sin sin l l n l n x n xb f x dx f x dx l l l lππ-==⎰⎰,2)写展开式()1sinn n n xf x b lπ∞=∑~; 3)用收敛定理()()1,sin0 n n f x x l l n x b l x l π∞=⎧∈-⎪=⎨=±⎪⎩∑ (6)偶函数()f x 在[](),,l l l l --展开成傅里叶级数的步骤: 1)求系数;()()0012l l l a f x dx f x dx l l -==⎰⎰; ()()012cos cos l l n l n x n xa f x dx f x dx l l l l ππ-==⎰⎰, ()1sin 0l n l n x b f x dx l lπ-==⎰, 2)写展开式()01cos 2n n a n xf x a lπ∞=+∑~;3)用收敛定理()[]01cos ,,2n n a n xa f x x l l lπ∞=+=∈-∑2.如何将函数展开成正弦级数,余弦级数? (1)将()f x 在[]0,π展开成正弦级数的步骤: 1)求系数;()02sin n b f x nxdx ππ=⎰,2)写展开式()1sin n n f x b nx ∞=∑~;3)用收敛定理()()10,sin 0 0,n n f x x b nx x ππ∞=⎧∈⎪=⎨=⎪⎩∑(2)将()f x 在[]0,π展开成余弦级数的步骤: 1)求系数;()002a f x dx ππ=⎰; ()02cos n a f x nxdx ππ=⎰,2)写展开式()01cos 2n n a f x a nx ∞=+∑~;3)用收敛定理()[]01cos ,0,2n n a a nx f x x π∞=+=∈∑ (3)将()f x 在[]0,l 展开成正弦级数的步骤: 1)求系数;()02sin l n n xb f x dx l lπ=⎰, 2)写展开式()1sin n n n xf x b lπ∞=∑~; 3)用收敛定理()()1 0,sin0 0,n n f x x l n x b l x l π∞=⎧∈⎪=⎨=⎪⎩∑ (4)将()f x 在[]0,l 展开成余弦级数的步骤: 1)求系数;()002la f x dx l =⎰; ()02cos l n n xa f x dx l lπ=⎰, 2)写展开式()01cos 2n n a n xf x a lπ∞=+∑~;3)用收敛定理()[]01cos ,0,2n n a n xa f x x l lπ∞=+=∈∑.[][](),(,)()1()(0)(0),(,)()21(0)(0),2f x x l l f x S x f x f x x l l f x f l f l x l⎧⎪∈-⎪⎪=++-∈-⎨⎪⎪-++-=±⎪⎩当为的连续点当为的第一类间断点当 3.如何应用傅立叶级数求数项级数的和?答:选择合适的函数,将其展开为傅立叶级数,然后求傅立叶级数在某个特殊点的值. 二 典型例题1.设(),0,40,0,02x f x x x ππππ⎧-≤<⎪⎪==⎨⎪⎪-<≤⎩,则由收敛定理1)()f x 的傅里叶级数在2x π=-处收敛于 ;2)()f x 的傅里叶级数在2x π=处收敛于 ;3)()f x 的傅里叶级数在0x =处收敛于 ; 4)()f x 的傅里叶级数在x π=-处收敛于 ; 5)()f x 的傅里叶级数在x π=处收敛于 .解 因为1)2x π=-是连续点,收敛于4π;2) 2x π=是连续点,收敛于2π-;3)0x =是间断点,收敛于()()000028f f π++-=-;4) x π=-是端点,收敛于()()0028f f πππ-++-=-;5) x π=是端点,收敛于()()0028f f πππ-++-=-.2.1)将()f x x =在[],ππ-展开成傅里叶级数; 2)将()f x x =在[],ππ-展开成傅里叶级数; 3)将()f x x =在[]0,π展开成余弦级数; 4)将()f x x =在[]0,π展开成正弦级数.解 1)因为()f x x =在[],ππ-上奇,因此00a =,0n a =,()()()0122sin sin sin n b x nx dx x nx dx x nx dx πππππππ-===⎰⎰⎰()()()()()000122cos cos cos 12.n xd nx x nx nx dx n n nπππππ+⎡⎤=-=--⎢⎥⎣⎦-=⎰⎰因此()()()11,12sin 0,n n f x x f x nx nx πππ+∞=-<<⎧-⎪=⎨=±⎪⎩∑.2) 因为()f x x =在[],ππ-上偶,因此0n b =,00122a xdx xdx xdx ππππππππ-====⎰⎰⎰,()()()0122cos cos cos n b x nx dx x nx dx x nx dx πππππππ-===⎰⎰⎰()()()()()00022022sin sin sin 22cos 11nxd nx x nx nx dx n n nx n n ππππππππ⎡⎤==-⎢⎥⎣⎦⎡⎤==--⎣⎦⎰⎰因此()()()21211cos ,2nn f x nx f x x n ππππ∞=⎡⎤+--=-≤≤⎣⎦∑. 3)()0022a f x dx xdx πππππ===⎰⎰;()()20222cos cos 11nn a f x nxdx x nxdx n πππππ⎡⎤===--⎣⎦⎰⎰, ()()()21211cos ,02nn f x nx f x x n πππ∞=⎡⎤+--=≤≤⎣⎦∑. 4)()()112222sin sin sin n n b f x nxdx x nxdx x nxdx nππππππ+-====⎰⎰⎰,()()()11,012sin 0,0,n n f x x f x nx nx ππ+∞=<<⎧-⎪=⎨=⎪⎩∑.3. 将()⎩⎨⎧≤<-≤<=32,321,1x x x x f 展成以2为周期的傅立叶级数,并写出]3,1[上的函数表达式.解 因为区间长度2312l =-= ,因此1l =.(),23)3(3221310=-+==⎰⎰⎰dx x dx dx x f a ()dx x n x dx x n xdx n x f a n ⎰⎰⎰-+==322131cos )3(cos cos πππ32223221)sin (cos 1sin 3sin 1x n x n x n n x n n x n n ππππππππ+-+=.),3,2,1(,])1(1[122 =--=n n n π ()dx x n x dx x n xdx n x f b n ⎰⎰⎰-+==322131sin )3(sin sin πππ32223221)cos (sin 1cos 3cos 1x n x n x n n x n n x n n ππππππππ----= 1(1),(1,2,3,).n n n π=-= ()2211,1231(1)(1)~[cos sin ]3,23412,1,3.nnn x f x n x n x x x n n x ππππ∞=<≤⎧---⎪++=-<<⎨⎪=⎩∑.4. ()2(11)2,f x x x =+-≤≤将函数展成以为周期的傅里叶级数并由此求级数211.n n ∞=∑的和解 因为()2f x x =+为偶函数,则0n b =,因为1l =,因此1002(2)51a x dx =+=⎰,()()1122002112(2)cos()2cos (1,2,)1nn a x n x dx x n xdx n n πππ--=+===⎰⎰ ,()()()2212115cos()2nn f x n x n ππ∞=--+∑22054cos(21)2(21)k k xk ππ∞=+=-+∑ []2,1,1x =+-.当0x =,上式222200541122(21)(21)8k k k k ππ∞∞==⇒=-⇒=++∑∑,又 2222210101111111(21)(2)(21)4n k k k n n k k k n ∞∞∞∞∞======+=+++∑∑∑∑∑ 因此 22221014143(21)386n k nk ππ∞∞====⨯=+∑∑. 5.证明(1)1,cos ,cos 2,...,cos ,...x x nx ; (2)sin ,sin 2,...,sin ,...x x nx 是[0,]π的正交系;(3)1,cos ,sin ,cos 2,sin 2...,cos ,sin ,...x x x x nx nx 不是[0,]π上的正交系. 证明:(1)因为1cos 0(1,2,...)kxdx k π⋅==⎰,00,1cos cos [cos()cos()]2,2m nmx nxdx m n x m n x dx m n πππ≠⎧⎪⋅=++-=⎨=⎪⎩⎰⎰,所以(1)是[0,]π上的正交系.(2)00,1sin sin [cos()cos()]2,2m n mx nxdx m n x m n x dx m n πππ≠⎧⎪⋅=--+=⎨=⎪⎩⎰⎰,所以(2)也是[0,]π上的正交系.(3)1sin 20xdx π⋅=≠⎰,故1,c o s ,sin ,c o s2,sin2...,c o s ,sin ,...x x x x n x n x 不是[0,]π上的正交系.6.