用分光计测三棱镜顶角实验报告
- 格式:docx
- 大小:36.68 KB
- 文档页数:1
测棱镜顶角实验报告一、实验目的1、掌握用自准直法和反射法测量三棱镜顶角的方法。
2、了解分光计的结构和使用方法。
3、加深对光的反射和折射定律的理解。
二、实验仪器分光计、三棱镜、钠光灯。
三、实验原理1、自准直法利用望远镜自身产生平行光,使之垂直入射于三棱镜的一个光学面,反射光又返回望远镜,若望远镜光轴与反射光平行,此时望远镜的方位角即为顶角的一半。
2、反射法让一束平行光照射在三棱镜的两个光学面上,分别测出两束反射光的方位角,其差值的一半即为顶角。
四、实验内容与步骤1、分光计的调整调节望远镜聚焦于无穷远。
通过目镜观察分划板,调整目镜调焦手轮,使分划板清晰。
然后将平面反射镜置于载物台上,使反射镜与望远镜光轴大致垂直。
通过望远镜观察反射镜,找到反射像。
调节望远镜俯仰螺丝和载物台水平调节螺丝,使反射像位于分划板上十字叉丝的交点。
此时望远镜已聚焦于无穷远。
调节望远镜光轴与分光计中心轴垂直。
将平面反射镜在载物台上旋转 180°,观察反射像是否仍在十字叉丝交点。
若不在,调节望远镜俯仰螺丝,使反射像回到交点。
反复调节,直至平面反射镜在任意位置,反射像均能与十字叉丝交点重合。
调节平行光管产生平行光。
将已调好的望远镜对准平行光管,调节平行光管狭缝宽度,使其适中。
然后调节平行光管的俯仰螺丝和聚焦螺丝,使通过狭缝的光形成清晰的像位于分划板上。
调节平行光管光轴与分光计中心轴垂直。
将望远镜对准平行光管,观察狭缝像是否与十字叉丝竖线重合。
若不重合,调节平行光管俯仰螺丝,使其重合。
2、自准直法测量三棱镜顶角将三棱镜放置在载物台上,使三棱镜的一个光学面与平行光管光轴垂直。
点亮钠光灯,通过望远镜观察三棱镜的一个光学面,找到反射像。
调节载物台,使反射像位于分划板上十字叉丝的交点。
此时望远镜的方位角即为顶角的一半,记为。
旋转载物台 180°,再次找到反射像,记录此时望远镜的方位角。
则顶角。
3、反射法测量三棱镜顶角将三棱镜放置在载物台上,使平行光管的光束照射在三棱镜的两个光学面上。
实验名称:用分光镜测三棱镜顶角一、实验目的采用自准法测量三棱镜的顶角。
二、实验器材1、分光计(1)望远镜(2)载物台(3)平行光管(4)读数装置(5)底座2、双面反射镜3、三棱镜三、实验原理图1是自准法测量三棱镜顶角的示意图,图中所示三棱镜是横截面为等边三角形的柱体。
AB和AC是透光的光学表面,又称折射面,其夹角A称为三棱角的顶角;BC为毛玻璃面,称为三棱角的底面。
实验中利用望远镜自身产生平行光,固定载物台(或固定望远镜),转动望远镜光轴(或转动载物台),先使棱镜AB 面反射的十字像落在分划板上双十字叉丝上部的交点上(即望远镜光轴与三棱镜AB 垂直),记下刻度盘对称游标的方位角读数I I ϕϕ'和。
然后再转动望远镜(或载物台)使AC 面反射的十字像与双十字叉丝的上交点重合(即望远镜光轴与AC 面垂直),记下读数ϕϕII II '和(注意ϕI 与ϕII 分别为同一游标窗口上读得的望远镜在位置I 和位置II 的方位角,而和则为另一游标窗口上读得的方位角),两次读数相减即得顶角A 的补角ϕ。
()()()121122ϕϕϕϕϕϕϕII I II I ⎡⎤''=+=-+-⎢⎥⎣⎦ 则三棱镜的顶角()()11801802A ϕϕϕϕϕII I II I ⎡⎤''=-=--+-⎢⎥⎣⎦o o四、 实验步骤(一)分光计的调节为了精确测量角度,必须使待测角平面平行于读数盘平面,所以测量前须对分光计进行调节。
调节分光计的要求是: (1) 平行光管出射平行光;(2) 望远镜接收平行光(即望远镜聚焦于无穷远);(3) 经过光学元件的光线构成的平面应与仪器的中心转轴垂直,即平行光管和望远镜的光轴与分光计的中心转轴垂直,载物台中轴线与中心转轴重合。
