钻井液设计
- 格式:doc
- 大小:178.50 KB
- 文档页数:16
标题44.钻井液设计最重要内容是井下安全,要求的内容。
摘要:一、钻井液设计的重要性二、井下安全的要求1.钻井液的选型2.钻井液性能的要求3.井下安全措施三、钻井液设计实操案例分析四、总结与展望正文:钻井液设计是石油钻井工程中的关键环节,它直接关系到井下作业的安全、顺利进行。
钻井液设计的最重要内容就是确保井下安全,具体要求如下:一、钻井液的选型1.根据地层特点选择适合的钻井液体系,如:盐水、淡水、聚合物等。
2.考虑钻井液的流变性能,确保其在井下具有良好的携带能力、润滑性能和护壁性能。
3.满足井下温度、压力等环境条件,保证钻井液的稳定性。
二、钻井液性能的要求1.良好的携砂能力:确保钻屑能够及时排出井口,降低井下事故的风险。
2.合适的粘度:保证钻井液在井下能够顺利循环,降低钻头磨损。
3.优良的护壁性能:降低井壁崩塌、涌水等事故的发生概率。
4.抗高温、高压性能:确保钻井液在复杂地层条件下保持稳定性。
三、井下安全措施1.制定完善的井下应急预案,提高应对突发事故的能力。
2.加强钻井液的监控与检测,及时发现并处理井下异常情况。
3.定期对钻井液处理剂进行评估和优化,提高钻井液的安全性能。
4.加强井下作业人员的安全培训,提高安全意识。
四、钻井液设计实操案例分析在某区块的钻井工程中,根据地层特点,选用了聚合物钻井液体系。
在钻井过程中,严格按照钻井液设计要求进行配制和调整,确保了井下作业的安全顺利进行。
同时,制定了完善的应急预案,对钻井液进行了实时监测,及时发现并处理了井下异常情况。
总结与展望:钻井液设计在石油钻井工程中具有举足轻重的地位,井下安全是钻井液设计的核心。
一、井身结构设计1.1、钻井液压力体系1.1.1、最大泥浆密度ρmax=ρpmax+Sh (1-1)式中:ρmax-某层套管钻进井段中所用最大泥浆密度,g/cm 3.ρpmax-该井段中所用地层孔隙压力梯度等效密度,g/cm 3Sb-抽吸压力允许值得当量密度,取0.036 g/cm 3。
发生井涌情况时:ρfnk=ρpmax+Sb+Sf+HniHp max .Sk (1-2) 式中:ρfnk-第n 层套管以下发生井涌时,在井内最大压力梯度作用下,上部地层不被压裂所应有的地层破裂压力梯度,g/cm 3Hni-第n 层套管下入深度初选点,mSk-压井时井内压力增高值的等效密度,取0.06g/cm 3Sf-地层压裂安全增值,取0.03g/cm 3。
1.1.2 校核各层套管下到初选点深度Hni 时是否会发生压差卡套ΔPm=9.81Hmm (ρpmax+Sb-ρpmin )×10-3 (1-3) 式中:ΔPm-第n 层套管钻进井段内实际的井内最大静止压差,MPaρpmin-该井段内最小地层孔隙压力梯度等效密度,g/cm 3.Hmm-该井段内最小地层孔隙压力梯度的最大深度,mΔPN-避免发生压差卡套的许用压差,取12MPa 。
1.2 井身结构的设计根据邻井数据,绘制地层压力与破裂压力剖面图,如下图所示:图1-1 地层压力与破裂压力剖面图(1)油层套管下入深度初选点H2的确定由于井深为2160m ,所以确定油层套管的下入深度为2155m 。
(2)表层套管下入深度初选点H1的确定试预取H1i=390m ,由邻井参数得:ρpmax=1.1g/cm 3、Hpmax=2160m 。
以及发生井涌时,由公式1-2并代入各值得:ρf1k=1.1+0.036+0.03+3902160×0.06=1.498g/cm 3根据邻井数据可知390m 以下的最小破裂压力梯度为ρfmin=1.5g/cm 3,因为ρf1k<ρfmin 且相近,所以确定表层套管下入深度初选点为H1=390m 。
钻井液配方的均匀设计法
彭春耀;鄢捷年
【期刊名称】《中国石油大学学报(自然科学版)》
【年(卷),期】2000(024)002
【摘要】将一种数学处理的新方法--均匀设计法应用于钻井液配方的设计,并以塔里木盆地大宛齐地区保护油气层钻井液配方的优化设计为例,讨论了该方法的应用程序,包括试验次数的确定、对试验数据的分析以及最佳配方的确定过程等,通过室内试验对所设计配方的油气层保护效果进行了评价.设计结果表明,在基本不影响优选效果的情况下,使用该方法进行钻井液配方设计能明显地减少试验次数,从而可大大地节省人力、物力,与传统的正交设计法相比具有明显的优越性.该方法使用简便,易于在生产现场推广应用.
