【典型题】高中必修二数学下期末第一次模拟试卷(带答案)(1)
- 格式:doc
- 大小:1.90 MB
- 文档页数:19
【典型题】高中必修二数学下期末第一次模拟试卷含答案一、选择题1.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .1582.如图,在ABC V 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .103.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为34.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-5.函数()23sin 23f x x π⎛⎫=- ⎪⎝⎭的一个单调递增区间是 A .713,1212ππ⎡⎤⎢⎥⎣⎦ B .7,1212ππ⎡⎤⎢⎥⎣⎦ C .,22ππ⎡⎤-⎢⎥⎣⎦ D .5,66ππ⎡⎤-⎢⎥⎣⎦ 6.已知01a b <<<,则下列不等式不成立...的是A .11()()22ab> B .ln ln a b > C .11a b> D .11ln ln a b> 7.设正项等差数列的前n 项和为,若,则的最小值为A .1B .C .D .8.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .3(0,]2B .3(0,]4C .3[,1)2D .3[,1)49.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增10.函数()lg ||f x x x =的图象可能是( )A .B .C .D .11.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生12.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .45二、填空题13.在ABC ∆中,若3B π=,3AC =,则2AB BC +的最大值为__________.14.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.15.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b -…,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.17.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==u u u v u u u v u u u v u u u v,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN u u u u v 的最小值是_____.18.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高 为 19.函数2cos 1y x =+的定义域是 _________.20.若a 10=12,a m =22,则m =______. 三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.已知x ,y ,()0,z ∈+∞,3x y z ++=. (1)求111x y z++的最小值 (2)证明:2223x y z ≤++.23.已知数列{}n a 的前n 和为n S ,若0n a >,21n n a S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若3nn n a b =,求数列{}n b 的前n 项和n T .24.设函数2()cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 的最小正周期. (2)求函数()f x 的单调递减区间;(3)设,,A B C 为ABC V 的三个内角,若1cos 3B =,124C f ⎛⎫=- ⎪⎝⎭,且C 为锐角,求sin A .25.某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在[]25,85之间,根据统计结果,做出频率分布直方图如下:(1)求这100位留言者年龄的平均数和中位数;(2)学校从参加调查的年龄在[)35,45和[)65,75的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在[)35,45的留言者每人一部价值1000元的手机,年龄在[)65,75的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.26.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [)0,0.1 [)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6 [)0.6,0.7频数132 49 26 5使用了节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310 16 5(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =. 考点:算法的循环结构2.C解析:C【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥Q 平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴Q V 是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆Q 是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.3.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差4.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3,解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.5.A解析:A 【解析】 【分析】首先由诱导公式对函数的解析式进行恒等变形,然后求解其单调区间即可. 【详解】 函数的解析式即:()223sin 23sin 233f x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,其单调增区间满足:()23222232k x k k Z πππππ+≤-≤+∈, 解得:()7131212k x k k Z ππππ+≤≤+∈, 令0k =可得函数的一个单调递增区间为713,1212ππ⎡⎤⎢⎥⎣⎦. 故选A . 【点睛】本题主要考查诱导公式的应用,三角函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.6.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.7.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【易错题】高中必修二数学下期末第一次模拟试卷附答案(1)一、选择题1.已知向量a v ,b v 满足4a =v,b v 在a v 上的投影(正射影的数量)为-2,则2a b -v v 的最小值为( ) A .43B .10C .10D .82.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A .若//m α,//n α,则//m n B .若//m α,//m β,则//αβ C .若//m n ,n α⊥,则m α⊥ D .若//m α,αβ⊥,则m β⊥3.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8B .6C .4D .24.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?5.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C 110± D .322± 6.在ABC ∆中,2AB =2AC =,E 是边BC 的中点.O 为ABC ∆所在平面内一点且满足222OA OB OC ==u u u v u u u v u u u v ,则·AE AO u u u v u u u v 的值为( )A .12B .1C .22D .327.C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )A .1b =rB .a b ⊥r rC .1a b ⋅=r rD .()4C a b +⊥B u u u r rr8.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-9.若,αβ均为锐角,25sin α=,()3sin 5αβ+=,则cos β=A .25B .25C .25或25 D .25-10.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 11.已知0,0a b >>,并且111,,2a b成等差数列,则4a b +的最小值为( ) A .2B .4C .5D .912.函数()lg ||f x x x =的图象可能是( )A .B .C .D .二、填空题13.已知两个正数,x y 满足4x y +=,则使不等式14m x y+≥恒成立的实数m 的范围是__________14.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.233a b c-=,则222a cb ac+-的取值范围为______. 15.若(2,1)x ∃∈--,使不等式()24210x xm m -++>成立,则实数m 的取值范围为________. 16.()()()()()1tan11tan 21tan31tan 441tan 45︒︒︒︒︒+++++L =__________.17.在ABC ∆中,120B =o ,1BC =,且ABC ∆的面积为3,则AC =__________. 18.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为____________.19.设,x y 满足约束条件210,{0,0,0,x y x y x y --≤-≥≥≥若目标函数()0,0z ax by a b =+>>的最大值为1,则14a b+的最小值为_________.20.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m的取值范围为 .三、解答题21.某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲,乙两部门评分的中位数; (2)分别估计该市的市民对甲,乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲,乙两部门的评价. 22.在中角所对的边分别是,,,.求的值; 求的面积.23.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2AB AD ==2CA CB CD BD ====. (1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点E 到平面ACD 的距离.24.已知矩形ABCD 的两条对角线相交于点20M (,),AB 边所在直线的方程为360x y --=,点11T -(,)在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.25.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <. 26.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】b r 在a r上的投影(正射影的数量)为2-可知||cos ,2b a b <>=-r r r ,可求出||2b ≥r ,求22a b -r r 的最小值即可得出结果.【详解】因为b r 在a r上的投影(正射影的数量)为2-,所以||cos ,2b a b <>=-r r r, 即2||cos ,b a b =-<>r r r ,而1cos ,0a b -≤<><r r ,所以||2b ≥r,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+r rr rr r r r rr r r rr22=1644(2)4||484||b b -⨯⨯-+=+r r所以22484464a b -≥+⨯=r r ,即28a b -≥r r ,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2.C解析:C 【解析】 【分析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断. 【详解】对于A 选项,若//m α,//n α,则m 与n 平行、相交、异面都可以,位置关系不确定; 对于B 选项,若l αβ=I ,且//m l ,m α⊄,m β⊄,根据直线与平面平行的判定定理知,//m α,//m β,但α与β不平行;对于C 选项,若//m n ,n α⊥,在平面α内可找到两条相交直线a 、b 使得n a ⊥,n b ⊥,于是可得出m a ⊥,m b ⊥,根据直线与平面垂直的判定定理可得m α⊥; 对于D 选项,若αβ⊥,在平面α内可找到一条直线a 与两平面的交线垂直,根据平面与平面垂直的性质定理得知a β⊥,只有当//m a 时,m 才与平面β垂直. 故选C . 【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.3.C解析:C 【解析】 【分析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++ ⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x⎛⎫++=+++ ⎪⎝⎭Q .若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.4.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.5.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A.解析:D 【解析】 【分析】根据平面向量基本定理可知()12AE AB AC =+u u u v u u u v u u u v,将所求数量积化为1122AB AO AC AO ⋅+⋅u u uv u u u v u u u v u u u v ;由模长的等量关系可知AOB ∆和AOC ∆为等腰三角形,根据三线合一的特点可将AB AO ⋅u u u v u u u v 和AC AO ⋅u u u v u u u v 化为212AB u u uv 和212AC u u u v ,代入可求得结果.【详解】E Q 为BC 中点 ()12AE AB AC ∴=+u u u v u u u v u u u v()111222AE AO AB AC AO AB AO AC AO ∴⋅=+⋅=⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v222OA OB OC ==u u u v u u u v u u u v Q AOB ∴∆和AOC ∆为等腰三角形211cos 22AB AO AB AO OAB AB AB AB ∴⋅=∠=⋅=u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,同理可得:212AC AO AC ⋅=u u u v u u u v u u u v22111314422AE AO AB AC ∴⋅=+=+=u u u v u u u v u u u v u u u v本题正确选项:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.7.D解析:D 【解析】试题分析:2,2AB a AC a b ==+u u u r u u u r r Q rr ,AC AB b ∴=+u u u r u u u r r ,b AC AB BC ∴=-=u u u r u u u r u u u r r .由题意知12,cos1201212b a b a b ⎛⎫=⋅=⋅=⨯⨯-=- ⎪⎝⎭o r r r r r . ()()2422a b BC AB BC BC AB BC BC∴+⋅=+⋅=⋅+u u ur u u u r u u u r u u u r u u u r u u u r u u u r r r 212cos1202222402AB BC ⎛⎫=⋅+=⨯⨯⨯-+= ⎪⎝⎭o u u u r u u u r .()4a b BC ∴+⊥u u u r r r .故D 正确.考点:1向量的加减法;2向量的数量积;3向量垂直.8.C【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.9.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,sin 2α= s ,∴α>45°且cos α= ,∵()3sin 5αβ+=,且1325< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα4355=-+= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.10.