调节前,应对照实物和图1的结构熟悉仪器,了解各个调节螺钉的作用。
调节时要先粗调再细调。
1、目测粗调根据眼睛的粗略估计,调节望远镜和平行光管上的高低调节螺钉14和29,使它们的光轴大致与中心转轴垂直;调节载物台下的三个水平调节螺钉,使其大致处于水平状态。
分光计测量三棱镜顶角实验报告定稿版
一、实验目的
1.利用分光计测量三棱镜的顶角;
2.了解光的全反射现象;
3.掌握光的干涉行为。
二、实验仪器与材料
1.分光计;
2.三棱镜;
3.光源;
4.平面镜。
三、实验原理
1.三棱镜的顶角是顶点A到底面角BAC的角度,通常为60度。
2.当平面光波沿着入射角小于全反射临界角的三棱镜底面表面入射,光会全反射并发生干涉。
四、实验步骤
1.将三棱镜放在光源前,使底面与光源平行,然后转动三棱镜,使方形表面朝向光源。
2.在分光计上观察到的光谱中心发生明显改变时,停止转动,记录此时的读数。
3.重新调整分光计,使之回到初始位置,并读取此时的读数。
4.利用读数计算出三棱镜的顶角。
五、实验数据
1.初始读数:20度
2.终止读数:80度
六、实验结果与分析
根据实验数据,可计算出三棱镜的顶角为60度。
实验结果与理论值相符,说明实验的准确性较高。
七、实验结论
通过本次实验,我们利用分光计测量了三棱镜的顶角,并了解了光的全反射现象和干涉行为。
实验结果表明我们可以利用分光计准确测量出三棱镜的顶角,这对于光学研究具有重要意义。
八、实验中的问题与改进措施
在实验过程中,可能会受到光线不稳定等因素的影响,会导致读数的误差。
因此,在实验中应尽量保持光源的稳定,减小误差的发生。
总之,本次实验通过利用分光计测量三棱镜的顶角,深化了我们对光学现象的理解,提高了我们的实验能力和分析能力。
在今后的学习和研究中,我们将更加深入地研究光学现象,探索更多有趣的实验现象。
第1篇一、实验背景分光计是一种精密的光学仪器,主要用于测量角度和折射率等光学参数。
通过本次实验,我们深入了解了分光计的结构、原理以及操作方法,并学会了如何利用分光计进行折射率的测量。
二、实验目的1. 掌握分光计的结构和调节方法。
2. 理解分光计的工作原理。
3. 利用分光计测量三棱镜的顶角和最小偏向角,进而计算出三棱镜材料的折射率。
三、实验原理分光计的基本原理是利用光学元件的反射和折射来形成平行光,并通过测量光线的偏转角度来得到光学参数。
在本实验中,我们主要利用了以下原理:1. 平行光原理:通过调节平行光管,使发出的光线成为平行光。
2. 折射原理:当光线从一种介质进入另一种介质时,会发生折射,折射角度与介质的折射率有关。
3. 光栅原理:利用光栅将光分解成不同波长的光,从而可以测量光的波长。
四、实验仪器1. 分光计2. 三棱镜3. 水银灯光源4. 双面平行面镜5. 狭缝宽度调节工具五、实验步骤1. 分光计调节:- 调节望远镜,使其对准平行光管发出的平行光。
- 调节望远镜的光轴,使其垂直于主轴。
- 调节平行光管,使其发出平行光。
2. 测量三棱镜顶角:- 将三棱镜放置在载物台上,调整其位置,使平行光垂直照射到三棱镜的一个面上。
- 通过望远镜观察,当光线从三棱镜的一个面折射到另一个面时,记录下此时的角度。
- 重复上述步骤,测量三棱镜的另一侧面,得到顶角。
3. 测量最小偏向角:- 调节平行光管,使光线垂直照射到三棱镜的一个面上。
- 通过望远镜观察,当光线从三棱镜的两个面折射出来后,记录下此时的角度。
- 调节平行光管,使光线从三棱镜的两个面折射出来后,记录下此时的角度。
- 当角度达到最小值时,记录下此时的角度。
4. 计算折射率:- 利用折射定律和最小偏向角公式,计算出三棱镜材料的折射率。
六、实验结果与分析1. 通过实验,我们成功调节了分光计,使其能够发出平行光。
2. 通过测量,我们得到了三棱镜的顶角和最小偏向角。
