人教版小学六年级数学下册解比例专项训练 (67)
- 格式:doc
- 大小:57.50 KB
- 文档页数:30
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版小学六年级数学下册第四单元《比例》测试卷及答案(满分:100分 时间: 60分钟)题号一 二 三 四 五 六 总分 得分一、填空。
(每空1分,共18分)1.5( )=20÷50=( ):100=( )(填小数)2.如果34a =45b (a ≠0,b ≠0),那么b :a =( )。
3.从30的因数中选4个数组成一个比例:( )。
4.一个比例中,两个外项的积是72,一个内项是12,另一个内项是( )。
5.走同一段路,甲用了2小时,乙用了3小时,甲、乙两人的速度比是( )。
6.在7:4=28:16中,内项增加4,要使比例成立,外项7应该乘( )。
7.已知m n=a (m ≠0,n ≠0),当m 一定时,n 和a 成( )比例关系;当n 一定时,m 和n 成( )比例关系;当a 一定时,m 和n 成( )比例关系。
8.—张图纸的比例尺是60:1。
如果在该图纸上量得一个零件的长度是72cm ,那么它的实际长度是( )cm 。
9.学校的操场是一个长250m 、宽100m 的长方形,小明按一定的比将操场画在一张图纸上,长画了10cm ,他所用的比例尺是( ),按此比例尺宽应画( )cm 。
而小亮选用的比例尺是,改写成数值比例尺是( )。
显然,( )画的操场大一些。
10.一个三角形的底是15cm ,高是9cm ,把它按1:3的比缩小,得到的图形面积是( )cm²。
11.根据4×7=2×14,在能组成的比例中,两个比的比值最大的一个比例是( )。
二、判断。
(每题2分,共10分) 1.互为倒数的两个数成反比例关系。
( ) 2.图上距离总是小于实际距离。
( )3.今年,爸爸的年龄÷小明的年龄=5,所以爸爸的年龄和小明的年龄成正比例。
( )4.把一个长方形的周长扩大为原来的4倍,就是把这个长方形按1:4的比放大。
最新人教版六年级数学下册《比例》解决问题专项训练1. 根据下面的条件列出比例式,并解比例。
(1)两个内项分别是6和10,两个外项分别是x 和1.2。
(2)最大的一位数与最小的质数的比等于31与x 的比。
(3)34与x 的积等于31与87的积。
2.科技馆展示的“神舟六号”轨道舱模型高1.4米,直径1.2米,模型与实际数据的比是1:2,求“神舟六号”轨道舱的实际高度和直径各是多少?3.某地上午10时电线杆的高度与其影子的长度比是4:3,已知影子长是6㎝,求电线杆的高度。
4. 乐乐家距离学校3㎞,在比例尺为1:100000的地图上,乐乐家与学校的距离是多少?5.一段铁路长3000米,画在比例尺是多少的地图上铁路长为1.5㎝?6.光明小学教学楼的地基是长方形,它的长为72米,宽为14米。
用1:1000的比例尺把它画在图纸上,图上长方形的长和宽各是多少米?画出教学地基的平面图。
7.在能够一幅比例尺为1:500的平面图上量得一间长方形教室的长是3㎝,宽是2㎝。
求这间教室的图上面积和实际面积。
8.张强骑自行车从家到学校,如果每分钟行420米,要3分钟,实际上到校只用了4分钟,实际上每分钟行多少米?9.一种农药,药液与水的比是1:125,20千克药液需要加多少千克的水?10.一种农药,药液与水的比是1:125,现有400千克的水,配制这种农药需要多少千克的药液?11.一种农药,药液与水的比是1:125,如果有4千克的药液,能配制这种农药多少千克?12.圆圆看一本故事书,前5天看了80页,照这样计算,看完这本256页的故事书一共需要多少天?13.甲乙两地的距离在比例尺是1:20000000的地图上长4㎝,乙、丙两地相距500㎞,画在这幅地图上,应画多长?14.用边长是90㎝的方砖铺地需要2000块,如果改用40㎝的方砖铺地,需要多少块?15.一个机器零件的长度是0.5㎝,在比例尺40:1的图纸上,它的长度是多少米?16.在实验小学新校区的规划图上,长方形操场的长是28厘米,宽是22厘米,如果规划图的比例尺是1:400,这个操场实际占地是多少平方米? 如果在操场的四周建造护栏,护栏长多少米?17.用一批纸装订同样大小的练习本,如果每本30页,可装订120本。
六年级数学解比例方程及答案解比例 :1112 3x:10=4:30.4:x=1.2:2 2.4 = x1 1 132 : 5 = 4 :x0.8:4=x:84:x=3:122 8 36 54 1.25:0.25=x:1.69 =xx=32 24 4.5 6x: 3=6:25x= 2.2 45:x=18:261 1 12.8:4.2=x:9.610:x=8 :42.8:4.2=x:9.63 14 35 1 1x:24= 4: 38:x=5:48:6 =x: 121 10.6 1.50.6∶4=2.4 ∶x6∶x =5∶312 = x3 14 11 4 251 14∶2=x ∶512∶5=36∶xx ∶14=0.7 ∶210∶50=x ∶401.3 ∶x = 5.2 ∶20 x∶ 3.6 =6∶181 1 164.6 83 x 3∶ 20= 9 ∶ x0.2=x8=641、工程队修一条水渠,原计划每天修 360 米,30 天修完。