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.11.D解析:D 【解析】 ∵111,,2a b成等差数列,()11114144559a b a b a b a b a b b a ⎛⎫∴+=∴+=++=+++= ⎪⎝⎭,…, 当且仅当a =2b 即33,2a b ==时“=“成立, 本题选择D 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.12.D解析:D 【解析】【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.二、填空题13.【解析】【分析】由题意将代入进行恒等变形和拆项后再利用基本不等式求出它的最小值根据不等式恒成立求出m 的范围【详解】由题意知两个正数xy 满足则当时取等号;的最小值是不等式恒成立故答案为【点睛】本题考查 解析:94m ≤【解析】 【分析】由题意将4x y +=代入14x y+进行恒等变形和拆项后,再利用基本不等式求出它的最小值,根据不等式恒成立求出m 的范围. 【详解】由题意知两个正数x ,y 满足4x y +=, 则14559144444x y x y y x x y x y x y +++=+=++≥+=,当4y x x y=时取等号; 14x y ∴+的最小值是94, Q 不等式14m x y +≥恒成立,94m ∴≤. 故答案为94m ≤. 【点睛】本题考查了利用基本不等式求最值和恒成立问题,利用条件进行整体代换和合理拆项再用基本不等式求最值,注意一正二定三相等的验证.14.【解析】【分析】把已知式用正弦定理化边为角由两角和的正弦公式和诱导公式化简可求得即角从而得角的范围注意由余弦定理可得结论【详解】因为所以所以即又所以则因为所以而故故答案为:【点睛】本题考查正弦与余弦解析:()()0,2U【解析】【分析】把已知式用正弦定理化边为角,由两角和的正弦公式和诱导公式化简,可求得cos C ,即C 角,从而得B 角的范围,注意2B π≠,由余弦定理可得结论. 【详解】因为2cos cos a B C =,所以()()2cos cos cos cos 0a C B B C =⋅≠,所以()2sin cos cos A B C C B =,即()2sin cos A C C B A +=,又sin 0A >,所以cos 2C =, 则6C π=,因为cos 0B ≠,所以50,,226B πππ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U ,而2222cos a c b B ac +-=,故()()2220,2a c b ac +-∈U .故答案为:()()0,2U .【点睛】本题考查正弦与余弦定理的应用,考查运算求解能力.本题是一个易错题,学生容易忽略cos B 不能等于0.15.【解析】【分析】令将问题转化为二次函数在区间上恒成立问题即可求得参数范围【详解】令由可得则问题等价于存在分离参数可得若满足题意则只需令令则容易知则只需整理得解得故答案为:【点睛】本题考查由存在性问题 解析:()4,5-【解析】【分析】令2x t =,将问题转化为二次函数在区间上恒成立问题,即可求得参数范围.【详解】令2x t =,由(2,1)x ∃∈--可得11,42t ⎛⎫∈ ⎪⎝⎭,()24210x x m m -++> 则问题等价于存在11,42t ⎛⎫∈⎪⎝⎭,()2210m m t t -++>, 分离参数可得221t m m t +->-若满足题意,则只需221mint m m t +⎛⎫->- ⎪⎝⎭, 令()22111t h x t t t +⎛⎫=-=-- ⎪⎝⎭,令1m t =,()2,4m ∈ 则()2,2,4y m m m =--∈,容易知41620min y =--=-, 则只需220m m ->-,整理得2200m m --<,解得m ∈()4,5-.故答案为:()4,5-.【点睛】本题考查由存在性问题求参数值,属中档题.16.【解析】【分析】根据式子中角度的规律可知变形有由此可以求解【详解】根据式子中角度的规律可知变形有所以故答案为:【点睛】本题主要考查两角和的正切公式的应用以及归纳推理的应用属于中档题解析:232【解析】【分析】根据式子中角度的规律,可知()45045,045αβαβ+=︒<<︒<<o o o ,tan tan tan 4511tan tan αβαβ+==-o ,变形有()()1tan 1tan 2αβ++=,由此可以求解. 【详解】 根据式子中角度的规律,可知()45045,045αβαβ+=︒<<︒<<o o o ,tan tan tan 4511tan tan αβαβ+==-o ,变形有()()tan 1tan 12αβ++=.所以 ()()1tan11tan 442︒︒++=,()()1tan 21tan 432︒︒++=,L ,()()1tan 221tan 232︒︒++=,1tan 452+=o ,()()()()()231tan11tan 21tan31tan 441tan 452︒︒︒︒︒+++++=L .故答案为:232.【点睛】本题主要考查两角和的正切公式的应用以及归纳推理的应用,属于中档题.17.【解析】【分析】根据三角形面积公式得到再由余弦定理得到AC 长【详解】在中且的面积为由正弦定理的面积公式得到:再由余弦定理得到故得到故答案为:【点睛】本题主要考查余弦定理的应用以及三角形面积公式;在解【解析】【分析】根据三角形面积公式得到11 2.222S AB AB =⨯⨯⨯=⇒=再由余弦定理得到AC 长. 【详解】在ABC ∆中,120B =o ,1BC =,且ABC ∆的面积为2,由正弦定理的面积公式得到:11 2.2S AB AB =⨯⨯=⇒= 再由余弦定理得到22202cos1207AC AB BC AB BC =+-⨯⨯⨯=故得到AC =.【点睛】本题主要考查余弦定理的应用以及三角形面积公式;在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.18.x -y +2=0【解析】【分析】设直线l 方程为y =kx+b 由题意可得圆心C1和C2关于直线l 对称利用得k 由C1和C2的中点在直线l 上可得b 从而得到直线方程【详解】由题意可得圆C1圆心为(00)圆C2的解析:x -y +2=0【解析】【分析】设直线l 方程为y =kx +b ,由题意可得圆心C 1和C 2关于直线l 对称,利用121C C l k k ⨯=-得k,由C 1和C 2的中点在直线l 上可得b ,从而得到直线方程.【详解】由题意可得圆C 1圆心为(0,0),圆C 2的圆心为(﹣2,2),∵圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y +4=0关于直线l 对称,∴点(0,0)与(﹣2,2)关于直线l 对称,设直线l 方程为y =kx +b , ∴2020k ---n =﹣1且022+=k •022-+b , 解得k =1,b =2,故直线方程为x ﹣y =﹣2,故答案为:x -y +2=0.【点睛】本题考查圆与圆关于直线的对称问题,可转为圆心与圆心关于直线对称,属基础题.19.【解析】【分析】【详解】试题分析:试题分析:由得平移直线由图象可知当过时目标函数的最大值为即则当且仅当即时取等号故的最小值为考点:1利用可行域求线性目标函数的最值;2利用基本不等式求最值【方法点晴】 解析:9【解析】【分析】【详解】试题分析:试题分析: 由()0,0z ax by a b =+>>得a z y x b b =-+,平移直线,a z y x b b =-+由图象可知,当a z y x b b=-+过()1,1A 时目标函数的最大值为1,即1z a b =+=,则1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭441452549b a b a a b a b =+++≥+⋅=+=,当且仅当4b a a b =,即122b a ==时,取等号,故14a b+的最小值为9.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值.【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.20.【解析】【分析】【详解】因为函数的图象开口向上的抛物线所以要使对于任意的都有成立解得所以实数的取值范围为【考点】二次函数的性质解析:22⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】【详解】因为函数2()1f x x mx =+-的图象开口向上的抛物线,所以要使对于任意的[],1x m m ∈+都有()0f x <成立,()222()10(1)1(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得202m -<<, 所以实数m 的取值范围为2,02⎛⎫- ⎪ ⎪⎝⎭. 【考点】二次函数的性质.三、解答题21.(1)该市的市民对甲、乙两部门评分的中位数的估计值分别为75,67;(2)0.1,0.16;(3)详见解析.【解析】试题分析:(1)50名市民对甲部门的评分由小到大排序,排在第25,26位的平均数即为甲部门评分的中位数.同理可得乙部门评分的中位数.(2)甲部门的评分高于90的共有5个,所以所求概率为550;乙部门的评分高于90的共8个,所以所求概率为850.(3)市民对甲部门的评分的中位数高于乙部门的评分的中位数,且甲部门的评分较集中,乙部门的评分相对分散,即甲部门的评分的方差比乙部门的评分的方差小.试题解析:解:(1)由所给茎叶图知,将50名市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故甲样本的中位数为75,所以该市的市民对甲部门评分的中位数估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为6668672+=,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲,乙部门的评分高于90的比率为580.1,0.165050==,故该市的市民对甲,乙部门的评分高于90的概率的估计分别为0.1,0.16;(3)由所给茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于乙部门的评分的标准差,说明该市市民对甲部门的评价较高,评价较为一致,对乙部门的评价较低,评价差异较大.(注:考生利用其它统计量进行分析,结论合理的同样给分).考点:1平均数,古典概型概率;2统计.22.(1);(2)【解析】【分析】)利用同角三角函数基本关系式可求,由正弦定理可得的值;由,可得为锐角,由可得,利用两角和的正弦函数公式可求的值,利用三角形面积公式即可得解.【详解】 ,,., 由正弦定理可得:,C 为锐角, 由可得:, ,【点睛】本题主要考查了同角三角函数基本关系式,正弦定理的应用,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.23.(1)见解析(2)24(3)217 【解析】【分析】(1)连接OC ,由BO =DO ,AB =AD ,知AO ⊥BD ,由BO =DO ,BC =CD ,知CO ⊥BD .在△AOC 中,由题设知AO 1CO 3==,AC =2,故AO 2+CO 2=AC 2,由此能够证明AO ⊥平面BCD ;(2)取AC 的中点M ,连接OM 、ME 、OE ,由E 为BC 的中点,知ME ∥AB ,OE ∥DC ,故直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.在△OME 中,121EM AB OE DC 1222====,由此能求出异面直线AB 与CD 所成角大小的余弦;(3)设点E 到平面ACD 的距离为h .在△ACD 中,CA CD 2AD 2===,2ACD 127S 2422⎛⎫=-= ⎪ ⎪⎝⎭V ,由AO =1,知2CDE 133S 22==V ,由此能求出点E 到平面ACD 的距离.【详解】(1)证明:连接OC,∵BO=DO,AB=AD,∴AO⊥BD,∵BO=DO,BC=CD,∴CO⊥BD.在△AOC中,由题设知1AO CO==,AC=2,∴AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.∵AO⊥BD,BD∩OC=O,∴AO⊥平面BCD.(2)解:取AC的中点M,连接OM、ME、OE,由E为BC的中点,知ME∥AB,OE∥DC,∴直线OE与EM所成的锐角就是异面直线AB与CD所成的角.在△OME中,111222EM AB OE DC====,∵OM是直角△AOC斜边AC上的中线,∴112OM AC==,∴1114cos OEM+-∠==,∴异面直线AB与CD所成角大小的余弦为4(3)解:设点E到平面ACD的距离为h.E ACD A CDEV V--=Q,1133ACD CDEh S AO S∴=V V...,在△ACD中,2CA CD AD===,,∴122ACDS==V,∵AO=1,2122CDES==V,∴12CDEACDAO ShS⋅===VV,∴点E到平面ACD.【点睛】本题考查点、线、面间的距离的计算,考查空间想象力和等价转化能力,解题时要认真审题,仔细解答,注意化立体几何问题为平面几何问题.24.(1)3x +y +2=0;(2)(x -2)2+y 2=8.【解析】【分析】(1) 直线AB 斜率确定,由垂直关系可求得直线AD 斜率,又T 在AD 上,利用点斜式求直线AD 方程;(2)由AD 和AB 的直线方程求得A 点坐标,以M 为圆心,以AM 为半径的圆的方程即为所求.【详解】(1)∵AB 所在直线的方程为x -3y -6=0,且AD 与AB 垂直,∴直线AD 的斜率为-3. 又∵点T (-1,1)在直线AD 上,∴AD 边所在直线的方程为y -1=-3(x +1), 即3x +y +2=0.(2)由360320x y x y --=⎧⎨++=⎩,得02x y =⎧⎨=-⎩, ∴点A 的坐标为(0,-2),∵矩形ABCD 两条对角线的交点为M (2,0),∴M 为矩形ABCD 外接圆的圆心,又|AM |()()22200222-++= ∴矩形ABCD 外接圆的方程为(x -2)2+y 2=8.【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.25.(1)21n a n =+;(2)见解析【解析】【分析】(1)设公差为d ,由28S =,38522a a a +=+可得1112829282a d a d a d +=⎧⎨+=++⎩,,解得13a =,2d =,从而可得结果;(2) 由(1),21n a n =+,则有()232122n n S n n n =++=+,则()11111222n S n n n n ⎛⎫==- ⎪++⎝⎭,利用裂项相消法求解即可.【详解】(1)设公差为d ,由题1112829282a d a d a d +=⎧⎨+=++⎩,,解得13a =,2d =. 所以21n a n =+.(2) 由(1),21n a n =+,则有()232122n n S n n n =++=+. 则()11111222n S n n n n ⎛⎫==- ⎪++⎝⎭. 所以n T 11111111111232435112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111112212n n ⎛⎫=+-- ⎪++⎝⎭ 34<. 【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误. 26.(1){|1x x -≤≤;(2)[1,1]-. 【解析】【详解】试题分析:(1)分1x <-,11x -≤≤,1x >三种情况解不等式()()f x g x ≥;(2)()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥,所以(1)2f -≥且(1)2f ≥,从而可得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -<≤.所以()()f x g x ≥的解集为1{|1}2x x --≤≤. (2)当[]1,1x ∈-时,()2g x =. 所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时()2f x ≥.又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤.所以a 的取值范围为[]1,1-.点睛:形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.。