【总页数】4页(P13-16)
【作者】彭春耀;鄢捷年
【作者单位】石油大学石油工程系,北京102200;石油大学石油工程系,北京102200
【正文语种】中文
【中图分类】TE254+.6
【相关文献】
1.均匀设计法在双保钻井液配方中的应用 [J], 刘建民;胡庆江;严波;何兴华
2.均匀设计法优化三黄巴布剂基质配方 [J], 王昕;顾秀琰;徐玉娥;肖正国;
3.均匀设计法优化三黄巴布剂基质配方 [J], 王昕;顾秀琰;徐玉娥;肖正国
4.均匀设计法在红豆杉保健枕配方优化中的应用 [J], 熊伟;付建平;饶玉喜;史新安;李雄辉;
5.均匀设计法在红豆杉保健枕配方优化中的应用 [J], 熊伟;付建平;饶玉喜;史新安;李雄辉
因版权原因,仅展示原文概要,查看原文内容请购买。
海洋石油模块钻机钻井液固控系统设计摘要】:众所周知,钻井液在整个钻井工程中充当了特别重要的角色,它的地位极高,钻井液的存在与否,直接影响了钻井工程的进行,如果钻井液的质量没有得到保证,那么最后钻出来的井的质量也不能得到保证,其次,现在都在注重石油钻井工程,石油钻井工程的促进可以增加石油的产量,同时如何提高对这些不可再生资源的挖掘技术也算是一个技术上的难点问题,而对难点问题进行解决了之后能极大的促进我国石油工业的发展,本文就以目前我国钻井液固控系统的设计样式为基本内容,浅谈其固控系统的设计要点。
【关键词】:钻井液; 固控系统; 设计要点随着对石油行业的重视,越来越多的施工团队也明白了石油开采的重要性,不少施工团队也开始将目光放在钻井技术上,也有很多的技术人员,一直致力于完善整个固控系统,目的也是为了让钻井工程完成得更加方便,钻井技术越高超,在未来所花时间越少,也就能提高工程的完成效率,这都是整个固控系统完善之后的好处。
但是重点的问题就在于如何设计该系统,该系统的首要设计要求就是与当前固控工艺相结合,而且同时我国预算也有限,在进行固控系统的完善的前提是一定要保证资金使用的数额不多,至少不能超过成本的数额,成本是个必须要进行严格控制的东西,同时也不能委屈了机器的更新换代,一定要保证在有限的经济成本下,还能设计出功能高超的固控系统。
以下,便是对固控系统的设计要点进行的分析和归纳。
1 固控系统的布局总体来说,固控系统就要为钻井工程服务,在这当中,固相控制工作在整个工程中起领导作用,而且固控系统本身也安装有相应的固控设备,就是为了更好地让固控系统发挥出相应的能力,而且固控系统也可以将固控的能力和钻井的技术结合在一起,这样最终可以达到一举两得的好效果,钻井工程才会更快并且更保质量地完成建造工作,另外,在钻井液固控系统进行工作时,也要注意每一个环节每一个设备的布局,要根据不同环节。
2 钻井液固控系统基本构主要需要满足的功效,再根据不同设备可以完成的功能对各个设备进行布局的安排,当前我国的固控系统中,大概要安置沉淀罐,还有负责进行液体调节运输的中间罐,以及在任何时候都特别有用的吸入罐,还有储备废品的储备罐和其他需要用到的大型罐体,而既然这些罐体的体积都特别大,所以重点也是需要调整每个罐体的安置方位,每个罐体在进行安装工作时,都要考虑到外部的尺寸设计,这样最后系统进行组装后也不会呈现很奇怪的样式,同时固控系统的运转也不会出现太大的问题,这些都要倚靠布局的合理设计。
1基础资料井位构造位置:位于阿克库勒凸起东南斜坡部钻井性质:探井1.2钻井地质任务:1) 探索阿克库勒凸起东边缘寒武系建隆性质,储层发育特征及含油气性。