设()f x 可积或绝对可积,证明:(1) 如果函数()f x 在[,]ππ-上满足()()f x f x π+=,那么21210m m a b --== (2) 如果函数()f x 在[,]ππ-上满足()()f x f x π+=-,那么220m m a b == 证明:(1)当()f x 在[,]ππ-上满足()()f x f x π+=,且()f x 可积或绝对可积时有,2101()cos(21)11()cos(21)()cos(21)m a f x m xdx f x m xdx f x m xdx πππππππ---=-=-+-⎰⎰⎰在右端第一个积分作变换x y π=+得11()cos(21)()cos(21)f x m xdx f y m ydy ππππ--=--⎰⎰,故210m a -=,同理可证210m b -=.(2)当()f x 在[,]ππ-上满足()()f x f x π+=-,且()f x 可积或绝对可积时有,201()cos(2)11()cos(2)()cos(2)m a f x mx dx f x mx dx f x mx dx πππππππ--==+⎰⎰⎰在右端第一个积分作变换x y π=+得11()cos(2)()cos(2)f x mx dx f y my dy ππππ-=-⎰⎰,故20m a =,同理可证20m b =.7. 如果()()x x ϕφ-=,问()x ϕ与()x φ的傅里叶系数之间有什么关系. 解:函数()x ϕ与()x φ的傅里叶系数分别为1()cos n a x nxdx ππϕπ-=⎰,1()sin nbx nxdx ππϕπ-=⎰,1()cos n A x nxdx ππφπ-=⎰,1()sin n B x nxdx ππφπ-=⎰,由于 001[()cos ()cos ]n a x nxdx x nxdx ππϕϕπ-=+⎰⎰,在上式右端两个积分中作x y -=,并将()()x x ϕφ-=代入,即得001[()cos ()cos ]n a x nxdx x nxdx ππφφπ-=+⎰⎰1()cos nx nxdx A ππφπ-==⎰,同理1()sin n b x nxdx ππϕπ-=⎰=1()sin nx nxdx B ππφπ--=-⎰,因此得出()x ϕ与()x φ的傅里叶系数之间得关系为(1,2,...)n n a A n ==,(1,2,...)n n b B n =-=8.设()f x 在[],ππ-上可积,,n n a b 为()f x 的傅里叶系数,试证:2222011()()2N n n n a a b f x dx πππ-=++≤∑⎰ 证:令01()(cos sin )2NN n n n a S x a nx b nx ==++∑()220()()N f x S x dx f x dx ππππ--≤-=⎡⎤⎣⎦⎰⎰22()()()N N f x S x dx S x dx ππππ---+⎰⎰ 22222220011()2()()22N Nn n n n n n a a f x dx a b a b ππππ-==⎡⎤⎡⎤=-+++++⎢⎥⎢⎥⎣⎦⎣⎦∑∑⎰2222011()()2Nn n n a a b f x dx πππ-=∴++≤∑⎰.。
第15章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , ,, ,n x x x线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos2, sin2, , cos , sin ,x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰ 0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰ 1,2,k =,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2nn n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π]上按 段光滑,则x R ∀∈,有()01()c o s s i n 2n nn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,] ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数. 由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,22220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰222220224cos cos d |x nx nx x n n n ππππ=-=⎰,222211sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a b n π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰,2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰ c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+2 11()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;(3)11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k n n n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,所以11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰101(1)()cos d n f x nx x ππ++-=⎰02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰0011()d ()d f t t f x x πππππ=-+⎰⎰0011(2)d ()d f t t f x x ππππππ=-++⎰⎰000112()d ()d ()d f t t f x x f x x πππππππ=++=⎰⎰⎰. 当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<其按段光滑,故可展开为傅里叶级数. 由系数公式得2200011()d d 02x a f x x x πππππ-===⎰⎰.当1n ≥时,220011cos d d(sin )22n x xa nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求. (2)()f x x ππ-≤≤;解:()f x x ππ-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<=⎨⎪≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰00sin d sin d 22x x x x ππ-==. 当1n ≥时,0sin cos d sin cos d 22n x xa nx x nx x ππ-=+0sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππ-==.所以211()cos 41n f x nxn∞=-,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+=±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得2001()d a f x xππ=⎰222018()d 223a ax bx c x b c ππππ=++=++⎰. 当1n ≥时, 2201()cos d n a ax bx c nx xππ=++⎰ 2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24an =, 2201()sin d n b ax bx c nx x ππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx xn n ππππππ--=-⎰21sh d(cos )x nx n πππ-=⎰2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰ 11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰.当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得 221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ n n n a n b ≤+22M n ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是 ()01()c o s s i n2n n n a F t a nt b nt ∞=++∑, 其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 ()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑. 