【典型题】高中必修二数学下期末一模试题含答案(1)一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.已知D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦3.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=( )A .50B .2C .0D .50-4.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)5.要得到函数223cos sin 23y x x =+-的图象,只需将函数2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 6.若||1OA =,||3OB =,0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3C .3 D .37.函数2ln ||y x x =+的图象大致为( )A .B .C .D .8.已知二项式2(*)nx n N x ⎛-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-9.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10 D .1或1110.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-11.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________15.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________. 16.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 17.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.18.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.19.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______20.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.三、解答题21.某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示. 组号 分组频数 频率第1组 [)160,165 5 0.050 第2组 [)165,170 ① 0.350第3组 [)170,175 30 ②第4组 [)175,180 20 0.200 第5组[)180,185100.100(1)请先求出频率分布表中,①②位置的相应数据,再完成频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试; (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率.22.已知函数()sin()(0,0)3f x A x A πωω=+>>的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[0,]π的单调增区间;(3)若函数()()1g x f x =+在区间(,)a b 上恰有10个零点,求b a -的最大值. 23.ABC ∆是边长为3的等边三角形,2BE BA λ=,1(1)2BF BC λλ=<<,过点F 作DF BC ⊥交AC 边于点D ,交BA 的延长线于点E .(1)当23λ=时,设,BA a BC b ==,用向量,a b 表示EF ; (2)当λ为何值时,AE FC ⋅取得最大值,并求出最大值.24.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知10cos A =,2b =5c =(1)求a ;(2)求cos()B A -的值.25.已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证:AB BC ⊥; (2) //AD BC ,求实数m 的值.26.ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若(cos ,cos )m B C =,(2,)n a c b =+,且m n ⊥.(1)求角B 的大小;(2)若7b =,8a c +=,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下, 对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.3.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦ 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.4.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则2040k k k >⎧⎨=-<⎩解得:04k <<,综上k 的取值范围是[)0,4,故选C. 5.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.6.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】 解:30AOC ︒∠=3cos ,OC OA ∴<>=32OC OA OC OA⋅∴=()3mOA nOB OA mOA nOB OA+⋅∴=+2222322m OA nOB OAm OA mnOA OB n OB OA+⋅=+⋅+ 1OA =,3OB =,0OA OB ⋅==229m n ∴=又C 在AB 上 0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.7.A解析:A 【解析】 【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。
【典型题】高中必修二数学下期末第一次模拟试题(附答案)(1)一、选择题1.已知向量a v ,b v 满足4a =v,b v 在a v 上的投影(正射影的数量)为-2,则2a b -v v 的最小值为( ) A .43 B .10C .10D .82.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元3.若,则( )A .B .C .D .4.在ABC ∆中,2AB =2AC =,E 是边BC 的中点.O 为ABC ∆所在平面内一点且满足222OA OB OC ==u u u v u u u v u u u v ,则·AE AO u u u v u u u v 的值为( )A .12B .1C .22D .325.若,αβ均为锐角,5sin 5α=,()3sin 5αβ+=,则cos β=A 25B .2525 C 25或2525D .525-6.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 27.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48πB .12πC .12πD .3π8.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 9.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭11.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4512.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b -…,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.14.直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .15.等边ABC ∆的边长为2,则AB u u u v 在BC uuuv 方向上的投影为________.16.若x ,y 满足约束条件10,{30,30,x y x y x -+≥+-≥-≤则z=x−2y 的最小值为__________.17.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________. 18.设,x y 满足约束条件210,{0,0,0,x y x y x y --≤-≥≥≥若目标函数()0,0z ax by a b =+>>的最大值为1,则14a b+的最小值为_________. 19.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩若()()10f a f +=,则实数a 的值等于________.20.在直三棱柱111ABC A B C -中,90ACB ∠=o ,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.三、解答题21.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 22.已知23()sin cos 3f x x x x =+ (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.24.已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T .25.已知ABC ∆的三个顶点坐标分别为()4,2A --,()4,2B ,()13C ,. (1)求边AB 上的高所在直线的一般式方程; (2)求边AB 上的中线所在直线的一般式方程.26.某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在[]25,85之间,根据统计结果,做出频率分布直方图如下:(1)求这100位留言者年龄的平均数和中位数;(2)学校从参加调查的年龄在[)35,45和[)65,75的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在[)35,45的留言者每人一部价值1000元的手机,年龄在[)65,75的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】b r 在a r上的投影(正射影的数量)为2-可知||cos ,2b a b <>=-r r r ,可求出||2b ≥r ,求22a b -r r 的最小值即可得出结果.【详解】因为b r 在a r上的投影(正射影的数量)为2-, 所以||cos ,2b a b <>=-r r r,即2||cos ,b a b =-<>r r r ,而1cos ,0a b -≤<><r r , 所以||2b ≥r,因为2222222(2)44||4||||cos ,4||a b a b a a b b a a b a b b -=-=-⋅+=-<>+r r r r r r r r r r r r r r22=1644(2)4||484||b b -⨯⨯-+=+r r所以22484464a b -≥+⨯=r r ,即28a b -≥r r ,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.2.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.3.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.4.D解析:D 【解析】 【分析】根据平面向量基本定理可知()12AE AB AC =+u u u v u u u v u u u v,将所求数量积化为1122AB AO AC AO ⋅+⋅u u uv u u u v u u u v u u u v ;由模长的等量关系可知AOB ∆和AOC ∆为等腰三角形,根据三线合一的特点可将AB AO ⋅u u u v u u u v 和AC AO ⋅u u u v u u u v 化为212AB u u u v 和212AC u u u v ,代入可求得结果. 【详解】E Q 为BC 中点 ()12AE AB AC ∴=+u u u v u u u v u u u v()111222AE AO AB AC AO AB AO AC AO ∴⋅=+⋅=⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v222OA OB OC ==u u u v u u u v u u u v Q AOB ∴∆和AOC ∆为等腰三角形211cos 22AB AO AB AO OAB AB AB AB ∴⋅=∠=⋅=u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,同理可得:212AC AO AC ⋅=u u u v u u u v u u u v22111314422AE AO AB AC ∴⋅=+=+=u u u v u u u v u u u v u u u v本题正确选项:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.5.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,sin 52α= s ,∴α>45°且5cos α= ,∵()3sin 5αβ+=,且13252< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα4355=-+= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.6.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.7.D解析:D 【解析】 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.D【解析】f(x)的最小正周期为2π,易知A正确;f8π3⎛⎫⎪⎝⎭=cos8ππ33⎛⎫+⎪⎝⎭=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cosππ3x⎛⎫++⎪⎝⎭=-cosπ3x⎛⎫+⎪⎝⎭,∴fππ6⎛⎫+⎪⎝⎭=-cosππ63⎛⎫+⎪⎝⎭=-cos2π=0,故C正确;由于f2π3⎛⎫⎪⎝⎭=cos2ππ33⎛⎫+⎪⎝⎭=cosπ=-1,为f(x)的最小值,故f(x)在,2ππ⎛⎫⎪⎝⎭上不单调,故D错误.故选D.9.D解析:D【解析】【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【典型题】高中必修二数学下期末一模试卷(含答案)(1)一、选择题1.如图,在ABC 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .102.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥3.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?4.(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1766.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭D .11,28⎛⎫-- ⎪⎝⎭ 7.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .48.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)9.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞10.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 11.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④12.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题13.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.14.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________15.直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .16.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.17.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.18.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.19.函数sin3cos y x x =-的图像可由函数2sin y x =的图像至少向右平移________个单位长度得到.20.函数()sin f x x ω=(0>ω)的图像与其对称轴在y 轴右侧的交点从左到右依次记为1A ,2A ,3A ,⋅⋅⋅,n A ,⋅⋅⋅,在点列{}n A 中存在三个不同的点k A 、l A 、p A ,使得△k l p A A A 是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为n ω,则6ω=________. 三、解答题21.如图,在平面直角坐标系xOy 中,已知以M 点为圆心的圆22:1412600M x y x y +--+=及其上一点(4,2)A .(1)设圆N 与y 轴相切,与圆M 外切,且圆心在直线6y =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点且BC OA =,求直线l 的方程. 22.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.23.如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ; (Ⅱ)求证:BD ⊥平面P AB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由.24.ABC ∆是边长为3的等边三角形,2BE BA λ=,1(1)2BF BC λλ=<<,过点F 作DF BC ⊥交AC 边于点D ,交BA 的延长线于点E .(1)当23λ=时,设,BA a BC b ==,用向量,a b 表示EF ; (2)当λ为何值时,AE FC ⋅取得最大值,并求出最大值. 