修 10 天后,每天多修 40 米,再修多少天就能完成任务?2、农场挖一条水渠,头5 天挖了 180 米,照这样速度,又用了 16 天挖完这条水渠。
这条水渠全长多少米?3、一列火车从甲地开往乙地, 5 小时行了 350 千米,照这样计算,共要行9 小时。
甲乙两地相距多少千米?4、40 千克小麦能磨面粉 32 千克,照这样计算, 7 吨小麦能磨面粉多少千克?5、机床厂 4 天能生产小机床 32 台,照这样计算,要生产 120 台小机床需几天?6、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是 1.6 米,同时测得电线杆的影子长度是 4 米,求电线杆高多少米?7、要测量一棵树的高度,量得树的影子长度是8.4 米,同时用一根 2 米长的标杆直立在地面上,量得影子长度是 1.2 米,这棵树高是多少米?8、修路队修一段路,头 3 天修了 135 米,照这样速度,又修了8 天才修完这段路,这段路长多少米?9、一辆汽车从甲地开往乙地,甲乙两地相距405 千米,头 4 小时行驶了 180千米,剩下的路程还要行多少小时?10、某印刷厂计划三月份印刷课本20000 本,结果上旬就印刷7000 本,照这样速度,三月份可以多印刷多少本?11、用 5 辆同样汽车运粮食一次能运22.5 吨,照这样计算,要把36 吨粮食一次运完,需要增加多少辆这样的汽车?12、服装厂生产制服,前 3 个月生产 0.48 万套,照这样计算,今年可以生产制服多少万套?13、农场用 3 辆拖拉机耕地,每天共耕225 公顷,如果用 5 辆同样的拖拉机,每天共耕在多少公顷?14、一艘轮船,从甲地开往乙地,每小时行20 千米, 12 小时到达,从乙地返回甲地时,每小时航行 4 千米,几小时可以到达?15、100 千克黄豆可以榨油13 千克,照这样计算,要榨豆油 6.5 吨,需黄豆多少吨?6、一个房间,用边长 3 分米的方砖铺地,需要432 块,如果改用边长4分米的方砖铺地,需要多少块?39、把 3 米长的竹竿直立在地面上,测得影长 1.2 米,同时测得一根旗杆的影长为 4.8 米,求旗杆的高是多少米?40.在一幅地图上,测得甲、乙两地的图上距离是12 厘米,已知甲乙两地的实际距离是480 千米。
六年级下册数学—解比例与应用姓名:________班级:________学校:_________成绩:___________一、选择题1.在2、3、56这三个数中插入第四个数x,使得这四个数能组成比例,那么x最小是()。
A.56B.365C.59D.542.图中长方形B的面积是21m2,长方形C的面积是63m2,长方形D的面积是49m2,长方形A的面积是()m2.A.25B.31C.29D.27二、填空题3.一个最简分数,如果分子加上1,分子比分母少3;如果分母加上1,则这个分数的分数值是34,原分数是(________)。
4.在括号里填上相同的数,使等式成立:()()173 335+=+。
5.如果73x y=(x,y均不为0),那么x:y=(________):(________)。
三、解方程或比例6.解比例。
20:8:12x =534::275x = 22.73.6x =7.解比例。
x 8.4210.4=11:21:x 39= 40.36:x 10%:9= 35x :21:79=8.解比例。
1:225%:0.753x = 1.232.5x = 36728:12x = 7:24:3.54x =9.解比例。
47:5:21x = 1:0.2:5117x = 280.40.1x = 111::4810x =10.解比例。
324::4515x = 2:336x = 250.75:8x = 27:258x =11.解比例。
0.75∶x =125∶2 536:x :1287=12.解方程。
(1)16∶2=x∶12 (2)25∶14=30∶x(3)16∶14=x∶112(4)x 9=182713.解比例。
(1)12∶13=14∶x (2)x∶4=9∶5 (3)0.7x=145 (4)40%x =120%214.我会解比例。
25:7:14x = 10.5:35 5.7:x =141556x = 153::584x =15.求未知数。
比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。
实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。
【详解】解:设实际每天修x千米。
(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。
【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。
典例分析二.如图,学校大门在孔子雕像的正东方240米处。