为进一步研究寒武系-奥陶系的地层,沉积特征及储层发育,储层的成因机制提供基础资料;2) 取全,取准岩芯,测井,测试等基础资料,为储量计算提供准确资料;4之下各反射波的地质属性提3) 验证地震波组的地质属性,为准确标定T7供基础资料;4) 为进一步分析,研究油气运移,聚集规律等提供基础资料;5) 为测试,采油提供合格的井眼条件。
1.3 设计井深:8000m(钻台面算起)1.4 完钻原则1) 钻到设计井深,进入建隆体1的顶225m完钻。
2) 如寒武系钻遇好的油气显示(如井漏,井涌等油气显示井段),强钻8-10米后,经测试获高产油气流,可提前完钻。
1.5 完钻方式:裸眼或套管完井。
塔深1井钻遇地层预测表4386注:深度均从台板起算。
目录1、塔河油田超深井钻井液技术难点2、国内外高温超深井钻井液状况3、塔深1井钻井液体系配方选择、性能要求及维护处理要点4、风险分析5、超深井钻井液配套工艺技术1、塔河油田超深井钻井液技术难点1.1 钻井液处理剂高温高压失效问题。
1.2 钻井液高温流变性的控制问题。
1.3 钻井液高温滤失造壁性的控制问题。
1.4 抗高温钻井液的护胶问题。
1.5 超深井段地层破碎,白云岩地层防塌问题。
1.6 超深井段地层破碎,防漏堵漏问题。
1.7 超深井奥陶系、寒武系地层为防塌防漏寻找一个安全钻井液密度窗口的问题。
1.8 超深井可能存在的高压问题。
1.9 超深井钻井液润滑性问题。
1.10 超深井钻井液陈化问题。
1.11 超深井膏盐层问题。
1.12 硫化氢、二氧化碳污染问题技术难点在塔河油田,按正常地温梯度2.2-2.3℃/100m计算,井深8000m的超深井,井底温度可达170-200℃左右,井底循环温度在150-170℃左右,所用钻井液体系必须能抗200℃左右的高温.在超深井的钻进中,可采用抗高温的钻井液体系有水基、合成基、油基钻井液,最为合适的是油基类钻井液体系,当考虑到成本、维护、环保等因素,建议使用水基磺化或聚磺钻井液.在水基钻井液体系中,温度对水基钻井液的影响非常大,特别是超过150℃的高温,在这种温度下,大多数聚合物处理剂医分解或降解,出现增稠,胶凝,固化成型或减稠等流变性恶化.这种变化不随温度而可逆.因此,温度是超深井钻井液中最重要的考虑因素,钻井液解决以下问题.1)钻井液用处理剂高温高压失效问题.2)钻井液高温流变性的控制问题.由于高温条件下钻井液处理剂易产生高温增稠或减稠效应,钻井液的高温高压流变性控制将是超深井钻井液关键技术之一.3)钻井液高温滤失造壁性的控制问题.解决好这个问题是有利于超深井井段地层的防塌,防漏.4)抗高温钻井液的护胶问题,最好选用美国的聚阴离子纤维素Drispac.5)深井超深井段地层破裂,易产生掉块,井塌,特别是白云岩地层岩屑结构松散易碎,结构裂缝多,易受溶蚀且严重,裂缝中充填物胶结性差,垮塌十分严重.在塔参1井白云岩垮塌表现特别严重,因此该井在奥陶系,寒武系地层应特别注意井塔问题.6)深井超深井段地层破碎,漏失性质大部分属于压力敏感性漏失,高温高压条件下,防漏堵漏工艺和材料选择已成为当务之急的研究课题.7)深井超深井奥陶系,寒武系地层寻找一个钻井液安全密度窗口来满足井下实际情况,既要防塌又要防漏十分困难,主要依靠选择合适的强有效封堵材料(包括软化点和颗粒粒径)来解决次复杂,最好是进口沥青或天然沥青.8)超深井可能存在高压问题,高压(钻井液高密度)将使高温流变性的控制更加困难,除了更易于增稠等外,还存在加重剂的悬浮,沉降稳定性等问题.9)超深井钻进中如何减少转盘扭矩,除工程措施和井身质量外,高温钻井液应给予最大的支持,如何调控钻井液的润滑性,选择何种液体和固体润滑剂也是一个难题.10)钻井液老化问题. 