25.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为362,求a 的值. 26.在ABC 中,5,3,sin 2sin BC AC C A ===. (Ⅰ)求AB 的值; (Ⅱ)求sin 24A π⎛⎫-⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.2.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.4.B解析:B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式5.C解析:C 【解析】 【分析】 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 6.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根, 设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.7.B解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥;2054Ni ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.8.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.9.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可. 【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<. 故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.10.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角, 在△A 2BM 中,22252()22a A B a BM a a ==+=,,222313()2a A M a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.11.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.12.A解析:A 【解析】 【分析】根据题意,结合函数的解析式以及奇偶性分析可得()f x 的图象,据此分析可得答案. 【详解】解:因为()f x 是定义在R 上的奇函数, 所以它的图象关于原点对称,且()00f =, 已知当0x >时,()32f x x =-, 作出函数图象如图所示, 从图象知:33022f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭, 则不等式()0f x >的解集为33,0,22⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,以及函数的解析式,考查数形结合思想.二、填空题13.【解析】【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【解析】 【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题14.【解析】【分析】【详解】由题意则解得-1<a <7经检验当a=-1时的两个根分别为所以符合题目要求时在区间无实根所以 解析:17a -≤<【解析】 【分析】 【详解】由题意,2()34f x x x a '=+-,则(1)(1)0f f ''-<,解得-1<a <7,经检验当a=-1时,2()3410f x x x '=++=的两个根分别为121,13x x ,所以符合题目要求,7a =时,2()3410f x x x '=++=,在区间无实根,所以17a -≤<.15.【解析】试题分析:设与直线垂直的直线方程:圆化为圆心坐标因为直线平分圆圆心在直线上所以解得故所求直线方程为考点:1直线与圆的位置关系;2直线的一般式方程与直线的垂直关系【思路点睛】本题是基础题考查直 解析:2y x =【解析】试题分析:设与直线20x y +=垂直的直线方程:20x y b -+=,圆22240x y x y +--=化为()()22125x y -+-=,圆心坐标()12,.因为直线平分圆,圆心在直线20x y b -+=上,所以21120b ⨯-⨯+=,解得0b =,故所求直线方程为2y x =.考点:1.直线与圆的位置关系;2.直线的一般式方程与直线的垂直关系.【思路点睛】本题是基础题,考查直线与圆的位置关系,直线与直线垂直的方程的设法,据此设出与已知直线垂直的直线方程,利用直线平分圆的方程,求出结果即可.16.2【解析】抛物线的准线为与圆相切则解析:2 【解析】抛物线的准线为2px =-,与圆相切,则342p +=,2p =. 17.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60【解析】 【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DE DF DD DC ==,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴, 所以,四边形11A BCD 为平行四边形,11//A B CD ∴, 所以,异面直线EF 与11A C 所成的角为11BA C ∠. 易知11A BC ∆为等边三角形,1160BA C ∴∠=.故答案为:60. 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.18.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.19.【解析】试题分析:因为所以函数的的图像可由函数的图像至少向右平移个单位长度得到【考点】三角函数图像的平移变换两角差的正弦公式【误区警示】在进行三角函数图像变换时提倡先平移后伸缩但先伸缩后平移也经常出 解析:3π【解析】试题分析:因为sin 2sin()3y x x x π==-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.20.【解析】【分析】由可求得的横坐标进而得到的坐标;由正弦函数周期特点可知只需分析以为顶点的三角形为等腰直角三角形即可由垂直关系可得平面向量数量积为零进而求得的通项公式代入即可得到结果【详解】由得:…… 解析:112π【解析】 【分析】 由2x k πωπ=+可求得n A 的横坐标,进而得到n A 的坐标;由正弦函数周期特点可知只需分析以1A ,2n A ,41n A -为顶点的三角形为等腰直角三角形即可,由垂直关系可得平面向量数量积为零,进而求得n ω的通项公式,代入6n =即可得到结果. 【详解】由2x k πωπ=+,k Z ∈得:()212k x πω+=,k Z ∈1,12A πω⎛⎫∴ ⎪⎝⎭,23,12A πω⎛⎫- ⎪⎝⎭,35,12A πω⎛⎫ ⎪⎝⎭,47,12A πω⎛⎫- ⎪⎝⎭,…… 若123A A A ∆为等腰直角三角形,则212232,2,240A A A A πππωωω⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭解得:2πω=,即12πω=同理若147A A A ∆为等腰直角三角形,则14470A A A A ⋅= 232πω∴= 同理若1611A A A ∆为等腰直角三角形,则166110A A A A ⋅= 352πω∴= 以此类推,可得:()212n n πω-= 6112πω∴=故答案为:112π【点睛】本题考查正弦型函数图象与性质的综合应用问题,关键是能够根据正弦函数周期性的特点确定所分析成等腰直角三角形的三个顶点的位置,进而由垂直关系得到平面向量数量积为零,构造方程求得结果.三、解答题21.(1)22(1)(6)1x y -+-=(2)2150x y -+=或250x y --=.【解析】 【分析】(1)根据由圆心在直线y =6上,可设()0,6N x ,再由圆N 与y 轴相切,与圆M 外切得到圆N 的半径为0x 和0075-=+x x 得解.(2)由直线l 平行于OA ,求得直线l 的斜率,设出直线l 的方程,求得圆心M 到直线l 的距离,再根据垂径定理确定等量关系,求直线方程. 【详解】(1)圆M 的标准方程为22(7)(6)25-+-=x y ,所以圆心M (7,6),半径为5,. 由圆N 圆心在直线y =6上,可设()0,6N x 因为圆N 与y 轴相切,与圆M 外切 所以007<<x ,圆N 的半径为0x 从而0075-=+x x 解得01x =.所以圆N 的标准方程为22(1)(6)1x y -+-=. (2)因为直线l 平行于OA ,所以直线l 的斜率为201402-=-. 设直线l 的方程为12y x m =+,即220x y m -+= 则圆心M 到直线l 的距离==d因为===BC OA 而2222⎛⎫=+ ⎪⎝⎭BC MC d 所以2(25)2555-=+m解得152m = 或52m =-.故直线l 的方程为2150x y -+=或250x y --=.【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题. 22.(1)0;(2),62ππ⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)首先化简()g x 解析式,然后求得左移ϕ个单位后函数()f x 的解析式,根据()f x 的奇偶性求得ϕ的值,进而求得()fϕ的值.(2)根据(1)中求得的()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,求得226x πϕ++的取值范围,根据ϕ的取值范围,求得22πϕ+的取值范围,根据()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,以及正弦型函数的单调性列不等式,解不等式求得ϕ的取值范围.【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,()2sin 2216f x x πϕ⎛⎫∴=++- ⎪⎝⎭,又()f x 为偶函数,则262k ϕππ+=+π(k Z ∈),02πϕ<≤,6πϕ∴=.()06f f πϕ⎛⎫∴== ⎪⎝⎭.(2)7,6x ππ⎛⎫∈ ⎪⎝⎭,2222,22662x πππϕπϕπϕ⎛⎫∴++∈++++ ⎪⎝⎭, 02πϕ<≤,72,666πππϕ⎛⎤∴+∈ ⎥⎝⎦,32,222πππϕ⎛⎤+∈ ⎥⎝⎦, ()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数.262ππϕ∴+≥且02πϕ<≤. ,62ππϕ⎡⎤∴∈⎢⎥⎣⎦.【点睛】本小题主要考查三角恒等变换,考查根据三角函数的奇偶性求参数,考查三角函数图像变换,考查三角函数单调区间有关问题的求解,考查运算求解能力,属于中档题. 23.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 【解析】 【分析】(Ⅰ)由题意可得CD ⊥平面P AD ,从而易得CD ⊥PD ; (Ⅱ)要证BD ⊥平面P AB ,关键是证明BD AB ⊥;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 【详解】(Ⅰ)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD , 所以CD ⊥P A .因为CD ⊥AD ,PA AD A ⋂=, 所以CD ⊥平面P AD . 因为PD ⊂平面P AD , 所以CD ⊥PD .(II )因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥P A .在直角梯形ABCD中,12BC CD AD==,由题意可得2AB BD BC==,所以222AD AB BD=+,所以BD AB⊥.因为PA AB A=,所以BD⊥平面P AB.(Ⅲ)解:在棱PD上存在点M,使CM∥平面P AB,且M是PD的中点.证明:取P A的中点N,连接MN,BN,因为M是PD的中点,所以12MN AD.因为12BC AD,所以MN BC.所以MNBC是平行四边形,所以CM∥BN.因为CM⊄平面P AB, BN⊂平面P AB.所以//CM平面P AB.【点睛】本题考查平面与平面垂直的判定定理,以及直线与平面平行的判定定理的应用,考查空间想象能力,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.24.(1)4233a b-+;(2)916【解析】【分析】【详解】(Ⅰ)由题意可知:23BF b=,且2323BF=⨯=,4BE =,故4433BE BA a ==, 4233EF BF BE a b =-=-+ (Ⅱ)由题意,3,33BF FC λλ==-,6,63BE AE λλ==-,2279(63)(33)cos60922AE FC λλλλ⋅=--︒=-+- 当2732924λ=-=-⨯1(,1)2∈时, AE FC ⋅有最大值916.、25.(Ⅰ) 证明见解析,详见解析;(Ⅱ)6a =.【解析】【分析】 【详解】试题分析:(1)依据直线与平面垂直的判定定理推证;(2)借助题设条件运用等积法建立方程求解.试题解析:(1)在图1中,易得//,BE AOC OE CD CD AO CD OC ⊥∴⊥⊥所以,在图2中,1,CD OC CD AO CD ⊥⊥∴⊥平面1A OC(2)由已知,平面1A BE ⊥平面BCDE , 1CD A O ⊥所以1A O ⊥平面BCDE2111633BCDE AOS a a ∴⋅=== 考点:空间线面垂直的位置关系和棱锥的体积公式等有关知识的运用.26.(Ⅰ)Ⅱ)10. 【解析】【分析】(Ⅰ)直接利用正弦定理可求AB 的值;(Ⅱ)由余弦定理求得cos A ,再利用同角三角函数的关系求出sin A ,由二倍角公式求出sin 2A ,cos2A ,根据两角差的正弦公式可求sin 24A π⎛⎫- ⎪⎝⎭的值. 【详解】(Ⅰ)在中,根据正弦定理,sin sin AB BC C A =, 于是sin 225sin BC AB C BC A=== (Ⅱ)在ABC ∆中,根据余弦定理,得222cos 2AB AC BC A AB AC+-=⋅ 于是25sin 1cos 5A A =-=, 从而2243sin 22sin cos ,cos 2cos sin 55A A A A A A ===-= 2sin 2sin 2cos cos 2sin 444A A A πππ⎛⎫-=-= ⎪⎝⎭. 【点睛】本题主要考查余弦定理、正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.。
最新高中必修二数学下期末第一次模拟试题(及答案)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.ABC V 中,已知sin cos cos a b cA B C==,则ABC V 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形3.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .4.函数()23sin 23f x x π⎛⎫=-⎪⎝⎭的一个单调递增区间是 A .713,1212ππ⎡⎤⎢⎥⎣⎦B .7,1212ππ⎡⎤⎢⎥⎣⎦C .,22ππ⎡⎤-⎢⎥⎣⎦D .5,66ππ⎡⎤-⎢⎥⎣⎦5.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-6.已知{}n a 的前n 项和241n S n n =-+,则1210a a a +++=L ( )A .68B .67C .61D .607.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭ 8.要得到函数23sin 23y x x =+2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 9.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .4323⎛⎫ ⎪ ⎪⎝⎭,B .323⎡⎢⎣⎦,C .4323⎡⎢⎣⎭,D .32,3⎛ ⎝⎦10.若||1OA =u u u v ,||3OB =u u u v ,0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOBu u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( ) A .13B .3C .33D .311.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .3(0,]2B .3(0,]4C .3[,1)2D .3[,1)412.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.()sin101370+=oo_____15.已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.17.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.18.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.19.函数f(x)为奇函数,且x>0时,f(x)=x +1,则当x<0时,f(x)=________.20.