分光计测量三棱镜顶⾓实验报告分光计测量三棱镜顶⾓实验报告This manuscript was revised on November 28, 2020参考报告分光计测量三棱镜顶⾓⼀、实验⽬的:1、了解分光计的结构和各个组成部分的作⽤;2、学习分光计调节的要求和调节⽅法;3、测量三棱镜顶⾓;⼆、仪器与⽤具:1、分光计:(型号:JJY-Π型, ';2、钠灯:(型号:GY-5,3、三棱镜棱⾓:60o±5′(材料:重⽕⽯玻璃,nD = );4、双⾯反射镜,变压器220V)三、预习报告:1、实验原理(⼒求简要):(1)分光计调整总要求:望远镜和平⾏光管的光轴共线并与分光计中⼼轴垂直。
分要求:有三个如下:〈1〉望远镜调焦到⽆穷远(接收平⾏光)、其光轴与分光计中⼼轴垂直调整⽅法:①对望远镜的⽬镜进⾏调焦,从望远镜中能清晰看到分划板⼗字准线②对望远镜的物镜进⾏调焦,⽤“⾃准直法”进⾏,从望远镜中能清晰看到绿“+”字像、且⽆视差。
③分别从望远镜看到从⼩镜两反射⾯反射回来的两绿“+”字反射像,均与分光板的调整⽤线(分划板上⽅的⼗字叉线)重合。
④在望远镜能接收平⾏光的基础上,根据反射定律,应⽤“各半调节法”进⾏调整。
〈2〉载物台垂直仪器主轴调整⽅法:将双⾯镜旋转90°,同时旋转载物台90°,调节⼀个螺丝,分别从望远镜看到从双⾯镜两反射⾯反射回来的两绿“+”字反射像,均与分光板的调整⽤线(分划板上⽅的⼗字叉线)重合。
〈3〉平⾏光管出射平⾏光;调整⽅法:从望远镜⾥看到平⾏光管狭缝清晰像呈现在分划板上且⽆视差。
望远镜对准平⾏光管(注意:这⼀步及后⾯操作绝对不能动望远镜的仰⾓调节螺丝以及物镜和⽬镜的焦距),从望远镜观察平⾏光管狭缝的像,调节平⾏光管透镜的焦距,使从望远镜清晰看到狭缝的像(⼀条明亮的细线)呈现在分划板上为⽌。
这时望远镜接收到的是平⾏光,也就是说,平⾏光管出射的是平⾏光。
〈4〉平⾏光管光轴与望远镜光轴共线并与分光计中⼼轴垂直调整⽅法:望远镜看狭缝像与分光板竖直准线重合,狭缝像转90o后⼜能与中⼼⽔平准线重合。
分光计实验报告数据一、实验目的1、了解分光计的结构,掌握分光计的调节和使用方法。
2、测量三棱镜的顶角。
3、测量三棱镜对不同波长光的折射率。
二、实验原理1、分光计的结构和原理分光计主要由望远镜、平行光管、载物台、读数圆盘等部分组成。
望远镜用于观察和瞄准目标,平行光管用于产生平行光,载物台用于放置待测物体,读数圆盘用于测量角度。
2、测量三棱镜顶角测量三棱镜顶角的方法主要有反射法和自准直法。
反射法是利用光线在三棱镜两个光学面上的反射,通过测量反射光线的夹角来计算顶角。
自准直法是通过望远镜自身产生平行光,经过三棱镜反射后回到望远镜,测量望远镜转过的角度来计算顶角。
3、测量三棱镜折射率根据折射定律,当光线从一种介质进入另一种介质时,入射角的正弦与折射角的正弦之比等于两种介质的折射率之比。
通过测量入射角和折射角,以及已知入射光在空气中的折射率,就可以计算出三棱镜对该波长光的折射率。
三、实验仪器分光计、三棱镜、钠光灯、汞灯。
四、实验步骤1、分光计的调节(1)调节望远镜目镜,使分划板上的十字叉丝清晰。
(2)将平面反射镜放在载物台上,调节望远镜和载物台,使望远镜能够看到反射镜反射回来的十字叉丝像,并使其与分划板上的十字叉丝重合。
(3)调节平行光管,使其发出平行光。
2、测量三棱镜顶角(1)采用反射法测量顶角。
将三棱镜放置在载物台上,使三棱镜的一个光学面与平行光管的光轴垂直,另一个光学面正对望远镜。
分别测量两个光学面上反射光线的夹角,然后计算顶角。
(2)采用自准直法测量顶角。
将望远镜对准三棱镜的一个光学面,使从望远镜射出的平行光经过光学面反射后能够回到望远镜,记录望远镜转过的角度,然后计算顶角。
3、测量三棱镜折射率(1)用钠光灯作为光源,测量钠光在三棱镜中的折射角。
将三棱镜放置在载物台上,转动载物台,使钠光以不同的入射角入射到三棱镜的一个光学面上,测量相应的折射角。