其中 1()cos ,l n l n x a f x dx l l π-=⎰1()sin l n l n x b f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n xa f x x l l π-==⎰, 012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰. 从而01()sin 2n n a n x f x a l π∞=+∑其只含正弦项,故称为由此可知,函数(),(0,)f x x l ∈要展开为余弦级数必须作偶延拓.偶延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1 求下列周期函数的傅里叶级数展开式(1) ()cos f x x =(周期π);解:函数由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰22[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos 241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数. 因12l =,所以由系数公式得()()1112100022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,2222()()1121022[]cos2d 2[]cos2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin2)x n x x x n x n πππ==⎰⎰110011sin2sin2d 0|x n x n x x n n ππππ=-=⎰.()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos2d 2x x ππ-⎛⎫= ⎪⎝⎭⎰204311cos2cos4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,204311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x ==-+,(,)x ∈-∞+∞为所求.2222(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx x ππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n x f x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得 31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时,12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x xπ+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰ 3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-. 2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ 011cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n x a f x xπ=⎰240211(1)cos d (3)cos d 2424n x n x x x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰ 442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩ 所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭. 解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得 0,0,1,2,n a n ==.02arcsin(sin )sin d n b x nx x ππ=⎰20222sin d ()sin d x nx x x nx x ππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin 2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰02cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x x nx xπππππ=+⎰⎰ 202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又)x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰02()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数. 推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)l i m ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b n n n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x xπππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑. (2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑.4 证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则。
第15章 傅里叶级数 §15.1 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin ,x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m au x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;所以三角函数系在[],ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积, 称为函数()f x 的傅里叶系数,而三角级数 称为()f x 的傅里叶级数,记作这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若 [,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π为周期的连续函数,且在[,]ππ-上按 段光滑,则x R ∀∈,有()01()c o s s i n 2n nn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时, 所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x ∈当n ≥所以1n f =)为所求.(3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.由系数公式得 当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n xn ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有 从而2 1()cos d c n ca f x nx xππ+=⎰同理可得3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;(3)11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得 当1n ≥时, 故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,所以11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得 当1n ≥时,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得 当1n ≥时,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰, 又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时, 所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,又,m n ∀,m n ≠时,所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系. 