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩若()()10f a f +=,则实数a 的值等于________.三、解答题21.已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.22.如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (I )证明MN ∥平面PAB ; (II )求四面体N BCM -的体积.23.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;24.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.25.已知以点C 2(,)t t(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O 和点B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程. 26.ABC ∆中,三个内角,,A B C 的对边分别为,,a b c ,若(cos ,cos )m B C =v,(2,)n a c b =+v,且m n ⊥u v v .(1)求角B 的大小;(2)若7b =,8a c +=,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.B解析:B 【解析】 【分析】 【详解】因为sin cos cos a b c A B C==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== , 即ABC V 为等腰直角三角形. 故选:B .3.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B 故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.4.A解析:A 【解析】 【分析】首先由诱导公式对函数的解析式进行恒等变形,然后求解其单调区间即可. 【详解】函数的解析式即:()223sin 23sin 233f x x x ππ⎛⎫⎛⎫=-=-- ⎪⎪⎝⎭⎝⎭,其单调增区间满足:()23222232k x k k Z πππππ+≤-≤+∈, 解得:()7131212k x k k Z ππππ+≤≤+∈, 令0k =可得函数的一个单调递增区间为713,1212ππ⎡⎤⎢⎥⎣⎦. 故选A . 【点睛】本题主要考查诱导公式的应用,三角函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.6.B解析:B 【解析】 【分析】首先运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出通项n a ,判断n a 的正负情况,再运用1022S S -即可得到答案. 【详解】当1n =时,112S a ==-;当2n ≥时,()()()22141141125n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦, 故2,125,2n n a n n -=⎧=⎨-≥⎩;所以,当2n ≤时,0n a <,当2n >时,0n a >. 因此,()()()12101234101022612367a a a a a a a a S S +++=-+++++=-=-⨯-=L L .故选:B . 【点睛】本题考查了由数列的前n 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分1n =和2n ≥两种情形,第二要掌握()12n n n a S S n -=-≥这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.7.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.8.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.9.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 10.B 解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,OC OA ∴<>=u u u r u u u rOC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r=1OA =Q,OB =,0OA OB ⋅=u u u r u u ur=229m n ∴=又C Q 在AB 上0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.11.A解析:A 【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF 是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以03c <≤,302c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.12.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.二、填空题13.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12nm【解析】 【分析】 【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12nm. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.14.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二 解析:1【解析】 【分析】tan 60o,切化弦后,利用两角和差余弦公式可将原式化为sin10cos10cos 60cos 70o oo o,利用二倍角公式可变为1sin 202cos 60cos 70⋅oo o,由sin 20cos70=o o 可化简求得结果. 【详解】()()cos 60cos 7060sin 70sin101sin101tan 60tan70sin1s 0co i s 60o 7n c s 0=++⋅=o o o ooooo ooo o()cos 7060sin10cos101sin 201sin101cos60cos70cos60cos702cos60cos702cos60-=⋅==⋅==o oo o o oo o o o o o o本题正确结果:1 【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.15.【解析】【分析】先利用周期公式求出再利用平移法则得到新的函数表达式依据函数为奇函数求出的表达式即可求出的最小值【详解】由得所以向左平移个单位后得到因为其图像关于原点对称所以函数为奇函数有则故的最小值 解析:3π【解析】 【分析】先利用周期公式求出ω,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出m 的表达式,即可求出m 的最小值.【详解】 由2T ππω==得2ω=,所以sin 23y x π⎛⎫=+ ⎪⎝⎭,向左平移()0m m >个单位后,得到sin[2()]sin(22)33y x m x m ππ=++=++,因为其图像关于原点对称,所以函数为奇函数,有2,3m k k Z ππ+=∈,则62k m ππ=-+,故m 的最小值为3π.【点睛】本题主要考查三角函数的性质以及图像变换,以及sin()y A x ωϕ=+ 型的函数奇偶性判断条件.一般地sin()y A x ωϕ=+为奇函数,则k ϕπ=;为偶函数,则2k πϕπ=+;cos()y A x ωϕ=+为奇函数,则2k πϕπ=+;为偶函数,则k ϕπ=.16.【解析】【分析】首先利用正弦定理将题中的式子化为化简求得利用余弦定理结合题中的条件可以得到可以断定为锐角从而求得进一步求得利用三角形面积公式求得结果【详解】因为结合正弦定理可得可得因为结合余弦定理可【解析】【分析】首先利用正弦定理将题中的式子化为sin sin sin sin 4sin sin sin B C C B A B C +=,化简求得1sin 2A =,利用余弦定理,结合题中的条件,可以得到2cos 8bc A =,可以断定A 为锐角,从而求得cos 2A =,进一步求得3bc =,利用三角形面积公式求得结果. 【详解】因为sin sin 4sin sin b C c B a B C +=,结合正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=, 可得1sin 2A =,因为2228b c a +-=, 结合余弦定理2222a b c bccosA =+-,可得2cos 8bc A =,所以A 为锐角,且cos A =,从而求得bc =,所以ABC ∆的面积为111sin 222S bc A ===. 【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30o 、45o 、60o 等特殊角的三角函数值,以便在解题中直接应用.17.【解析】【分析】【详解】设圆心直线的斜率为弦AB 的中点为的斜率为则所以由点斜式得解析:10x y -+=. 【解析】 【分析】 【详解】设圆心O ,直线l 的斜率为k ,弦AB 的中点为P ,PO 的斜率为op k ,2110op k -=--则l PO ⊥,所以k (1)11op k k k ⋅=⋅-=-∴=由点斜式得1y x =+.18.或【解析】【分析】根据不等式恒成立化简命题为根据一元二次方程有解化简命题为或再根据且命题的性质可得结果【详解】若命题:为真;则解得:若命题:为真则解得:或若命题是真命题则或故答案为或【点睛】解答非命解析:2a ≤-或1a = 【解析】 【分析】根据不等式恒成立化简命题p 为1a ≤,根据一元二次方程有解化简命题q 为2a ≤-或1a ≥,再根据且命题的性质可得结果.【详解】若命题p :“[]1,2x ∀∈,20x a -≥”为真; 则10a -≥, 解得:1a ≤,若命题q :“x ∃∈R ,2220x ax a ++-=”为真, 则()24420a a ∆=--≥,解得:2a ≤-或1a ≥,若命题“p q ∧”是真命题,则2a ≤-,或1a =, 故答案为2a ≤-或1a = 【点睛】解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.19.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填解析:1【解析】当x <0时,-x >0,∴f (-x )=1,又f (-x )=-f (x ),∴f (x )=1,故填1.20.-3【解析】【分析】先求再根据自变量范围分类讨论根据对应解析式列方程解得结果【详解】当a>0时2a=-2解得a=-1不成立当a≤0时a+1=-2解得a=-3【点睛】求某条件下自变量的值先假设所求的值解析:-3【解析】【分析】先求()f a,再根据自变量范围分类讨论,根据对应解析式列方程解得结果.【详解】()()()102f a f f a+=⇒=-当a>0时,2a=-2,解得a=-1,不成立当a≤0时,a+1=-2,解得a=-3【点睛】求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.三、解答题21.(1)a n=-2n+5.(2)4【解析】(Ⅰ)设{a n}的公差为d,由已知条件,,解出a1=3,d=-2.所以a n=a1+(n-1)d=-2n+5.(Ⅱ)S n=na1+d=-n2+4n=-(n-2)2+4,所以n=2时,S n取到最大值4.22.(Ⅰ)证明见解析;(Ⅱ)45 3.【解析】试题分析:(Ⅰ)取PB的中点T,然后结合条件中的数据证明四边形AMNT为平行四边形,从而得到MN ATP,由此结合线面平行的判断定理可证;(Ⅱ)由条件可知四面体N-BCM的高,即点N到底面的距离为棱PA的一半,由此可顺利求得结果.试题解析:(Ⅰ)由已知得,取的中点T,连接,由N为中点知,.又,故平行且等于,四边形AMNT为平行四边形,于是.因为平面,平面,所以平面.(Ⅱ)因为平面,N为的中点,所以N到平面的距离为.取的中点,连结.由得,.由得到的距离为,故145252BCM S =⨯⨯=V . 所以四面体的体积14532N BCM BCM PA V S -=⨯⨯=V . 【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.23.(1)0.9(2)0.085,0.125a b == 【解析】试题分析:(Ⅰ)先频数分布表求出课外阅读时间不少于12小时的人数,再由对立事件的频率公式求出一名学生该周课外阅读时间少于12小时的频率;(Ⅱ)结合频数分布表、直方图确定课外阅读时间落在[4,6)、[8,10)的人数为17,求出对应的频率,分别由频率/组距求出a 、b 的值试题解析:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有 6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为0.9 (2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以0.170.0852a ===频率组距, 课外阅读时间落在组[8,10)的有25人,频率为0.25,所以0.250.1252b ===频率组距 考点:频率分布直方图24.(Ⅰ)516.(Ⅱ)小亮获得水杯的概率大于获得饮料的概率. 【解析】 【分析】 【详解】(Ⅰ)两次记录的所有结果为(1,1),(1,,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个. 满足xy≤3的有(1,1),(1,,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516.(Ⅱ) 满足xy≥8的有(2,4),(3,,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为616; 小亮获得饮料的概率为5651161616--=,所以小亮获得水杯的概率大于获得饮料的概率. 25.(1)证明见解析(2)圆C 的方程为(x -2)2+(y -1)2=5 【解析】 【分析】(1)先求出圆C 的方程(x -t )2+22)y t-(=t 2+24t,再求出|OA|,|0B|的长,即得△OAB 的面积为定值;(2)根据212t =t 得到t =2或t =-2,再对t 分类讨论得到圆C 的方程. 【详解】(1)证明:因为圆C 过原点O ,所以OC 2=t 2+24t . 设圆C 的方程是(x -t )2+22)y t-(=t 2+24t , 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t ,所以S △OAB =12OA ·OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12. 所以212t =t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC此时,圆心C 到直线y =-2x +4的距离dC 与直线y =-2x +4相交于两点.符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC C 到直线y =-2x +4的距离d>.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去.所以圆C 的方程为(x -2)2+(y -1)2=5.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系的求法,意在考查学生对这些知识的理解掌握水平.26.(1)23π;(2. 【解析】试题分析:(1)根据题意,由向量数量积的坐标计算公式可得若m n v v⊥,则有cosB•(2a+c )+cos C•b=0,结合正弦定理可得cosB•(2sinA+sinC )+cosC•sinB=0,将其整理变形可得1cos 2B =-,由B 的范围分析可得答案;(2)结合题意,根据余弦定理分析可得49=a 2+c 2+ac ,又由a+c=8,变形可得ac=15,由三角形面积公式计算可得答案. 详解:(1)∵m n ⊥,∴()cos 2cos 0B a c C b ⋅++⋅=, ∴()cos 2sin sin cos sin 0B A C C B ⋅++⋅=,∴()2cos sin sin cos cos sin B A C B C B =-⋅+⋅ ()sin sin B C A =-+=-, ∴1cos 2B =-,∴23B π=. (2)根据余弦定理可知2222cos b a c ac B =+-,∴2249a c ac =++, 又因为8a c +=,∴()264a c +=,∴22264a c ac ++=,∴15ac =,则1sin 2S ac B =⋅=点睛:本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.。