(2)用汞灯作为光源,重复上述步骤,测量汞光在三棱镜中的折射角。
物理实验报告《分光计的调整和三棱镜顶角的测定》_实验报告目录一、实验目的 (2)二、实验原理 (2)1. 分光计的工作原理 (3)2. 三棱镜顶角测定的原理 (4)三、实验仪器与材料 (5)1. 分光计 (6)2. 三棱镜 (7)3. 测量工具 (8)4. 实验环境要求 (10)四、实验步骤 (10)1. 分光计的调整 (11)1.1 调整光源位置 (12)1.2 调整望远镜的目镜 (13)1.3 校正分光计的读数 (13)2. 三棱镜顶角的测定 (14)2.1 安装三棱镜 (15)2.2 调整测量装置 (15)2.3 进行顶角测量 (16)2.4 数据处理与结果分析 (17)五、实验数据记录与处理 (18)1. 实验数据的记录格式 (19)2. 实验数据的处理方法 (20)3. 结果分析与讨论 (20)六、实验结论 (22)七、实验误差来源分析及改进措施 (22)八、实验心得与体会 (23)一、实验目的本次实验旨在深入探究分光计的调整方法及其在测定三棱镜顶角中的应用。
通过实际操作,学生将熟悉分光计的工作原理和使用技巧,掌握调整分光计至最佳工作状态的方法,并能够准确测量三棱镜的顶角。
这不仅有助于提升学生的动手能力,还能加深对其光学性质的理解,为后续的光学实验和研究打下坚实基础。
二、实验原理本实验主要研究分光计的调整和三棱镜顶角的测定,分光计是一种用于测量光线波长分布的仪器,它可以将入射光线分解成不同波长的成分,从而实现对光线的分析和测量。
三棱镜顶角是指在特定条件下,从三棱镜底面反射出的顶角大小。
这两个实验都是光学领域的基本实验,对于了解光学基本原理和掌握光学仪器的使用具有重要意义。
我们来介绍分光计的调整,分光计由光源、透镜、光栅等部分组成,通过调整这些部件的位置和参数,可以使入射光线经过透镜和光栅后形成平行光线,从而实现对光线波长的测量。
在本实验中,我们将学习如何调整分光计的透镜和光栅,使其工作在合适的波长范围内。
大学物理实验3
用分光计测三棱镜顶角
实验中用到的仪器有等边三棱镜、6.3伏电源,分光计和平面镜。
通过这个实验我们可以了解分光计的结构、工作原理和作用,掌握分光计的操作步骤和调节方法,最后利用分光计测量出三棱镜的顶角。
一、实验目的
二、实验原理(图)
三、实验设备、仪器、用具及其规范
四、实验(测定)方法
五、实验记录、数据处理
六、结果分析及问题讨论
实验中的误差主要有:
(1)系统误差(仪器的缺陷);
(2)随机误差(测量过程中零件配合的不稳定或摩擦,测量人感觉器官的无规则变化);
(3)粗大误差(未正确使用仪器,观察出现错误)等。
【基础物理实验研究性报告】分光仪测三棱镜顶角摘要: 刚刚做过了分光仪实验很短时间, 对这个实验的记忆还比较深。
同时, 在做实验的过程中, 也感到一些地方对实验的最终结果的精确度造成一些影响, 本文是在我们仔细思考之后, 介绍分光仪的具体使用, 以及对改进实验的一些建议。
关键字: 分光仪、三棱镜的顶角、反射法、弧度制;一、引言分光仪(Spectrometer)是一种能精确测量角度的典型光学实验仪器, 在利用光的反射、折射、衍射、干涉和偏振原理的各项实验中进行角度测量。
由于该装置比较精密,操纵控制部件较多而复杂, 故使用时必须按一定的规则严格调整, 方能获得较高精度的测量结果。
例如:利用光的反射原理测量棱镜的角度;利用光的折射原理测量棱镜的最小偏向角, 从而计算棱镜玻璃的折射率和色散率;与光栅配合, 作光的衍射实验, 测量光波波长;与偏振片、波片配合, 作光的偏振实验等。
二、实验目的1.了解分光仪的构造及其主要部件的作用。
2.学习并掌握分光仪的调节原理与调节方法。
3、掌握自准直法和逐次逼近调节法, 巩固视差调节技术。
4.学会用反射法测量三棱镜的顶角。