实因:1,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1)(),022xf x x ππ-=<<; 解:(),02x f x x ππ-=<<当n 所以1n n =,(0,2)x π∈为所求. (2) ()f x x ππ-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为2()2xxf xxxππ-≤<=⎨⎪≤≤⎪⎩,所以由系数公式得当1n≥时,所以211()cos41nf x nxn∞==-,(,)xππ∈-.而xπ=±时,(0)(0)()2f ffπππ±-+±+±,故211()cos41nf x nxn∞==-,[,]xππ∈-为所求.(3) 2(), (i) 02, (ii)f x ax bx c x xπππ=++<<-<<;解:(i)由系数公式得当1n≥时,故224()3af x ax bx c b cππ=++=++21442cos sin,(0,2)na a bnx nx xn nππ∞=++-∈∑为所求.(ii)由系数公式得当1n≥时,故222()3af x ax bx c cπ=++=+2142(1)cos(1)sin,(,)n nna bnx nx xn nππ∞=+---∈-∑为所求.(4) ()ch,f x x xππ=-<<;解:由系数公式得当1n≥时,所以22sh(1)(1)nnanππ=-+.所以0nb=,故21211()ch sh(1)cos21nnf x x nxnππ∞=⎡⎤==+-⎢⎥+⎣⎦∑,(,)xππ∈-为所求.(5) ()sh,f x x xππ=-<<.解:由系数公式得当1n≥时,1sh cos d0na x nx xπππ-==⎰.所以122sh(1)(1)nnn xbnπ+=-+,故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得而2(00)(20)6f f ππ+=-=,故由收敛定理得9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得 当1n ≥时,1()cos d na f x nx xπππ-''=⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 而22Mn∑收敛,所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积. 于是 ()01()c o s s i n2n n n a F t a nt b nt ∞=++∑, 其中 1()cos d ,n a F t nt t πππ-=⎰ 1()sin d n b F t nt tπππ-=⎰.令x t l π=得 从而 01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有 其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n x a f x x l l π-==⎰, 从而01()sin2n n a n x f x a l π∞=+∑其只含正弦项,故称为由此可知,函数要展开为余弦级数必须作偶延拓.偶延拓() (0,)()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展开为正弦级数必须作奇延拓. 奇延拓二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:函数()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于()f x )是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得2222故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得 当1n ≥时,故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3) 4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 当1n ≥时,故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得当1n ≥时,2sgn(cos )cos d n a x nx xππ=⎰故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞. 2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数. 解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求. 5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得当1n ≥时,1202(1)cos d n a x n x xπ=-⎰所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于f 是偶函数,故其展开式为余弦级数.当n ≥所以2141()arcsin(cos )cos(21)(21)n f x x n xn π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:再把()f x 延拓到[0,2]π上,方法如下:其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下.再把()f x 延拓到[0,2]π上,方法如下.)x 是偶函数,故其展开式为余弦级数.由系数公式得 当1n ≥时,201()cos d 0n a f x nx x ππ==⎰所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则 其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则推论2 设()f x 在[,]ππ-上可积,则定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则定理5 如果()f x 在[,]ππ-按段单调,则二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,于是2(),()m m f x S f x S ε--<.而所以m N >时,故 ()2222011()d 2n n n a a b f x xπππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.(1) 22118(21)n n π∞==-∑;(2) 22116n n π∞==∑; (3) 44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰, 即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1 (1)得由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1 (2)得由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰,故44190n π=∑. 4 证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ 所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5 证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰, ()()f f ππ-=,且成立贝塞尔等式,则证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑,由系数公式得 当1n ≥时,1()cos d na f x nx xπππ-''=⎰于是由贝塞尔等式得 总练习题151 试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得 当1k ≥时,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2 设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时,积分[]2()()d n f x T x x ππ--⎰取最小值,且最小值为上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====,因为[]2()()d n f x T x xππ--⎰而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰,所以[]2()()d n f x T x x ππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时,积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为3 设f 为以2π周期,且具有二阶连续可微的函数,若级数n b ''∑绝对收敛,则证:因为()f x 为以2π周期,且具有二阶连续可微的函数,所以1()sin d nb f x nx xπππ-''''=⎰即211,n nn b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=故结论成立.4 设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1) ()()x x ϕψ-=; (2) ()()x x ϕψ-=-. 