1号教学楼在孔子雕像北偏东45°的200米处。
(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。
(2)在图纸上画出学校大门和1号教学楼的位置。
【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。
(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。
【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。
(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。
典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。
人教版六年级数学下册解比例专项练习题100人教版六年级数学下册解比例专项练题:2:11= x:5970:x=5:464.4:5=x:33:x=0.75:25:20=x:36:7=x:9:1.232:3=x:0.9:15021:7=3:411:48=x:60.45:x=0.9:80.5:x=0.9:404 3:5=x:82:1=7:30.35:x=7:410:11=8:4910:0.8=4:32:5=x 0.2:x=0.4:810:0.310=8:49:x 解题思路:在解比例题时,我们需要根据题目中的已知条件,将比例中的各个部分分别表示出来,然后根据比例的性质,求出未知量的值。
例如,对于第一道题目,我们可以将比例中的第一个部分表示为2,第二个部分表示为11,第三个部分表示为x,第四个部分表示为59.然后,我们可以利用比例的性质,求出未知量x的值,即:2:11= x:5911x=2×59x=118/11因此,未知量x的值为118/11.注意:在解比例题时,我们需要注意小数和分数的转换。
如果题目中给出的是小数,我们需要将其转换为分数,然后再进行计算。
如果题目中给出的是分数,我们需要将其化简为最简分数,然后再进行计算。
此外,我们还需要注意保留小数点后几位,以避免精度误差。
50:x=12.5:320:0.4 =x:3根据比例的定义,我们可以列出:50:x=12.5:320:0.4 =x:3,然后我们可以通过交叉相乘的方法来解这个方程。
最终得出x=1.6.2.2:x=60:181—=48:x同样地,我们可以列出2:x=60:181—=48:x,然后通过交叉相乘解出x=144.3.5:x=60:920—=1.2:x按照比例的定义,我们可以列出5:x=60:920—=1.2:x,然后通过交叉相乘解出x=184.4.0.8:x=0.2:580:1=x:30根据比例的定义,我们可以列出0.8:x=0.2:580:1=x:30,然后通过交叉相乘解出x=120.5.6:x=55:9—=5:9我们可以列出6:x=55:9—=5:9,然后通过交叉相乘解出x=15.6.0.9:x=0.45:8x:4—=11:27按照比例的定义,我们可以列出0.9:x=0.45:8x:4—=11:27,然后通过交叉相乘解出x=16.7.80:x=3:0.510—=1.2:x我们可以列出80:x=3:0.510—=1.2:x,然后通过交叉相乘解出x=200.8.20:x=5:87:2=x:0.7—=0.9:150根据比例的定义,我们可以列出20:x=5:87:2=x:0.7—=0.9:150,然后通过交叉相乘解出x=6.9.x:1=3:7—=1.4:3按照比例的定义,我们可以列出x:1=3:7—=1.4:3,然后通过交叉相乘解出x=4.2.10.6:x=5:9—=7:8我们可以列出6:x=5:9—=7:8,然后通过交叉相乘解出x=10.11.0.4:x=0.2:7x:2—=8:100根据比例的定义,我们可以列出0.4:x=0.2:7x:2—=8:100,然后通过交叉相乘解出x=35.12.0.8:x=0.2:80.1:50=x:9—=3:4按照比例的定义,我们可以列出0.8:x=0.2:80.1:50=x:9—=3:4,然后通过交叉相乘解出x=3.6.13.9:x=8:4—=2.3:2我们可以列出9:x=8:4—=2.3:2,然后通过交叉相乘解出x=18.14.0.6:x=0.3:5—=2:10根据比例的定义,我们可以列出0.6:x=0.3:5—=2:10,然后通过交叉相乘解出x=1.1.8:x=3.6:6.4解析:将比例中的分数化成小数,得到1.8:x=0.5625:1,两边同乘1.8,得到x=3.6.2.60:x=1015:420解析:将比例中的分数化成小数,得到60:x=2.4167:1,两边同乘60,得到x=1015.3.6:x=70:70解析:根据比例性质,等比例中的两个数相等,得到x=6.4.8:x=0.2:0.2解析:根据比例性质,等比例中的两个数相等,得到x=8.5.0.5:x=43:60解析:将比例中的分数化成小数,得到0.5:x=0.7167:1,两边同乘0.5,得到x=21.5.6.5:7=x:0.7解析:将比例中的分数化成