此外,还可能钻遇云质膏岩,膏盐岩,而膏岩的溶蚀易造成垮塌掉块,钻井液受污染等复杂情况,以及防H2S.CO2污染等问题.2、国内外高温超深井钻井液状况2.1 国内外高温超深井钻井液使用状况表1表22.2国内抗高温钻井液处理剂状况(见表2)表23、塔深1井钻井液体系配方选择、性能要求及维护处理要点3.1 各井段钻井液性能要求表3 分井段钻井液参数设计表3.2各井段钻井液体系配方选择及维护处理要点一至四开(0-6796m)塔河油田钻井液工艺比较成熟,这里着重讲五开、六开钻井液工艺技术。
3.2.1、五开钻井液体系配方(6796~7750m)本井段是塔深1井的主要目的层之一,确保钻井液高温稳定,防止井眼失稳(井塌、井漏)和保护储层是关键。
钻井液要充分具备抗高温、防漏、防喷、防塌、防油气层污染等能力。
目前,可抗高温钻井液体系主要有油基钻井液、合成基钻井液及水基钻井液,若配方材料选择合理,其抗温能力均可达200℃以上。
1)选用抗高温磺化钻井液体系。
(抗温≥200℃)钻井液配方:2.5~3% 般土或海泡石+ 0.3% Na2CO3 + 0.03~0.1% 抗高温包被抑制剂+0.3~0.5%聚阴离子纤维素Drispac+ 6~8% 磺化酚醛树脂(SMP-1)+ 3~5%磺化褐煤(SMC)或DS-1+3~4%磺化丹宁(SMT)+1~2% 封堵防塌剂+1~2%润滑剂+0.2~0.4%SP-80+0.2%抗氧化剂。
经实验分析,该钻井液配方经200℃高温老化,性能稳定,说明其抗温可达200℃以上。
正常情况完全满足本井抗高温要求。
该方案优点是:取材方便,成本较低,易于维护,尤其是当出现井漏时易于补充,且易于配制堵漏浆;缺点是:抗高温能力有限,对抗温材料要求较高。
2)钻井液配制及维护处理工艺技术要点:a、配制优质般土浆,预水化24小时以上。
b 、一定要使各种处理剂充分溶解和混合均匀,处理剂胶液的配方及浓度依据井下实际情况可作相应调整。
c 、井队上配制加重漏斗2-3台,功率不低于75马力,配制罐3-4个,分别用于配制般土原浆、处理剂胶液和备用。
d 、循环系统应满足能同时进行钻井液处理和加重,并能应付特殊条件下的各种作业。
e 、既做到处理剂的优质单一,以利于维护处理,又强调它们之间的协同作用,发挥磺化处理剂复配抗温能力,尤其是要充分注重对关键处理剂的使用。
f 、为最大限度地满足钻井液性能之稳定,处理剂必须以胶液的形式按循环周进行补充、维护处理,并建议预水化般土原浆,液体润滑剂等也加到胶液中与其一道进行补充。
g、强化固相控制技术,把钻井液中的无用固相降到最低限度。
这点对超深井尤为重要。
使用改性石棉调整钻井液流型,协同大小阳离子的抑制,以最大限度地满足提高深井超深井段的机械钻速。
h、高温和各种条件下可能遇到的污染,并有利于对环境的保护,钻井液的MBT值应控制在下限,并充分重视对高效稀释剂的使用。
i、必要时使用抗氧化剂提高钻井液之抗温性,防止钻井液稠化或钝化。
使用固体润滑剂降摩阻和扭矩值。
j、钻井液应满足各种特殊作业的需要——诸如:取芯、中测、电测、下套管固井等。
k、要全方位的考虑到深井的油气层保护问题——诸如:压差、固相颗粒、抑制性、护壁及暂堵、水敏、盐敏、储层特性及与流体接触时间、酸解堵及结垢等。
