数字直流双闭环调速系统设计
- 格式:doc
- 大小:280.00 KB
- 文档页数:7
双闭环直流调速系统的设计一、双闭环直流调速系统的结构速度闭环由速度检测器、速度控制器和执行器组成。
速度检测器通常采用编码器或霍尔效应传感器,用于实时测量电机的转速。
速度控制器根据检测器测量值与设定值的差异,计算出控制信号,并将其发送给执行器。
执行器根据控制信号调整电机的驱动电压或电流,以实现转速的控制。
电流闭环由电流检测器、电流控制器和执行器组成。
电流检测器用于测量电机的电流值,电流控制器根据检测值与设定值的差异计算出电流控制信号,并将其发送给执行器。
执行器根据电流控制信号调整电机的电压或电流,以保持电机电流稳定。
二、双闭环直流调速系统的设计步骤1.确定系统的要求和参数:包括转速范围、精度要求、响应时间等。
根据要求和参数,选择适当的检测器、控制器和执行器等元件。
2.设计速度闭环:选择适当的速度检测器,如编码器或霍尔传感器,用于测量电机的转速。
选择合适的速度控制器,如PID控制器,根据转速设定值和检测器测量值的误差计算出控制信号。
选择合适的执行器,如晶闸管或MOSFET,对电机的驱动电压或电流进行调节。
3.设计电流闭环:选择适当的电流检测器,如电流互感器或霍尔传感器,用于测量电机的电流值。
选择合适的电流控制器,如PID控制器,根据电流检测值和设定值的差异计算出电流控制信号。
选择合适的执行器,如晶闸管或MOSFET,对电机的驱动电压或电流进行调节。
4.设计输出滤波器:为了减小电机输出信号的电磁干扰和噪声,可以设计一个输出滤波器,将电机输出信号进行滤波处理。
5.进行系统参数的仿真和调试:使用仿真软件对双闭环直流调速系统进行仿真,并调试系统参数以满足设计要求。
可以采用MATLAB等软件进行仿真和参数优化。
6.确定系统结构和元件的选型:根据仿真和调试的结果,确定系统结构和元件的选型,并进行实际建设和测试。
总结:双闭环直流调速系统的设计是一项复杂的工程,需要综合考虑多个因素。
正确选择检测器、控制器和执行器等元件,并合理调整系统参数,可以实现对直流电机转速的精确控制。
双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接如下图所示。
L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。
2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。
如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。
2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。
(2)设计调节器的参数,以满足动态性能指标的要求。
一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。
根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。
双闭环直流电机调速系统设计嘿,大家好!今天咱们聊聊一个挺酷的话题:双闭环直流电机调速系统。
虽然听起来有点像外星人的科技,但是其实它就是咱们日常生活中的一些电机背后的“聪明脑袋”。
没错,电动工具、电动汽车,甚至是你家那台洗衣机,都可能用到这种技术。
别担心,我会用简单易懂的语言,把这个“高大上”的话题聊得通俗易懂,让你像喝水一样轻松明白。
1. 什么是双闭环系统?首先,咱们得搞清楚什么是双闭环系统。
你可以把它想象成一辆高科技的赛车。
车上有两个智能系统,一个负责控制车速,另一个负责检查车速是不是正好。
第一个环节,叫做“速度闭环”,就像是车里的加速器,它根据你给的油门信号来调整速度。
第二个环节,叫做“电流闭环”,就是车上的仪表盘,它会实时监控实际速度和预定速度的差异,确保车速始终如你所愿。
两个环节相互配合,就像是赛车手的左右手,协作得天衣无缝。
1.1 速度闭环的作用速度闭环系统,简单来说,就是确保电机转得刚刚好。
你可以把它想成是你的车速表,告诉你车速到底快不快。
当你设定了目标速度后,速度闭环就会一直“盯着”电机的实际速度,看是不是达到了你想要的。
要是电机转得快了或者慢了,速度闭环会发出“警报”,让电机调整到正确的速度。
就像你开车的时候,如果超速了,车上的警报器就会提醒你:“嘿,慢点!”1.2 电流闭环的作用而电流闭环呢,就是确保电机在运行时不会超负荷。
你可以把它想象成你的车载电脑,时刻监控电机的“健康状态”。
如果电机的电流过大,就像是车上的发动机超负荷一样,电流闭环会自动调整电流,防止电机“过劳”工作,保障电机的长寿命和稳定性。
这就像车上的“健康检查”,时刻关注电机的“身体状况”,让它保持在最佳状态。
2. 如何设计双闭环系统?说到设计双闭环系统,那可不是简单的“煮熟的鸭子嘴里跑”,而是要细心雕琢的“工艺品”。