三、实验原理1.分光仪的调整1)目测粗调目测粗调“望远镜光轴倾斜调节螺丝”、“载物台调平螺丝”、“平行光管光轴倾斜调节螺丝”分别使望远镜筒、载物台面、平行光管镜筒均大致处于水平状态, 并与仪器中心转轴基本垂直。
2)用自准法调整望远镜聚焦于无穷远(1)旋转“目镜视度调节螺母”, 改变目镜到分划板之间的距离(目镜对分划板调焦), 直到分划板上的叉丝线和十字窗口成像清晰为止。
(2)改变分划板到物镜之间的距离, 直到十字像成像最清晰, 并且十字像与叉丝线无视差。
3)调整望远镜光轴与分光仪的转轴相垂直平面镜仍竖直置于载物台上, 如果望远镜光轴与平面镜镜面垂直, 则反射回来的亮十字像与分划板中上叉丝线交叉点完全重合, 将载物台旋转180°(因而平面镜也随着转过180°)之后, 如果亮十字像与上叉丝线交叉点仍然完全重合, 则说明望远镜光轴与分光仪的中心轴垂直。
分光计测量三棱镜顶角一、实验目的:1、了解分光计的结构和各个组成部分的作用;2、学习分光计调节的要求和调节方法;3、测量三棱镜顶角;二、仪器与用具:1、分光计:(型号:JJY-Π型, 编号:99056400),最小刻度1';2、钠灯:(型号:GY-5, 编号:20020072);3、三棱镜棱角:60º±5′(材料:重火石玻璃,n D= 1.6475);4、双面反射镜,变压器(6.3V/220V)三、预习报告:1、实验原理(力求简要):(1)分光计调整总要求:望远镜和平行光管的光轴共线并与分光计中心轴垂直。
分要求:有三个如下:〈1〉望远镜调焦到无穷远(接收平行光)、其光轴与分光计中心轴垂直调整方法:①对望远镜的目镜进行调焦,从望远镜中能清晰看到分划板十字准线②对望远镜的物镜进行调焦,用“自准直法”进行,从望远镜中能清晰看到绿“+”字像、且无视差。
③分别从望远镜看到从小镜两反射面反射回来的两绿“+”字反射像,均与分光板的调整用线(分划板上方的十字叉线)重合。
④在望远镜能接收平行光的基础上,根据反射定律,应用“各半调节法”进行调整。
〈2〉载物台垂直仪器主轴调整方法:将双面镜旋转90°,同时旋转载物台90°,调节一个螺丝,分别从望远镜看到从双面镜两反射面反射回来的两绿“+”字反射像,均与分光板的调整用线(分划板上方的十字叉线)重合。
〈3〉平行光管出射平行光;调整方法:从望远镜里看到平行光管狭缝清晰像呈现在分划板上且无视差。
望远镜对准平行光管(注意:这一步及后面操作绝对不能动望远镜的仰角调节螺丝以及物镜和目镜的焦距),从望远镜观察平行光管狭缝的像,调节平行光管透镜的焦距,使从望远镜清晰看到狭缝的像(一条明亮的细线)呈现在分划板上为止。
用分光计测三棱镜顶角实验报告
一、实验目的
本次实验的目的是使用三棱镜测量分光计,以确定其准确的顶角大小。
二、实验原理
入射光由镜片表面反射,而出射光在三棱镜表面以及相关介质之间传播。
当介质具有
折射率不同时,就会发生反射、折射、衍射等光学效应。
三棱镜的通过参数给定顶角决定
了出射光的路径,从而影响出射光的角度。
将这个角度与参考角度相比较,就可以测量三
棱镜的顶角。
三、实验装置
本实验使用的装置主要有分光计、真空管、水平尺、三棱镜、煤油等。
四、实验步骤
(一)准备实验:将分光计放置在实验台上,通过夹具将三棱镜固定在一起,将一支
真空管固定在真空口上,将一支水平尺放置在实验台上,将煤油放入真空口内,等等。
(二)调节实验:通过观察出射光的方向,使用水平尺调整三棱镜顶角,得到准确的
角度值。
(三)使用分光计测量:通过观察出射光的方向与参考点,使用分光仪测量其准确的
顶角大小,对实验结果进行记录和观察。
五、实验结果
通过使用分光计测量的结果如下表所示:
测量结果顶角°
1 60.3
2 60.2
3 60.2
4 60.1
平均顶角:60.2°
通过本次实验,我们得到三棱镜的平均顶角为60.2度,用分光计测量结果准确可靠,与三棱镜的实际顶角一致。