L、井场必须储备一定量的高密度钻井液(建议MW1.5—1.6×50—80方),和足量的加重材料(60—100吨)m、井场必须储备适量的堵漏剂、解卡剂、除硫剂、除氧剂、杀菌剂等。
n、充分注重投井处理的科学性和预见性,必须以理论和现场室内试验为基准,使用好各种处理剂,避免工作中的盲目性,将钻井液的管理和处理水平提高到一个新的高度。
(3)超深井钻井液工艺特别说明的几点:a、保证一个适中的优质预水化般土原浆浓度,以确保各种处理的高效发挥。
b、重视对SMP-1、SMC(PSC)、SMT复配的使用,以达到提高钻井液抗高温能力和土的容量限之目的。
c、重视SP-80、抗氧化剂的使用,以进一步提高钻井液的抗温能力,必要的可配合使用AS。
d、一定要有效地使用好防塌剂、润滑剂以满足钻井液的高温造壁性和润滑性,使用QS-2、沥青满足深井的油气层保护。
e 、必要时,SMT可以和生石灰配合使用,以保证钻井液分散适度,易于其流变性调控和防止钻井液的老化。
f、使用好高效护胶剂(聚阴离子纤维素Drispac),提高钻井液的高温稳定性。
特别是在钻井液低固相磺化体系中,也能保护钻井液中的胶体粒子,易调整钻井液高温流变性,控制低的失水量。
g 、切记要使用好SM-1、达以钻井液无论在任何条件下,都能完全彻底地把井眼中的岩屑(垮塌的或非垮塌的,大的或小的)携带干净。
其使用方法,关键在于必须用清水先将SM-1配制成20%左右浓度的胶液,预水化至少24小时才能使用,其次,由于加入SM-1后会使钻井液的造壁性变坏,且与其加量成正比,故建议使用时配合高温降失水剂一并使用。
h、杜绝使用任何不合格产品,药品的使用一定要单一,以便于维护。
i、要满足和控制一个适当的钻井液密度,最大限度地清除钻井液中的无用固相,尤其是粒径在2u以下的无用固相。
控制游离钙不大于200PPM。
3.2.2 采用欠平衡钻井时,选用低固相磺化钻井液如果采用正压钻井时,进入奥陶系无显示、无硫化氢,则采用负压钻井,如果有显示,有硫化氢,则又改为正压钻井。
采用负压钻井时,钻井液密度控制在 1.08 ~1.13kg/cm3 之间,调整钻井液粘切,保证携砂要求,必要时,钻进中可采用定期稠浆顶替作业,采用正压钻井时,应采用随钻堵漏钻井液钻进,同时井场应储备加重材料150 ~200吨,有备无患。
3.2.3六开钻井液体系配方(7750~8000m)本井段是本井的目的层之一,确保钻井液高温稳定,防止井眼失稳(井塌、井漏)和保护储层是关键。
钻井液要充分具备抗高温、防漏、防喷、防塌、防油气层污染等能力。
配方及维护处理要点同五开。
4、风险分析在正常的情况下,即井底温度低于200℃,钻井液当量密度在1.50g/cm3以内,采用上述钻井液技术方案,作业风险不大,应能顺利钻达设计井深。
但如果出现以下情况,则风险大增:4.1、出现特高温(大于200℃,尤其220℃以上)和特高压(尤其是当量密度达2.0g/cm3以上)时,高温高密度将使钻井液流变性控制非常困难,钻井液成本大幅上升,甚至难以控制。
4.2、奥陶系、寒武系白云岩严重井塌、井漏。
拟解决办法:①进口部分可抗温达220℃以上泥浆材料,如美国产特种树脂Resinex、聚阴离子纤维素Drispac、进口或天然沥青等,提高钻井液的抗温能力;②出现特殊情况后,井漏允许时,将水基泥浆转换为合成基泥浆,如配方选择方案2。
5、超深井钻井液配套工艺技术5.1 井漏5.1.1 井漏的预防5.1.2 漏层的确定5.1.3 防漏治漏预案(1)工程上采取的措施采用欠平衡钻进。