【典型题】高中必修二数学下期末一模试卷含答案(1)一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.已知D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r ,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦3.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,sin B =,ABC S =△b =( )A .B .C D 4.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)5.若||1OA =u u u v ,||OB u u u v 0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB u u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( )A .13B .3CD 6.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 7.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 8.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-UB .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞U9.函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .010.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或1111.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④12.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒二、填空题13.设a >0,b >033a 与3b 的等比中项,则11a b +的最小值是__. 14.已知ABC V ,135B o∠=,22,4AB BC ==,求AB AC ⋅=u u u r u u u r ______.15.直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .16.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 17.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______. 18.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为19.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 20.函数2cos 1y x =+的定义域是 _________.三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项.数列{}n b 中,12b =,点()1,n n P b b +在直线2y x =+上. (1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项公式;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .23.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <. 24.已知以点C 2(,)t t(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O 和点B ,其中O 为原点. (1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若OM =ON ,求圆C 的方程.25.某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在[]25,85之间,根据统计结果,做出频率分布直方图如下:(1)求这100位留言者年龄的平均数和中位数;(2)学校从参加调查的年龄在[)35,45和[)65,75的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在[)35,45的留言者每人一部价值1000元的手机,年龄在[)65,75的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.26.某校高一()1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(1)求分数在[)50,60的频数及全班人数;(2)求分数在[)80,90之间的频数,并计算频率分布直方图中[)80,90间矩形的高; (3)若要从分数在[)80,100之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[)90,100之间的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值.【详解】解:D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下,对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.3.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c,由sin 4B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC V中,sin 4B =,4ABC S =△1sin 24ABC S ac B ==V ,联立521sin 24sin a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin 4B =,所以3cos 4B ==所以在ABC V 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去) 故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.4.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C. 5.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,2OC OA ∴<>=u u u r u u u rOC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()2mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r=1OA =Q,OB =,0OA OB ⋅=u u u r u u ur2= 229m n ∴=又C Q 在AB 上0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.6.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.7.A解析:A 【解析】 【分析】将f(x)化简,求得ωφ,,再进行判断即可. 【详解】()πf x ωx φ,4⎛⎫=+- ⎪⎝⎭∵最小正周期为2ππ,π,ω∴=得ω2=,又f x f x ()()-=为偶函数,所以ππφk π42-=+, k Z ∈∵πφ2<,∴k=-1,()πππφ,f x 2x 444⎛⎫=-∴=--= ⎪⎝⎭,当2k π2x 2k ππ≤≤+,即πk πx k π2≤≤+,f(x)单调递增,结合选项k=0合题意, 故选A. 【点睛】本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.8.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可.【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<. 故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.9.B解析:B 【解析】 【分析】可采用构造函数形式,令()()()35lg 1,1x h x x g x x +=+=-,采用数形结合法即可求解 【详解】由题可知,1x >-,当1x =时,()80f x =-≠, 令358()(1)lg(1)350lg(1)311x f x x x x x x x +=-+--=⇒+==+--, 令()()()35lg 1,1x h x x g x x +=+=-,画出函数图像,如图:则两函数图像有两交点,故函数()(1)lg(1)35f x x x x =-+--的零点个数为2个 故选:B 【点睛】本题考查函数零点个数的求解,数形结合思想,属于中档题10.A解析:A 【解析】试题分析:根据直线平移的规律,由直线2x ﹣y+λ=0沿x 轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.解:把圆的方程化为标准式方程得(x+1)2+(y ﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x ﹣y+λ=0沿x 轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0, 因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5, 解得λ=﹣3或7 故选A考点:直线与圆的位置关系.11.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.12.B解析:B 【解析】 【分析】由已知三边,利用余弦定理可得1cos 2B =,结合b c <,B 为锐角,可得B ,利用三角形内角和定理即可求AC +的值. 【详解】在ABC ∆中,5a =Q ,7b =,8c =,∴由余弦定理可得:2222564491cos 22582a cb B ac +-+-===⨯⨯,b c <Q ,故B 为锐角,可得60B =︒,18060120A C ∴+=︒-︒=︒,故选B . 【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.二、填空题13.【解析】由已知是与的等比中项则则当且仅当时等号成立故答案为2【点睛】本题考查基本不等式的性质等比数列的性质其中熟练应用乘1法是解题的关键【解析】由已知0,0a b >>33a 与b 的等比中项,则233,1a b ab =⋅∴=则111111122ab a b ab a b a b a b ⎛⎫⎛⎫+=+⨯=+⨯=+≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立 故答案为2【点睛】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.14.16【解析】【分析】由正余弦定理可得由平面向量的数量积公式有:得解【详解】由余弦定理可得:所以由正弦定理得:所以所以即故答案为16【点睛】本题考查了余弦定理正弦定理及向量的数量积属简单题解析:16 【解析】 【分析】由正余弦定理可得cos A ∠,由平面向量的数量积公式有:25cos 2221016AB AC AB AC A u u u r u u u r u u u r u u u r ⋅=∠==,得解.【详解】由余弦定理可得:2222cos13540AC AB BC AB BC =+-⨯=o , 所以210AC = 由正弦定理得:sin sin135BC ACA =∠o, 所以5sin A ∠= 所以25cos A ∠=, 即25cos 2221016AB AC AB AC A u u u r u u u ru u u r u u u r⋅=∠==, 故答案为16 【点睛】本题考查了余弦定理、正弦定理及向量的数量积,属简单题15.【解析】试题分析:设与直线垂直的直线方程:圆化为圆心坐标因为直线平分圆圆心在直线上所以解得故所求直线方程为考点:1直线与圆的位置关系;2直线的一般式方程与直线的垂直关系【思路点睛】本题是基础题考查直 解析:2y x =试题分析:设与直线20x y +=垂直的直线方程:20x y b -+=,圆22240x y x y +--=化为()()22125x y -+-=,圆心坐标()12,.因为直线平分圆,圆心在直线20x y b -+=上,所以21120b ⨯-⨯+=,解得0b =,故所求直线方程为2y x =.考点:1.直线与圆的位置关系;2.直线的一般式方程与直线的垂直关系.【思路点睛】本题是基础题,考查直线与圆的位置关系,直线与直线垂直的方程的设法,据此设出与已知直线垂直的直线方程,利用直线平分圆的方程,求出结果即可.16.【解析】分析:利用题设中的等式把的表达式转化成展开后利用基本不等式求得y 的最小值详解:因为所以所以(当且仅当时等号成立)则的最小值是总上所述答案为点睛:该题考查的是有关两个正数的整式形式和为定值的情解析:92【解析】 分析:利用题设中的等式,把y 的表达式转化成14()()2a b a b++,展开后,利用基本不等式求得y 的最小值. 详解:因为2a b +=,所以12a b+=,所以14145259()()222222a b b a y a b a b a b +=+=+=++≥+=(当且仅当2b a =时等号成立),则14y a b =+的最小值是92,总上所述,答案为92. 点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.17.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6 【解析】 【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出.数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=, 则2122221333n n T -=++++L 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6. 【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.18.20【解析】【分析】根据题意可知过(35)的最长弦为直径最短弦为过(35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x ﹣解析:【解析】 【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可. 【详解】解:圆的标准方程为(x ﹣3)2+(y ﹣4)2=52, 由题意得最长的弦|AC |=2×5=10,根据勾股定理得最短的弦|BD |==,且AC ⊥BD , 四边形ABCD 的面积S =|12AC |•|BD |12=⨯10×=. 故答案为. 【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.19.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.20.【解析】【分析】由函数的解析式得到关于x 的不等式求解不等式即可确定函数的定义域【详解】函数有意义则:即求解三角不等式可得:则函数的定义域为【点睛】求函数的定义域其实质就是以函数解析式有意义为准则列出解析:()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【解析】 【分析】由函数的解析式得到关于x 的不等式,求解不等式即可确定函数的定义域. 【详解】函数有意义,则:2cos 10x +≥,即1cos 2x ≥-, 求解三角不等式可得:()222233k x k k Z ππππ-≤≤+∈, 则函数的定义域为()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.三、解答题21.(1) (2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于 的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域.试题解析: 解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中因为函数开口向上,且对称轴为函数在上单调递增的最大值为,最小值为函数的值域为. 22.(1)12a =,24a = (2)2nn a =,2n b n = (3)()2124n n T n +=-+【解析】 【分析】(1)根据题意得到22n n a S =+,分别令1n =,2n =,得到1a ,2a ;(2)当2n ≥时,1n n n a S S -=-,再验证1n =时,得到n a 的通项,根据点()1,n n P b b +在直线2y x =+上,得12n n b b +=+,得到n b 为等差数列,从而得到其通项;(3)根据n n n c a b =⋅,得到n c 的通项,然后利用错位相减法,得到前n 项和n T .【详解】解:(1)由22n n a S =+当1n =时,得1122a S =+,即1122a a =+,解得12a =; 当2n =时,得2222a S =+,即21222a a a =++,解得24a =. (2)由22n n a S =+…① 得1122n n a S --=+…②;(2n ≥) 将两式相减得1122n n n n a a S S ---=-, 即122n n n a a a --=, 所以()122n n a a n -=≥, 因为120a =≠,所以10n a -≠,所以()122nn a n a -=≥,所以数列{}n a 是首项为2,公比为2的等比数列,所以1112222n n nn a a --==⨯=.数列{}n b 中,12b =,点()1,n n P b b +在直线2y x =+上, 得12n n b b +=+,所以数列{}n b 是首项为2,公差为2的等差数列, 所以()2212n b n n =+-=.