试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,(1) 则当()()x x ϕψ-=时, 0n ∀≥,(2) 当()()x x ϕψ-=-时,0n ∀≥,5 设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系 对于在[,]a b 上的可积函数f ,定义 证明21nn a∞=∑收敛,且有不等式 22 1[()]d bn an a f x x∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为则函数列{}()n x ϕ为标准正交系.令1()(),1,2,mm n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=,又 2 [()()]d b m af x S x x-⎰而11(),()(),()(),()mmn n n n n n n f x S x f x a x a f x x ϕϕ====∑∑于是222 1()d [()()]d 0mbn m an f x x a f x S x x ππ-=-=-≥∑⎰⎰,所以22 11,[()]d mbn a n m a f x x=∀≥≤∑⎰,即{}()m S x 有上界.故21nn a∞=∑收敛,且22 1[()]d bn an a f x x∞=≤∑⎰.。
傅里叶级数课程及习题讲解段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,nna b 为()f x 的傅里叶系数.定义 2 如果()[, f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在; (,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果()f x 是以2π为周期的连续函数,且在[,]ππ-上按段光滑,则x R ∀∈,有 ()01()c o s s i n2nnn a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,]ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数x y O角点(1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n nππππππ+---=+=-⎰,所以 11sin ()2(1)n n nx f x n∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.x 4π2π2π-yO当1n ≥时,220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰ 220011sin sin d 0|x nx nx x n n ππππ=-=⎰, 220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n nππππ--=+=⎰,所以 1sin ()2n nx f x n π∞==-∑,(0,2)x π∈为所求.(2) 2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰. 当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx x n n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰222224cos cos d (1)|n x nx nx x n n nππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰ 212cos cos d |x nx x nx xn n ππππππ---=+⎰x 3πππ-3π-yO22d(sin )x nx n πππ-=⎰2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以 221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)、()2f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得222200118()d d 3a f x x x x πππππ===⎰⎰. 当1n ≥时,22220011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰2222200224cos cos d |x nx nx x n n nππππ=-=⎰,22220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n nππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求.x 4π2π2π-4π-y O(3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a b n π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n ca f x nx x f x nx x n πππππ+-===⎰⎰,2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰c+2 c+211()cos d ()cos d f t nt t f x nx xππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+211()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2)111111357111317π=+--+-+;(3) 311111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,11cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.x 3πππ-3π-yO 2π2π-11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求. (1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得111112391521π=-+-+, 于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则3111111457111317π⎫=-+-+-+⎪⎝⎭,311111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-, 所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰11(1)()cos d n f x nx xππ++-=⎰02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20ka =,20kb =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x x πππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx x ππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰. 0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2021f x nx x n kn k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又01,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系. 