rc正弦波振荡器电路设计及仿真
- 格式:docx
- 大小:36.70 KB
- 文档页数:1
电子线路EDA报告专业电气工程及其自动化学生姓名 xxx x学号 xxxxxx题目 RC正弦波振荡电路指导教师 xx2016年x月x日一、任务与要求了解用集成运算放大器构成简单的正弦波的方法,掌握RC桥式正弦波振荡器的设计、仿真与调试方法。
理解RC 正弦波振荡电路的工作原理,利用Multisim 软件创建RC 桥式正弦振荡电路图,仿真分析其起振条件,稳幅特性。
掌握Multisim 软件中常用元器件的选取和参数设置,常用电子仪表的使用及电路调试的基本方法。
设计一个RC 桥式振荡电路。
其正弦波输出为: 振荡频率:500Hz振荡频率测量值与理论值的相对误差 电源电压变化时,振幅基本稳定 振荡波形对称,无明显非线性失真二、电路原理分析1、RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,如图1所示。
图中RC 选频网络形成正反馈电路,并由它决定振荡频率,和形成负反馈回路,由它决定起振的幅值条件和调节波形的失真程度与稳幅控制。
在满足1212R R R C C C ====,的条件下,该电路的振荡频率:o 12f RC π=(①)起振幅值条件 a bvf1a3R R A R +=≥或ba2R R ≥ (②)式中b 43d R R R r =+,d r 为二极管的正向动态电阻。
2、参数确定与元件选择一般说来,设计振荡电路就是要产生满足设计要求的振荡波形。
因此振荡条件是设计振荡电路的主要依据。
设计如图1所示振荡电路,需要确定和选择的元件如下:(1)确定R 、C 值根据设计所要求的振荡频率o f ,由式(①)先确定RC 之积,即o12RC f π=(③)为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:io R RR一般i R 约为几百千欧以上(如LM741型i 0.3M ΩR ≥),o R 而仅为几百欧以下,初步选定R 之后,由式(③)算出电容C 值,然后,再复算R 取值是否能满足振荡频率的要求。
实验五:RC正弦波振荡电路
一、实验目的
了解RC正弦波振荡器的两个组成部分。
了解正弦波振荡器的两个振荡条件。
掌握桥式RC正弦波振荡电路的调试和振荡频率的测量。
二.实验设备
安装Multisim10软件的计算机
三.实验内容
编辑RC正弦波振荡电路,验证振荡条件,计算并测试输出正弦波的周期。
四.实验步骤
1.编辑仿真电路如图2所示。
其中电位器R5的Increment栏设置为1%,初始时百分比为50%。
图2
2. 示波器放大面板中各栏设置如图3所示。
3. 打开仿真开关,但在示波器屏幕上看不到振荡正弦波形,为什么?
答:因为11+4.7<2*10,不能满足起振条件。
4. 按A键,逐渐增大电位器的百分比,观察何时可以看到电路起振波形,为什么?记录此时电位器的值。
答:当百分比为70%时,此时满足起振条件。
5. 继续增大电位器的百分比,将看到振荡器波形出现上、下削波失真。
6. 下调电位器的百分比,使输出正弦波达到不失真,测出正弦波的幅值。
根据此时电位器的值,判断振荡条件与理论是否相符?
答:此时幅值为11.117v,相符.
7.测出正弦波的周期,并与理论值比较,是否相符?