(3)12n n n n c a b n +==⋅,所以()2341122232122nn n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅()345122122232122n n n T n n ++=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅上式减下式得23412122222n n n T n ++-=⨯+++⋅⋅⋅+-⋅()22212212n n n +-=-⋅-22242n n n ++=--⋅所以()2124n n T n +=-+.【点睛】本题考查由n a 和n S 的关系求数列通项,等差数列基本量计算,错位相减法求和,属于中档题.23.(1)21n a n =+;(2)见解析 【解析】 【分析】(1)设公差为d ,由28S =,38522a a a +=+可得1112829282a d a d a d +=⎧⎨+=++⎩,,解得13a =,2d =,从而可得结果;(2) 由(1),21n a n =+,则有()232122n n S n n n =++=+,则()11111222nS n n n n ⎛⎫==- ⎪++⎝⎭,利用裂项相消法求解即可. 【详解】(1)设公差为d ,由题1112829282a d a d a d +=⎧⎨+=++⎩,,解得13a =,2d =.所以21n a n =+.(2) 由(1),21n a n =+,则有()232122n nS n n n =++=+.则()11111222n S n n n n ⎛⎫==- ⎪++⎝⎭. 所以n T 11111111111232435112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 111112212n n ⎛⎫=+-- ⎪++⎝⎭ 34<. 【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.24.(1)证明见解析(2)圆C 的方程为(x -2)2+(y -1)2=5 【解析】 【分析】(1)先求出圆C 的方程(x -t )2+22)y t-(=t 2+24t,再求出|OA|,|0B|的长,即得△OAB 的面积为定值;(2)根据212t =t 得到t =2或t =-2,再对t 分类讨论得到圆C 的方程. 【详解】(1)证明:因为圆C 过原点O ,所以OC 2=t 2+24t . 设圆C 的方程是(x -t )2+22)y t-(=t 2+24t , 令x =0,得y 1=0,y 2=4t; 令y =0,得x 1=0,x 2=2t , 所以S △OAB =12OA ·OB =12×|2t |×|4t|=4, 即△OAB 的面积为定值.(2)因为OM =ON ,CM =CN ,所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12.所以212t =t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),OC此时,圆心C 到直线y =-2x +4的距离dC 与直线y =-2x +4相交于两点.符合题意,此时,圆的方程为(x -2)2+(y -1)2=5.当t =-2时,圆心C 的坐标为(-2,-1),OC C 到直线y =-2x +4的距离d>.圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去.所以圆C 的方程为(x -2)2+(y -1)2=5. 【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系的求法,意在考查学生对这些知识的理解掌握水平. 25.(1)60,5607;(2)45.【解析】 【分析】(1)直接利用频率分布直方图求得平均数和中位数即可;(2)利用分层抽样可得6人中年龄在[]35,45内有2人,设为a 、b ,在[]65,86内有4人,设为1,2,3,4,写出基本事件,利用古典概型即可. 【详解】(1)这100位留言者年龄的样本平均数,300.05400.1500.15600.35700.2800.1560⨯+⨯+⨯+⨯+⨯+⨯=,年龄在[)25,55中的频率为:0.050.100.150.30++=, 年龄在[)25,65中的频率为:0.050.100.150.350.65+++=, 中位数在区间[)55,65中, 中位数为0.500.3055510600.357-+⨯=.(2)根据分层抽样原理,可知这6人中年龄在[]35,45内有2人,设为a 、b , 在[]65,86内有4人,设为1、2、3、4.设事件A 为“这3位发言者所得纪念品价值超过2300元”.从这6人中选3人的所有基本事件有:1ab 、2ab 、3ab 、4ab 、12a 、13a 、14a 、23a 、24a 、34a 、12b 、13b 、14b 、23b 、24b 、34b 、123、124、134、234,共20个.其中事件A 的对立事件即3个人都是年龄[]65,75内,包含的有123、124、134、234,共4个. (写出事件A 的基本事件个数也可以) 所以()441205P A =-=., 【点睛】本题考查平均数、中位数,古典概型,在解题过程中要求学生算数要准确,频率分布直方图不要混淆各组数据的值,属于基础题. 26.(1)2,25;(2)0.012;(3)0.7. 【解析】 【分析】(1)先由频率分布直方图求出[)50,60的频率,结合茎叶图中得分在[)50,60的人数即可求得本次考试的总人数;(2)根据茎叶图的数据,利用(1)中的总人数减去[)50,80外的人数,即可得到[)50,80内的人数,从而可计算频率分布直方图中[)80,90间矩形的高;(3)用列举法列举出所有的基本事件,找出符合题意得基本事件个数,利用古典概型概率计算公式即可求出结果. 【详解】(1)分数在[)50,60的频率为0.008100.08⨯=,由茎叶图知:分数在[)50,60之间的频数为2,∴全班人数为2250.08=. (2)分数在[)80,90之间的频数为25223-=;频率分布直方图中[)80,90间的矩形的高为3100.01225÷=. (3)将[)80,90之间的3个分数编号为1a ,2a ,3a ,[)90,100之间的2个分数编号为1b ,2b ,在[)80,100之间的试卷中任取两份的基本事件为:()12a ,a ,()13a ,a ,()11a ,b ,()12a ,b ,()23a ,a ,()21a ,b ,()22a ,b ,()31a ,b ,()32a ,b ,()12b ,b 共10个,其中,至少有一个在[)90,100之间的基本事件有7个,故至少有一份分数在[)90,100之间的概率是70.710=. 【点睛】本题考查了茎叶图和频率分布直方图的性质,以及古典概型概率计算公式的应用,此题是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.。
新高中必修二数学下期末第一次模拟试卷(及答案)一、选择题1.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或42.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}3.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8B .6C .4D .24.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53B .103C .56D .1166.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .422+C .442+D .642+ 7.若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件8.在ABC 中,已知,2,60a x b B ===,如果ABC 有两组解,则x 的取值范围是( )A .4323⎛⎫ ⎪ ⎪⎝⎭,B .4323⎡⎤⎢⎥⎣⎦,C .4323⎡⎫⎪⎢⎪⎣⎭, D .432,3⎛⎤⎥ ⎝⎦9.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-10.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4511.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上12.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .二、填空题13.已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为__________.14.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________15.已知a 0>,b 0>,且111a b +=,则b3a 2b a++的最小值等于______. 16.已知2a b ==,()()22a b a b +⋅-=-,则a 与b 的夹角为 .17.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______18.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____. 19.若a 10=12,a m =22,则m =______. 20.已知()()2,3,4,3A B -,点P 在直线AB 上,且32AP PB =,则点P 的坐标为________三、解答题21.在中角所对的边分别是,,,.求的值; 求的面积.22.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.23.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;24.已知函数()f x =πsin (0,0)6A x A ωω⎛⎫+>> ⎪⎝⎭的部分图象如图所示.(1)求,A ω的值; (2)求()f x 的单调增区间;(3)求()f x 在区间ππ,64⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 25.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式,并写出()f x 的最小正周期;(2)令()1π212g x f x ⎛⎫=-⎪⎝⎭,若在[]0,x π∈内,方程()()212320a g x ag x ⎡⎤-+-=⎣⎦有且仅有两解,求a 的取值范围.26.如图,平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =,AD b =,试以a ,b 为基底表示DE 、BF 、CG .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .2.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.3.C解析:C 【解析】 【分析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++ ⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x ⎛⎫++=+++⎪⎝⎭.若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.4.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减;当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】 【分析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,可得345127()a a a a a ++=+,5100S =,求出3a ,根据等差数列的通项公式,得到关于d 关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A. 【点睛】本题以数学文化为背景,考查等差数列的前n 项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6.D解析:D 【解析】 【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积. 【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+ 故选D .本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.7.B解析:B 【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥”是“//l α的必要不充分条件,故选B . 考点:空间直线和平面、直线和直线的位置关系. 8.A解析:A 【解析】 【分析】已知,,a b B ,若ABC 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得23x <<.故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 9.C 解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a af x x f x x x=++'=-在(1,+∞)恒成立,故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.10.C解析:C分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【解析】【分析】由题意首先求解底面积然后结合四棱锥的高即可求得四棱锥的体积【详解】由题意可得底面四边形为边长为的正方形其面积顶点到底面四边形的距离为由四棱锥的体积公式可得:【点睛】本题主要考查四棱锥 解析:112【解析】 【分析】由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积. 【详解】由题意可得,底面四边形EFGH 为边长为2的正方形,其面积2122EFGH S ⎛⎫== ⎪ ⎪⎝⎭, 顶点M 到底面四边形EFGH 的距离为12d =, 由四棱锥的体积公式可得:111132212M EFGH V -=⨯⨯=. 【点睛】本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.14.【解析】【分析】先还原几何体再根据柱体体积公式求解【详解】空间几何体为一个棱柱如图底面为边长为的直角三角形高为的棱柱所以体积为【点睛】本题考查三视图以及柱体体积公式考查基本分析求解能力属基础题 解析:32【解析】 【分析】先还原几何体,再根据柱体体积公式求解 【详解】空间几何体为一个棱柱,如图,底面为边长为1,3的直角三角形,高为3的棱柱,所以体积为1313322⨯⨯⨯=【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题15.11【解析】分析:构造基本不等式模型化简整理应用基本不等式即可得出答案详解:当且仅当时取等号的最小值等于11故答案为11点睛:本题考查基本不等式的性质与应用同时考查了整体思想与转化思想的运用解析:11 【解析】分析:构造基本不等式模型1132()(32)b ba b a b a a b a++=+++,化简整理,应用基本不等式,即可得出答案. 详解:111a b+=, ∴1132()(32)53()b b b a a b a b a a b a a b++=+++=++ 0a >,0b >,∴0ba >,0ab>, ∴2b aa b+≥,当且仅当2a b ==时取等号. 325611ba b a++≥+=.∴32ba b a++的最小值等于11. 故答案为11.点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用.16.【解析】【分析】【详解】根据已知条件去括号得: 解析:60︒【解析】 【分析】 【详解】根据已知条件(2)()2a b a b +⋅-=-,去括号得:222422cos 242a a b b θ+⋅-=+⨯⨯-⨯=-,1cos ,602θθ︒⇒==17.【解析】【分析】【详解】解:从1234这四个数中一次随机取两个数有(12)(13)(14)(23)(24)(34)共6种情况;其中其中一个数是另一个的两倍的有两种即(12)(24);则其概率为;故答解析:13【解析】 【分析】 【详解】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况; 其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4); 则其概率为2163=; 故答案为13. 解析:简单考察古典概型的概率计算,容易题.18.2x ﹣4y+3=0【解析】【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大此时直线l 与直线垂直即可算出的斜率求得直线l 的方程【详解】由题得当∠ACB 最小时直线l 与直线垂直此时又故又直线l 过点解析:2x ﹣4y +3=0 【解析】 【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大,此时直线l 与直线CM 垂直,即可算出CM 的斜率求得直线l 的方程. 【详解】由题得,当∠ACB 最小时,直线l 与直线CM 垂直,此时102112CM k -==-- ,又1CM l k k ⋅=-,故12l k =,又直线l 过点1(,1)2M ,所以11:1()22l y x -=-,即2430x y -+= . 