就函数系{sin ,sin 2,,sin ,}x x nx , 因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系.实因:01,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式 (1)(),022xf x x ππ-=<<;解:(),022xf x x ππ-=<<作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 02xa f x x x πππππ-===⎰⎰.当1n ≥时,22011cos d d(sin )22n xxa nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n nπππππ-=--=⎰,所以1sin ()n nx f x n ∞==∑,(0,2)x π∈为所求. (2)()f x x ππ=-≤≤;x 4π2π2π-4π-y O 2π32π-解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为2202()1cos 2sin 2202x x x f x x x x ππ⎧-≤<⎪⎪=-=⎨⎪-≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰02242sin d sin d 22x x x x ππ--=+= 当1n ≥时,022sin cos d sin cos d 22n x xa nx x nx x ππ--=+202242sin cos d 2(41)x nx x n πππ==--⎰.022sin sin d sin sin d 022n x x b nx x nx x ππ--==.所以2122421()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)2()2f f f πππ±-+±+±,故2122421()cos 41n f x nxn∞=--,[,]x ππ∈-为所求. (3) 2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<; 解:(i)由系数公式得2001()d a f x xππ=⎰22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,2201()cos d n a ax bx c nx xππ=++⎰2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24a n=,2201()sin d n b ax bx c nx xππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n nππ=--,故224()3a f x ax bx cb cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n an=-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn-=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n nππ∞=+---∈-∑为所求.(4)()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx xn n ππππππ--=-⎰21sh d(cos )x nx n πππ-=⎰2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)n na n nππ=--,所以22sh (1)(1)nn a n ππ=-+.11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21n b n =,所以0nb =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑,(,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰.当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n nb n nππ+=--,所以122sh (1)(1)n n n xb n π+=-+,故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑.解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑得221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nxn∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=, 故由收敛定理得22211(00)(20)11cos062n n f f n nππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,nna b为()f x 的傅里叶系数,,nna b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)nnnna a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=. 当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,nna b 满足关系{}33sup ,nnnn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设00()2a u x =,()cos sin nnnu x a nx b nx =+,1,2,n =.则0n ∀≥,()nu x 在R 上连续,且0()0u x '=,()sin cos n n nu x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos n n nu x n a nx n b nx '≤+n nn a n b ≤+ 22M n ≤.而 22Mn ∑收敛,所以()()cos sin nnnu x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是 ()01()c o s s i n2nnn a F t a nt b nt ∞=++∑,其中1()c o s d ,n a F t n t t πππ-=⎰1()s i n d n b F t n t tπππ-=⎰.令xt lπ=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin,cos cos n x n xnt nt l lππ==,从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n xa f x dx l l π-=⎰1()sin l n l n x b f x dx l lπ-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数.同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶. 于是1()cos d 0l n l n xa f x x l lπ-==⎰,012()sin d ()sin d l l n l n x n xb f x x f x xl l l l ππ-==⎰⎰.从而01()sin 2n n a f x a l∞=+∑. 其只含正弦项,故称为正弦级数. 由此可知,函数 (),(0,)f xx l ∈要展开为余弦级数必须作偶延拓. 偶延拓() ) ()() (,0)f x x l f x f x x l ∈⎧=⎨-∈⎩, 函数(),(0,)f x x l ∈要展 开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π); ()cos f x x =,22x ππ⎡⎤∈-⎢⎥图.xyOl l-x yOl l-2222由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos 2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰202[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--.222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2)()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得x 311-3-y O 22-1()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰. 