答:周期为6.364ms,相符。
rc正弦波振荡电路设计
RC正弦波振荡电路的设计过程可以按照以下步骤进行:
1.确定振荡频率:根据需要,选择合适的振荡频率。
2.确定电路参数:根据振荡频率,计算RC电路的参数,即电阻R和电容C 的值。
对于正弦波振荡电路,振荡频率f与R和C的关系为f=1/2πRC。
因此,已知振荡频率f,可以求出R和C的值。
3.设计电路:根据计算出的R和C的值,设计RC正弦波振荡电路。
电路一般由放大器、RC电路和正反馈网络组成。
放大器可以选择合适的运放或比较器等器件,RC电路选择相应的电阻和电容器件,正反馈网络可以选择相应的电阻或电容元件。
4.调整电路:在实际应用中,可能需要根据实际情况对电路进行调整,以获得更好的性能。
例如,可以通过调整放大器的反馈系数、RC电路的元件值等来调整振荡频率和幅度。
5.测试电路:在调整完成后,对电路进行测试,观察是否能够正常工作并产生稳定的正弦波输出。
总之,RC正弦波振荡电路的设计需要综合考虑电路参数、元件选择、电路结构等因素,并经过调整和测试来获得最佳性能。
实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。
2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。
3.掌握RC正弦波振荡器的设计和分析方法。
4.掌握RC正弦波振荡器的安装与调试方法。
实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。
图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。
2.在MULTISIM中搭建8-1电路,进行瞬态仿真。
所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。
表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。
表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。
竭诚为您提供优质文档/双击可除rc正弦波振荡实验报告篇一:电子实验报告三Rc正弦波振荡器电路实验报告三《Rc正弦波振荡器》实验内容一:1.1、关闭系统电源。
按图1-1连接实验电路,输出端uo接示波器。
1.2打开直流开关,调节电位器Rw,使输出波形从无到有,从正弦波到出现失真。
描绘uo的波形,记下临界起振、正弦波输出及失真情况下的Rw值,分析负反馈强弱对起振条件及输出波形的影响。
1.3.电位器Rw,使输出电压uo幅值最大且不失真,用交流毫伏表分(:rc正弦波振荡实验报告)别测量输出电压uo、反馈电压u+(运放③脚电压)和u-(运放②脚电压),分析研究振荡的幅值条件。
1.4.器振荡频率fo,并与理论值进行比较。
图1-1实验结果:负反馈强弱对起振条件及输出波形的影响:解:Rc桥式振荡器要求放大器的放大倍数等于3,如果负反馈较弱,放大倍数就过大使波形失真;负反馈太强使放大倍数小于或等于3,则起振困难或工作不稳定。
图1-2图1-3图1-41.3输出电压uo幅值最大且不失真时输出波波形图见图1-5 图1-51.4思考题1、正弦波振荡电路中有几个反馈支路?各有什么作用?运放工作在什么状态?2、电路中二极管为什么能其稳幅作用?断开二极管,波形会怎样变化?解:1.正弦波振荡电路中有一个正反馈支路,一(三?)个负反馈支路。
2.(1)二极管控制电路增益,实现稳幅。
二极管决定稳幅控制电路的控制力度,即决定了控制电压每变化1个单位引起的Io变化量,直接影响反馈电路的增益。
稳幅环节是利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R4的作用是削弱二极管非线性的影响,以改善波形失真。
负反馈电路中有两个二极管,它们的作用是稳定输出信号的幅度。
也可以采用其他的非线形元件来自动调节反馈的强度,以稳定振幅,如:热敏电阻、场效应管等。
(2)若断开二极管,波形会变得极不稳定。
RC正弦波发生器的设计与仿真1.课程设计目的1、理解RC正弦波振荡器的工作原理;掌握调试RC振荡器频率特性的方法。
2、学习与掌握Multisim等仿真软件的元件搜寻、电路搭建、仿真分析等基本操作。
3、基于Multisim或其他仿真软件实现RC正弦波振荡器具体设计与模拟仿真,掌握元件、电路的仿真和波形的测试技能。