小数,得到5:7=7.1429:1,两边同乘0.7,得到x=1.7.3:4=x:9解析:将比例中的分数化成小数,得到3:4=0.75:1,两边同乘9,得到x=6.75.8.0.4:x=0.2:8解析:将比例中的分数化成小数,得到0.4:x=0.025:1,两边同乘x,得到0.4x=0.025,解得x=0.0625.9.80:x=50:16解析:将比例中的分数化成小数,得到80:x=3.125:1,两边同乘x,得到80=3.125x,解得x=25.6.10.6:x=70.5:60解析:将比例中的分数化成小数,得到6:x=1.175:1,两边同乘x,得到6=1.175x,解得x=5.12.11.2:1=x:8解析:将比例中的分数化成小数,得到2:1=0.25:1,两边同乘8,得到x=2.这篇文章似乎是一些数学公式和方程式的集合,但是没有任何上下文或解释。
(完整版)六年级下册数学解比例练习题六年级下册数学解比例练习题经典题型一、填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的,乙数占甲、乙两数和的。
甲、。
乙两数的比是3:2,甲数是乙数的倍,乙数是甲数的2. 在3:5里,如果前项加上6,要使比值不变,后项应加。
91吨大豆可榨油吨,1吨大豆可榨油吨,要榨1吨油需大豆吨。
3224. 甲数的等于乙数的,甲数与乙数的比是。
353.5. 把甲数的1给乙,甲、乙两数相等,甲数是乙数的,甲数比乙数多。
1,甲数与乙数比是。
乙数比甲数少。
6. 甲数比乙数多7. 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数的比是2:5.问:摩托车的辆数与小卧车的辆数的比是。
8. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的,水的重量占盐水的。
9. 光明小学有三个年级,一年级学生占全校学生人数的25%,二年级与三年级学生人数的比是3:4,已知一年级比三年级学生少40人,一年级有学生人。
10. 加工零件的总个数一定,每小时加工的零件个数的加工的时间比例;订数学书的本数与所需要的钱数比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数比例。
11. 如果x÷y = 1×2,那么x和y成比例;如果x:4=5:y,那么x 和y成比例。
12. 甲、乙两人步行的速度比是13:11.如果甲、乙分别由A、B两地同时出发相向而行,0.5小时后相遇,如果它们同向而行,那么甲追上乙需要小时二、选择1 /1. 图上6厘米表示表示实际距离240千米,这幅图的比例尺是。
A、1:40000B、1:400000C、1:40000002. 小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是A、2:B、6:21C、4:14. 三角形的高一定,它的面积和底A、成正比例B、成反比例C、不成比例4. 与15:16能组成比例的是。
A、16:1 B、16: C、:D、6:55. 在盐水中,盐占盐水的110,盐和水的比是。
第四单元《比例》典型题型专项一、选择题1.在同一时刻,测得1米高的竹竿的影长为80厘米,教学楼的影长为16米。
则教学楼的高度为()米。
A.20B.0.2C.12.8D.12802.用面积是9dm2的方砖,需要96块。
如果改用面积是4dm2的方砖,需要()块。
A.4x=9×96B.4×4×x=9×9×96C.96÷9=x÷43.如果a×3=b×4,那么a∶b=()。
A.4∶3B.3∶4C.1∶124.比例3∶8=15∶40的内项8增加2,要使比例成立,外项40应该增加()A.3B.5C.10D.505.做一批零件,甲需要4小时,乙需要3小时,甲与乙的速度比是().A.4:3B.5:4C.3:46.根据a×b=c×d下面不能组成比例的是()。
A.a∶c和d∶b B.d∶a和b∶cC.b∶d和a∶c D.a∶d和c∶b7.下面的两个数量不成比例的是().A.正方形的周长和边长B.某同学从家到学校的速度和所用的时间C.圆的半径和面积D.圆的直径和周长8.如果x∶y=m∶n, 那么x等于()A.y×m×n B.mnyC.mynD.nym9.下面的两个比不能组成比例的是()。
A.3:8和9:24B.0.8:0.4和2:1C.10:9和11:9 10.任何一个比例中,两个外项的积减去两个内项的积,差都是()。
A.1B.0C.211.如果和相等,则m等于()A.B.C.D.12.如果3:5=x:2,那么x应该是()。
A.65B.56C.103D.31013.下列各数量关系中,成正比例关系的有()。
A.路程一定,时间和速度B.运送一批货物,运走的吨数和剩下的吨数C.分子一定,分母和分数值D.买同样的书,应付的钱数与所买的本数14.下面图象中,表示甲、乙两个量成正比例关系的有()。
A.∶∶B.∶∶C.∶∶D.∶∶15.x和y是两种相关联的量,a、b、c、d是它们的两组相对应的数值(如下表所示)。