当1n ≥时,()()1121022[]cos 2d 2[]cos 2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin 2)x n x x x n x n πππ==⎰⎰ 110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰. ()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰ 11d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=.故1111()[]sin 22n f x x x n xnππ∞==-=-∑,(,)x ∈-∞+∞为所求.(3)4()sin f x x =(周期π);解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos 2d 2x xππ-⎛⎫= ⎪⎝⎭⎰24311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,x 32π2π2π-32πy O ππ-204311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩.222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求. (4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰. 当1n ≥时,2sgn(cos )cos d n a x nx xππ=⎰22224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n x f x x n π∞=+==-+∑,(,)x ∈-∞+∞.x 32πππ-32π-yO ππ-2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰.当1n ≥时,12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n xx x π+-⎰ 21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰1121214sin sind sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n x n n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-.x231-3-yO 12-45612()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,2cos d 2n a x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.x π32π32π-yO π-2π52π2π2π2π-4 将函数()cos2x f x =在[0,]π上展开成正弦级数.解:函数()cos2x f x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,na n ==.02cos sin d 2n x b nx x ππ=⎰0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ 011cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)n n π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.xπyO π-2π3π1由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰240211(1)cos d (3)cos d 2424n x n xx x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰442222(3)sin sind 44n xn xx x n n ππππ--⎰2228cos 4n xn ππ=42228cos 4n xn ππ+2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n x n ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.x 231-yO 12-41因4l =,所以由系数公式得1120022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰112022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.n b =.所以2221141(1)cos ,[0,1]3n x nx x nπ∞=-=+∈∑.令0x =得22114113n nπ∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得 0,0,1,2,na n ==.2arcsin(sin )sin d n b x nx xππ=⎰2222sin d ()sin d x nx x x nx x ππππππ=+-⎰⎰xπ32πyO 2ππ-2π52π2π2π-22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n xn π∞=-==--∑,x R ∈. (2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰2cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.x π32πy O 2ππ-2π2π2π-32π-8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1) 211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑. 解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰. 02()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x f x nx xπππππ=+⎰⎰202()[cos cos()]d f x nx n nx xπππ=--⎰xπ32πyO 2ππ-2π2π-()y f x =204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.(2) 先把()f x 延拓到[0,]π上,方法如下. ()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰2()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.xπ32πy O 2ππ-2π2π-()y f x =§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,nna b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰. 推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)l i m ()22n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑. 定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d n a f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n''=++.由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()012n nn a a b ∞=++∑收敛,故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰,这里,nna b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()mm N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()mmf x S f x S ε--<.而(),()(),()2(),,mmmmmf x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m mn n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()2 2220 1()d 2m n nn a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.3 由于贝塞尔等式对于在[,]ππ-上满足收敛。