设计时,你需要考虑到很多细节,就像调配一杯完美的鸡尾酒一样,必须把每个成分都搭配得恰到好处。
2.1 控制器的选择首先,你得挑选一个靠谱的控制器。
双闭环直流调速系统ACR设计双闭环直流调速系统(ACR)是一种使用两个反馈环来控制直流电机转速的系统。
其中一个环,被称为速度环(内环),用来控制电机的速度;另一个环,被称为电流环(外环),用来控制电机的电流。
ACR系统能够提供更精确的转速控制,同时能够保护电机免受过流和过载的损坏。
ACR系统的设计首先需要确定控制器的参数。
其中,内环控制器的参数包括比例增益(Kp)和积分时间(Ti);外环控制器的参数包括比例增益(Kp)和积分时间(Ti)。
这些参数需要根据实际系统的需求来选择,可以通过试验和调整来获得最佳参数。
在内环控制器中,比例增益决定了速度误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与速度误差的乘积。
积分时间决定了对速度误差的积分时间长度,即速度误差累计值。
在外环控制器中,比例增益决定了电流误差与输出调节器输入信号之间的比例关系,即输出调节器的输出值与电流误差的乘积。
积分时间决定了对电流误差的积分时间长度,即电流误差累计值。
ACR系统的设计还需要确定速度传感器和电流传感器的类型和位置。
速度传感器用于测量电机的转速,可以选择编码器、霍尔传感器等;电流传感器用于测量电机的电流,可以选择霍尔传感器、感应电流传感器等。
这些传感器需要合理安装在电机上,以确保准确测量电机的转速和电流。
在系统工作时,ACR系统通过测量电机的转速和电流,并与设定值进行比较,计算得到速度误差和电流误差。
然后,内环控制器根据速度误差来产生控制信号,控制电机的速度接近设定值;外环控制器根据电流误差来产生控制信号,控制电机的电流接近设定值。
这些控制信号通过功率放大器输出到电机,实现对电机速度和电流的控制。
ACR系统的设计需要考虑诸多因素,如电机的负载特性、速度和电流的响应时间、系统的稳定性等。
通过合理选择控制器的参数和传感器的类型和位置,采取适当的控制策略,可以实现高精度、高效率的直流电机调速系统。
双闭环可逆直流脉宽PWM调速系统设计一、系统概述二、系统设计原理1.速度内环设计原理速度内环的目标是实现对电机转速的闭环控制。
通过测量电机输出轴速度和设定速度值之间的差异,根据PID控制算法计算出控制信号,通过控制器输出的脉宽PWM信号调节电机的输出转矩,从而实现对电机速度的控制。
2.电流外环设计原理电流外环的目标是实现对电机电流的闭环控制。
通过测量电机的电流和设定电流值之间的差异,根据PID控制算法计算出电流控制信号,通过控制器输出的脉宽PWM信号调节电机的电流,从而实现对电机电流的控制。
三、系统构建要素1.电机驱动模块:用于控制电机的转矩和速度,并提供脉宽PWM信号输出接口。
通常使用MOSFET或IGBT作为功率开关元件。
2.速度测量模块:用于测量电机输出轴的转速,通常采用霍尔元件或编码器。
3.电流测量模块:用于测量电机的电流。
通常通过电流传感器或全桥电流检测器实现。
4.控制器:对测量的速度和电流数据进行处理,根据PID控制算法计算出合适的脉宽PWM信号,控制电机的转速和电流。
5.信号调理模块:用于对控制信号进行滤波和放大,以保证信号的稳定性和合理性。
6.反馈回路:将测量得到的电机速度和电流数据反馈给控制器,以实现闭环控制。
7.电源模块:为整个系统提供稳定的电源。
四、系统工作流程1.控制器通过速度测量模块获取电机的实际速度,并与设定速度进行比较计算出速度误差。
2.控制器通过电流测量模块获取电机的实际电流,并与设定电流进行比较计算出电流误差。
3.将速度误差和电流误差作为输入,经过PID控制算法计算出合适的脉宽PWM信号。
4.控制器将计算得到的脉宽PWM信号通过信号调理模块进行滤波和放大,然后输出到电机驱动模块。
5.电机驱动模块根据脉宽PWM信号的占空比调节电机的输出转矩和电流。
6.通过反馈回路将电机的实际速度和电流信息返回给控制器。
7.根据反馈信息对速度误差和电流误差进行修正,进一步优化脉宽PWM信号的计算。
双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。
根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。
2.速度内环设计速度内环负责实现期望速度的跟踪控制。
常用的设计方法是采用比例-积分(PID)控制器。
PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。
PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。
3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。
一般采用PI调节器进行设计。
PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。
4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。
稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。
分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。
常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。
5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。
通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。
常用的鲁棒性设计方法包括H∞控制、μ合成控制等。
以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。
设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
双闭环直流调速系统摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
关键词:双闭环,晶闸管,转速调节器,电流调节器,SimulinkAbstract:The design uses thyristors, diodes and other devices designs a speed, current double-loop SCR DC converter system. The system sets up the current detecting aspect, the current regulator ACR and the speed detecting link, speed regulator ASR, composes the current central and the speed central, the former through the feedback of the current components to level off the current, the latter through the feedback of speed detecting device to maintain the speed stably and finally eliminates the deviation of speed bias.,thus allowing thpose of regulating the current and speed. when the system starts, the speed outer ring saturats non-functional, the currentner ring plays a major role to regulate the starting current to maintain the maximum so that the speed linear change, to reach a given value; when it operates steadily, the speed negative feedback from the outer ring plays a major role ,to let the speed changes with the given speed voltage , at the same time the current inner ring regulates the armature current of motor adjustment to balance the load current. Simulink for system through mathematical modeling and system simulation. Finally display control system model and the results of anti-truth. Keywords: Double-loop, thyristors, the speed regulator, the current regulator,Simulink目录前言 (1)1 绪论 (3)1.1课程的背景、目的及意义 (3)1.2 本课题国内、外研究应用情况 (3)1.2.1 采用新型电力电子器件 (3)1.2.2 应用现代控制理论 (4)1.2.3 采用总线技术 (4)1.4 本设计的主要研究内容 (5)1.4.1 建立能够的数学模型 (5)1.4.2 经典控制部分............................. 错误!未定义书签。