2.设计方案论证本实验使用的一个软件是Multisim,它是一款电子电路仿真的虚拟电子工作台软件,采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,绘制电路图需要的元器件,电路仿真需要的测试仪器均可以直接从屏幕上选取;软件仪器控制面板外形和操作方式都与实物相似,可以实时显示测量结果;Multisim软件带有丰富的电路元件库,提供多种电路分析方法;作为设计工具,它可以同其它流行的电路分析,设计和制版软件交换数据;Multisim还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。
Multisim工作环境如图1所示图1 Multisim工作环境Protel 包含电路原理图设计,电路原理图仿真测试,印制电路板设计,自动布线器和FPGA/CPLD设计,覆盖了以PCB为核心的整个物理设计。
它提供了进行层次原理图设计的环境,支持“自上而下”和“自下而上”的层次电路设计,能够完成更加大型,更为复杂的电路设计。
Protel 提供了丰富的原件原理图库和PCB封装库,并且库的管理和编辑功能更加完善,草组更加简便。
电路设计人员通过Protel提供的编辑工具,可以方便的实现库中没有包含的原件原理图以及PCB封装的设计制作。
它提供了原件集成库的概念。
在它的元件集成库中集成了元件的原理图符号,本次设计重要通过 Protel 绘图软件完成正弦波发生器原理图的绘制及PCB图的绘制,并利用Multisim软件进行编译、仿真出正弦波波形,并对其进行比较。
RC正弦波振荡电路设计首先,我们需要了解RC正弦波振荡电路的基本原理。
振荡器是一种电路,它能够将直流电源的能量转换为交流信号。
在RC振荡电路中,我们使用了一个电容和一个电阻来实现振荡。
在RC正弦波振荡电路中,电容充电和放电的时间常数(记为τ)非常重要。
时间常数τ决定了振荡频率的大小,公式为τ=RC,其中R为电阻的阻值,C为电容的电容值。
接下来,我们将详细介绍如何设计RC正弦波振荡电路。
设计过程分为以下几个步骤:1.确定振荡频率:首先根据需要确定振荡的频率范围,并选择一个合适的频率。
振荡频率主要由电容值和电阻值决定,可以通过调整它们的比例来改变频率。
2.选择电容和电阻:根据已知的振荡频率,选择一个合适的电容和电阻。
一般来说,电容的值可以在几十皮法(pF)到几百微法(uF)之间选择,而电阻的值可以在几百欧姆(Ω)到几兆欧姆(MΩ)之间选择。
3.计算时间常数:根据所选择的电容和电阻的值,计算时间常数τ。
时间常数τ决定了振荡的频率,可以根据τ=RC公式计算得出。
4.根据振荡频率调整电容和电阻:如果振荡频率与所需要的频率不一致,可以通过调整电容和电阻的比例来改变频率。
通常来说,增加电容值可以降低频率,而增加电阻值可以提高频率。
5.考虑放大器:为了增强正弦波信号的幅度,可以在RC振荡电路中添加一个放大器电路。
放大器电路一般采用运算放大器、晶体管等元件实现。
6.振荡电路的稳定性:为了确保RC振荡电路的稳定性,可以在电容的两端或电阻的两端添加阻尼电阻,用来衰减振荡中的能量。
7.电源:振荡电路需要一个直流电源供电,电源电压的稳定性会影响振荡器的稳定性,因此需要选择一个稳定的电源。
最后,设计好RC正弦波振荡电路后,可以使用示波器等仪器进行验证,观察输出的波形是否为正弦波,并调整电容和电阻的值,使得输出的波形更加稳定和准确。
总结来说,RC正弦波振荡电路的设计步骤包括确定振荡频率、选择电容和电阻、计算时间常数、根据频率调整电容和电阻、考虑放大器、确保振荡电路的稳定性和选择稳定的电源。
基于 Multisim 的 RC 正弦波振荡电路仿真分析RC正弦波振荡电路是一类重要的电路,被广泛应用于电子领域。
本文以基于Multisim的RC正弦波振荡电路为研究对象,对其进行仿真分析,从而探究其基本特性和性能参数。
一、电路搭建首先,在Multisim软件中,选取电路图纸,通过选取电子元器件,建立RC电路。
RC正弦波振荡电路的基本架构由正放式运放、两个电阻和一个电容组成。
将一个电容放在反相输入端与输出端负极相连,电容的另一端与一个固定电阻相接,在反相输入端连接一个变阻器,非反相输入端接地。
通过连接电源,建立好电路图。
二、调整电路参数在搭建电路之后,需要为电路调整参数。
首先可以调整电阻的值,调整R1、R2值,以便改变振荡频率。
然后对电容C进行调整,设置合适的电容值,以得到电路的理想振荡频率。
当调整好参数后,可以进行振荡波形的观测,从而验证电路的实际效果。