双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。
它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。
在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。
二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。
2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
随着技术的发展, 用分立元件来控制电动机的方法逐渐被淘汰, 取而代之的是向二个方向的发展, 一个方向是微机控制系统, 另一个方向则是控制系统的集成化,即专用单片集成控制器。
本文针对直流调速实验系统的各模块进行数字化
改造。
用微处理器代替原来的分立模块,以增强实验设
备的易维护性、高可靠性,同时也提高了系统的灵活
性。
1 原理分析
数字控制的双闭环可逆直流调速系统原理图如图1 所示。
图中,虚线框部分是采用微处理器实现的控制部分。
它包括: 数字触发器、数字速度调节器ASR 和电流调节器ACR , 由电流互感器得到的电流反馈信号经A/ D转换进入微处理器, 由霍尔元件测得到转速脉冲经处理后把实际转速D n 反馈到
微处理器中。
此外, 转速给定D n经过A/ D 转换, 变为数字量, 送入微处理器中。
同时, 用户可以通过键盘进行人机对话,发出启、停指令, 修改控制参数。
系统控制部分除了脉冲功放和晶闸管开关器件因功率大而采用分立元件外, 其余部分
均由大规模专用集成芯片及软件实现, 因此系统的结构简单,可靠性高。
这样的系统称为全数字化直流调速系统, 简称DDC 系统。
2 系统的总体设计与实现
2. 1 系统的总体设计
系统的总体框图如图2所示。
本系统由处理器、转速反馈、三相同步、角触发信号、采样环节和触发电路6 个部分组成。
转速度采集任务由一个霍尔元件完成。
霍尔元件安装在直流电机的转轴上。
经过霍尔元件的霍尔效应,将转速信号转变为数字脉冲Fp 。
转速反馈环节对转速脉冲Fp 进行记录和计算, 得到反馈电压U n ,送至处理器等待处理。
采样环节分别通过采样保持器L F398 将转速给定信号U n和电流反馈信号U i 送到A/ D 转换器上, 经过模数转换形成数字信号U n′和U i′,供微处理器使用。
三相同步环节一方面把主回路的三相电U a 、U b、U c 转化为数字信号S1、S2、S3 送至微处理器,作为微处理器的触发参考信号。
在收到触发信号后,微处理器根据S1、S2、S3 的电平组合来判断向第几号晶闸管发出触发信号。
另一方面三相同步环节经过一系列处理, 对α角触发环节发出触发基准信号Uα。
α角触发环节主要是对α角进行定时处理。
首先,由微处理器向本环节送入定时时间常数Nα。
当基准信号Uα到来时,计数器由Nα作减1 计数,至0 时向处理器发出触发信号αi ,使处理器产生相应的操作。
触发电路使整个系统的输出部分,整个系统各部分的协作处理, 最后就是为了得到合适的触发脉冲。
本环节接收从处理器送来的信号P 经过信号放大, 分别由SCR1。
SCR6 口送出到晶闸管处, 控制晶闸管的导通,调整直流电机端电压,以达到控制转速的目的。
2. 2 系统的硬件设计
微处理器的种类很多包括Intel 公司在1979 年推出的MCS - 51 系列单片
机:8051、8031、8751 等8 位单片机, 还有该公司的196 系列的16 位单片机。
进入20 世纪80 年代, DSP 的出现, 把微处理器推进了32位计算的时代。
TMS320F240 是X24X 系列的第一代标准器件, 它包含一些必要的电机控制外设, 主要用来完成电机的数字控制。
它强大的处理能力使面向电机控制的控制算法, 如矢量控制、直接转矩控制可以全数字化地实现, 而且也为实现现代控制方法或智能控制理论的一些复杂算法(如自适应控制、神经网络控制、模糊神经网络控制算法等) 提供了运算条件。
另外, 它增加了面向电机控制的外设接口, 也使系
统的硬件结构和控制得到简化。
根据被改造对象的实际应用环境、性能要求、改造成本等等一系列方面的考虑,本设计方案选择了Intel 公司的8位单片机8032 为系统的控制核心。
系统用到的其它芯片还有8155 一片、8253 一片、2864 一片和A/ D 转换芯片0809 一片。
系统的硬件框图如图3 所示。
在系统中,硬件资源的分配如下:
(1) 电流采样时间8032 的定时器T2 ;
(2) 转速的测量与采样8032 的P1. 6、定时器T0、T1 和中断源IN T1 , 8155 的计数器, 74L S08 ,74L S74 ,74L S15 ,一个边波检测器;
(3) 转速给定和电流反馈采样采样保持器L F398 ,A/ D 转换器0809 ,8032 的P1.