三、分析电路特性通过Multisim软件得到电路的振荡波形,并分析其特性。
在本文所述的RC正弦波振荡电路中,通过选择合适的元器件值,可以得到稳定、可调谐范围广、信噪比高的正弦振荡器。
在这样的正弦振荡器中,正放运放工作于非线性区,并且依靠电容C和电阻R进行反馈调整,从而保持输出的正弦波振荡。
四、参数计算在Multisim中,我们可以测量并计算各个参数。
例如,可通过测量电压对时间的变化,计算出电路的振荡频率。
通过计算得知,RC正弦波振荡电路的振荡频率为:f = 1 / (2 * π * RC)。
其中,C为电容值,R为与电容器相连的电阻值。
五、性能分析通过Multisim软件的仿真分析,我们可以获得RC正弦波振荡电路的性能指标。
这些指标包括:振幅稳定、振荡频率稳定、频率可调范围、波形畸变系数、信噪比等。
其中,振荡频率可调范围是关键参数之一。
通常,在RC正弦波振荡电路中,调节电容和电阻值,既可以调节振荡频率,又可以实现对振幅和相位的调节。
综上所述,本文以基于Multisim的RC正弦波振荡电路为研究对象,通过仿真分析其基本特性和性能参数。
实验十 集成电路RC 正弦波振荡器一、实验目的1、掌握桥式RC 正弦波振荡器的电路构成、工作原理及其振荡条件。
2、熟悉正弦波振荡器的调整、测试方法。
3、观察RC 参数对振荡频率的影响,学习振荡频率的测定方法。
4、研究负反馈强弱对振荡的影响。
二、实验原理图10.1为RC 桥式正弦波振荡器。
其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R W及二极管等元件构成负反馈和稳幅环节。
调节电位器R W ,可改变负反馈深度,以满足振荡的振幅条件和改善波形。
利用两个反 图10.1正弦波振荡器向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。
D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。
R 3的接入是为了削弱二极管非线性的影响,以改善波形的失真。
电路的振荡频率RC f π210= 起振的幅值条件21≥R R f 式中()D W f r R R R R //32++=, r D — 二极管正向导通电阻。
调整反馈电阻R f (调R W ),使电路起振,且波形失真最小。
如不能起振,则说明负反馈太强,应适当加大R f 。
如波形失真严重应当减小R f 。
改变选频网络的参数C 或R ,即可调节振荡频率。
一般采用改变电容C 作频率量程切换,而调节R 作量程的频率细调。
三、实验内容及步骤1、按图10.1连接实验电路。
检查无误后,接通电源。
2、调节电位器R W ,使输出波形从无到有,从正弦波到出现失真。
描绘u 0的波形,记录下临界起振、正弦波输出及失真情况下的R W 值,分析负反馈强弱对起振条件及输出波形的影响。
3、调节电位器R W,使输出电压u O幅值最大且不失真,用交流毫伏表分别测量输出电压u O、反馈电压U F+和U F-,分析研究振荡的幅值条件。
4、用频率计测量频率f0,然后在选频网络的两个电阻R上并联同一阻值电阻,观察记录振荡频率的变化情况,并与理论值进行比较。
rc正弦波振荡器电路设计及仿真
!
正弦波振荡器电路的设计和仿真是电子技术的一个重要课题,对电子技术的研究有重
要的意义。
正弦波振荡器是一种典型的振荡电路,它可以用来产生正弦波和方波。
因其电
路简单,性能稳定,用途广泛,在电子电路技术中被广泛应用。
正弦波振荡器的基本原理是把正弦波加以无穷次平均,用此组成两极结构,即动态输
入和动态输出端口,把正弦波作为输入量,由输入端口输送到输出端口,通过反馈回路在
输入端口进一步处理,使其可以不断循环。
根据正弦波振荡器的工作原理,结合实际的应用需求,可以设计出一种满足要求的正
弦波振荡器电路。
其核心电路为双极复放机构,由输入阻抗器连接在振荡管的基极,另一
极连接地;反馈分支由调节圈提供反馈能量,当振荡管的基极的电压超过一定的值得时候,参考管会调节输出端口的电压,而正弦波振荡器就是通过这种反应机制实现正弦波振荡的。
在正弦波振荡器的设计与仿真中,可以采用SPICE模拟工具,运用电路技术与分析技术,对正弦波振荡器电路进行仿真,加以验证电路设计的可行性,并评估其性能参数,致
力于达到设计规定的要求。
总之,正弦波振荡器电路的设计与仿真是一个相当重要的课题,可以通过SPICE模拟
工具与电路技术来实现,并有效地验证仿真结果,为电子技术提供参考,提高电子产品的
质量。