4 口;
(4) 角的定时及其触发信号8253 的T1 ,8032 的中断源IN T0 ;
(5) 同步基准信号发生器比较器LM339 ,异或门74L S86 ,8032 的AL E ,光电耦合器4N38 ,边波检测器;
(6) 看门狗监控4060 一块,8032 的P1. 0 ,边波检测器;
(7) U S - Nα的对照表如表所示存于8155 的RAM 中;
(8) 触发开关的信号由8155 的PC 口输出。
3 系统的软件设计与调试
数字控制软件是数字控制系统的大脑, 它的设计水平直接关系到控制系统的性能。
由于直流调速系统的电流环和转速环所要求的响应很快, 因此要求控制软件爱很短的时间内完成2 个闭环的信号采样。
数字滤波、PI 运算和数字滤波。
其中采样周期的选择起着重要的作用。
由于控制系统中通常响应特性与闭环系统的频带宽度有关, 根据香农采样定理, 采样周期必须小于1/ 2闭环系统的覆盖频率,一般取它的1/ 2~1/ 10。
在双闭环系统中, 电流环作为速度环的内环, 响应速度快, 采样周期通常选为1~3. 3 ms , 速度环是外环, 采样周期选为10~20 ms 。
3. 1 数字PI 调节器
工程设计方法中,PI 调节器的传递函数为
式中τ———积分时间常数
k p ———比例系数
该调节器的模拟输出为
式中e ( t ) ———调节器的偏差输入, 即给定值与反馈值之差
采用工程方法得到式( 1) 离散化的形式为
为使计算简便,将式( 2) 转换为递推式,有
式中常数
( 3) 式表明,计算本次的控制量只需要上次的控制量和上次与本次的偏差量即可。
常数和事先存于固定的存储单元中, 每次PI 运算只是进行两次乘法运算和两次加法运算。
3. 2 数字滤波器
从检测点到输入通道可能会收到各种干扰信号,为减少干扰,常加滤波器。
模拟滤波器要受到物理器件的限制, 滤波时间常数不能做到很大, 但数字滤波器就没有这个限制,而且系数调整灵活方便。
假设一个滤波器的输入输出可以写成如下的传函
将其变为微分方程
离散化得
该数字滤波器每次计算只需要2 次乘法、1 次加法运算。
3. 3 电流环的控制软件
在电流环中, 若不考虑电流断续情况,数字电流调节器采用PI 调节器即可。
考虑到晶闸管非线性效应和负载效应,为了解决电流断续以及断续引起的问题, 我们采用自适应电流调节器。
当电流连续时,电流调节器为PI ;当电流断续时,电流调节器变为I 调节器。
电流环中断服务程序流程图如图4 所示。
图中, 首先进行电流采样, 然后根据电流断续情况, 选择带限幅的I 或PI 运算, 最后是进行数字触发运算。
3. 4 速度环的控制软件速度也采用带限幅的PI 调节器, 在它的中断服务程序中, 要实现速度采样、滤波、带限幅的PI 运算及无环流逻辑切换等功能。
其程序流程图如图5 所示。
电流的采样周期取3. 3 ms , 速度环的采样周期取为20 ms 。
因此,在速度环的定时中断服务程序中, 必须允许嵌套8032 计数器T2 的中断申请(电流采样中断服务程序的触发信号由8032 计数器T2 提供) ,所以在主程序初始化中置8032 计数器T2 为高优先级中断,在速度环中断服务程序中必须开中断。
4 结论
数字化是控制系统集成度高, 硬件电路简单而且统一,可靠性高,可重复性好,对于不同的控制对象和控制要求,只需要改变控制算法软件即可。
因此,它是控制系统发展的大趋势。
在本设计中,我们实现了PCB 板的制作, 用伟福仿真器完成了汇编程序的编写和调试。
在试验室的进行了一系列的调试,试验系统的运行情况明显好于原系统,达到了预期的要求。