故答案为:2430x y -+=【点睛】本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.19.5【解析】解析:5 【解析】10521,522a a m ==== 20.【解析】【分析】设点得出向量代入坐标运算即得的坐标得到关于的方程从而可得结果【详解】设点因为点在直线且或即或解得或;即点的坐标是【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题意解析:(8,-15), 163,55⎛⎫- ⎪⎝⎭ 【解析】 【分析】设点(),P x y ,得出向量33,22AP BP AP BP ==-,代入坐标运算即得P 的坐标,得到关于,x y 的方程,从而可得结果.【详解】 设点(),P x y ,因为点P 在直线,且3||||2AP PB =, 33,22AP BP AP BP ∴==-,3(2,3)(4,3)2x y x y ∴--=-+或, 3(2,3)(4,3)2x y x y ∴--=--+,即243122639x x y y -=-⎧⎨-=+⎩或243122639x x y y -=-+⎧⎨-=--⎩, 解得815x y =⎧⎨=-⎩或16535x y ⎧=⎪⎪⎨⎪=-⎪⎩; 即点P 的坐标是(8,-15),163,55⎛⎫- ⎪⎝⎭. 【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.三、解答题21.(1);(2)【解析】 【分析】)利用同角三角函数基本关系式可求,由正弦定理可得的值;由,可得为锐角,由可得,利用两角和的正弦函数公式可求的值,利用三角形面积公式即可得解. 【详解】,,.,由正弦定理可得:,C 为锐角,由可得:,,【点睛】本题主要考查了同角三角函数基本关系式,正弦定理的应用,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径. 22.(1) 3C π=.(2) .【解析】 【分析】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.【详解】(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A Bπ===,即,a A b B ==∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+- ⎪⎥⎝⎭⎦2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为. 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 23.(1)见解析;(2)见解析; 【解析】 【分析】(1)要证BD⊥平面PAC ,只需在平面PAC 上找到两条直线跟BD 垂直即证,显然AC BD ⊥,从PA ⊥平面ABCD 中可证PA BD ⊥,即证. (2)要证明平面PAB⊥平面PAE,可证 A E ⊥平面PAB 即可. 【详解】(1)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥; 因为底面ABCD 是菱形,所以AC BD ⊥;因为PA AC A ⋂=,,PA AC ⊂平面PAC , 所以BD ⊥平面PAC .(2)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以AE PA ⊥; 因为PA AB A ⋂= 所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE . 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.24.(1)1,?2A ω==;(2)单调递增区间为πππ,π,36k k k ⎡⎤-++∈⎢⎥⎣⎦Z (3)π 6x =时,()f x 取得最大值1;π6x =-时,f (x )取得最小值12-. 【解析】试题分析:(1)利用图象的最高点和最低点的纵坐标确定振幅,由相邻对称轴间的距离确定函数的周期和ω值;(2)利用正弦函数的单调性和整体思想进行求解; (3)利用三角函数的单调性和最值进行求解. 试题解析: (1)由图象知1,A =由图象得函数的最小正周期为2ππ236⎛⎫- ⎪⎝⎭=π, 则由2πω=π得2ω=.(2)令πππ2π22π,?262k x k k Z -+≤+≤+∈ 2ππ2π22π33k x k ∴-+≤≤+. k ∈Z ππππ36k x k ∴-+≤≤+. k ∈Z 所以f (x )的单调递增区间为πππ,π,.36k k k ⎡⎤-++∈⎢⎥⎣⎦Z(3)ππππ,2,6432x x -≤≤∴-≤≤ ππ2π2663x ∴-≤+≤. 1πsin 2126x ⎛⎫∴-≤+≤ ⎪⎝⎭. 当ππ2,62x +=即π6x =时,()f x 取得最大值1; 当ππ2,66x +=-即π6x =-时,f (x )取得最小值12-. 25.(1) ()sin 26f x x π⎛⎫+ ⎝=⎪⎭,最小正周期T π=;(2) 161217a a a ⎧⎫<≤=⎨⎬⎩⎭或 【解析】【试题分析】(1)借助题设提供的图形信息与数据信息可求出周期T π=,再借助T πω=,求出2ω=,再借助点,16π⎛⎫⎪⎝⎭在()f x 图象上求出 6πϕ=;(2)先将原方程可化为()213sin 2sin 2a x x +-=,分离参数2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,再换元sin t x =,将其转化为函数()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =图问题来处理:解:(1)由图象可知:22362T πππ=-=,∴T π=,又T πω=,∴2ω=. 又∵点,16π⎛⎫⎪⎝⎭在()f x 图象上,∴sin 216πϕ⎛⎫⨯+= ⎪⎝⎭,∴232k ππϕπ+=+,∴26k πϕπ=+,k Z ∈,又∵2πϕ<,∴6πϕ=.∴()sin 26f x x π⎛⎫=+ ⎪⎝⎭,最小正周期T π=.(2)∵()1sin 212g x f x x π⎛⎫=-=⎪⎝⎭, ∴原方程可化为()213sin 2sin 2a x x +-=,则0a ≠. ∵[]0,x π∈,[]sin 0,1x ∈,∴213sin 2sin 0x x +->,∴2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,令sin t x =,则[]0,1t ∈,作出()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =图象,当21a ≤2<或2178a =时,两图象在[]0,1内有且仅有一解, 即方程221732sin 84x a ⎛⎫=-- ⎪⎝⎭在[]0,π内有且仅有两解, 此时a 的取值范围为161217a a a ⎧⎫<≤=⎨⎬⎩⎭或. 点睛:求出函数的解析式后,求解第二问时先将原方程可化为()213sin 2sin 2a x x +-=,则0a ≠,然后借助[]0,x π∈,[]sin 0,1x ∈,得到213sin 2sin 0x x +->,进而分离参数2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,再换元sin t x =,则[]0,1t ∈,从而将问题化为函数()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =图象的交点的个数问题,然后结合图像求出参数的取值范围。
【典型题】高中必修二数学下期末第一次模拟试题(带答案)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .44.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .05.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?6.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .3222±7.若||1OA =u u u v ,||3OB =u u u v ,0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOBu u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( ) A .13B .3C .3 D .38.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23B .24C .25D .269.若函数()sin cos f x x x ωω=-(0)>ω在,22ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的取值不可能为( ) A .14B .15C .12D .3410.已知二项式2(*)nx n N x ⎛-∈ ⎪⎝⎭的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-11.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上12.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线二、填空题13.在ABC △ 中,若223a b bc -= ,sin 23sin C B = ,则A 等于__________. 14.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b -…,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.15.若21cos 34πα⎛⎫-=⎪⎝⎭,则sin 26πα⎛⎫+= ⎪⎝⎭________. 16.()()()()()1tan11tan 21tan31tan 441tan 45︒︒︒︒︒+++++L =__________.17.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高 为18.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.19.函数()sin f x x ω=(0>ω)的图像与其对称轴在y 轴右侧的交点从左到右依次记为1A ,2A ,3A ,⋅⋅⋅,n A ,⋅⋅⋅,在点列{}n A 中存在三个不同的点k A 、l A 、p A ,使得△k l p A A A 是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为n ω,则6ω=________.20.如图,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .下列命题正确的为_______________.①存在点E ,使得11A C //平面1BED F ; ②对于任意的点E ,平面11AC D ⊥平面1BED F ; ③存在点E ,使得1B D ⊥平面1BED F ;④对于任意的点E ,四棱锥11B BED F -的体积均不变.三、解答题21.已知函数()sin()(0,0)3f x A x A πωω=+>>的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[0,]π的单调增区间;(3)若函数()()1g x f x =+在区间(,)a b 上恰有10个零点,求b a -的最大值. 22.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表: 年份20102011201220132014时间代号t12345储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程^^^t y b a =+(Ⅱ)用所求回归方程预测该地区2015年(6t =)的人民币储蓄存款.附:回归方程^^^t y b a =+中1122211()(),{().n niii ii i nni ii i x x y y x y nxyb x x xnx a y bx ====---==--=-∑∑∑∑23.已知数列{}n a 满足:()*22,21,n n a S n a n N ==+∈(1)设数列{}n b 满足()11nn b n a =•+,求{}n b 的前n 项和n T :(2)证明数列{}n a 是等差数列,并求其通项公式;24.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.25.ABC ∆是边长为3的等边三角形,2BE BA λ=u u u r u u u r ,1(1)2BF BC λλ=<<u u ur u u u r ,过点F 作DF BC ⊥交AC 边于点D ,交BA 的延长线于点E .(1)当23λ=时,设,BA a BC b ==u u u r r u u u r r ,用向量,a b r r 表示EF u u u r ; (2)当λ为何值时,AE FC ⋅u u u r u u u r取得最大值,并求出最大值.26.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表日用水量 [)0,0.1 [)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6 [)0.6,0.7频数132 49 26 5使用了节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310 16 5(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:0.35m的概率;(2)估计该家庭使用节水龙头后,日用水量小于3(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C3.D解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点,22⎛ ⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.5.A解析:A试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.6.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 7.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,OC OA ∴<>=u u u r u u u r2OC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r2=1OA =u u u r Q ,OB =u u u r ,0OA OB ⋅=u u u r u u u r= 229m n ∴=又C Q 在AB 上0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=,则()32326632131325a b a b a b a b ba ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.9.D解析:D 【解析】∵()sin cos (0)4f x x x x πωωωω⎛⎫=-=-> ⎪⎝⎭∴令22,242k x k k Z ππππωπ-+≤-≤+∈,即232,44k k x k Z ππππωωωω-+≤≤+∈ ∵()sin cos (0)f x x x ωωω=->在,22ππ⎛⎫-⎪⎝⎭上单调递增 ∴42ππω-≤-且342ππω≥ ∴102ω<≤故选D. 10.C 解析:C 【解析】 【分析】由二项展开式的通项公式为()12rn rr r nT C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r =,问题得解. 【详解】二项展开式的第1r +项的通项公式为()12rn rr r nT Cx -+⎛= ⎝由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =. 所以()()366216221rr n rr rr r r nT C x C x---+⎛==- ⎝ 令3632r -=,解得:2r =, 所以3x 的系数为()2262621240C --=故选C 【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.11.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.12.B解析:B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,35,,722MF BF BM ==∴=.BM EN ∴≠,故选B . 【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.二、填空题13.【解析】由得所以即则又所以故答案为 解析:6π【解析】由sinC = 得c =, 所以222a b -==,即227a b =, 则2222222b c a cosA bc +-===,又0A π∈(,), 所以6A π=. 故答案为6π. 14.【解析】【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有 解析:725【解析】 【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -…所有可能情况,代入公式得到结果。
【典型题】高中必修二数学下期末第一次模拟试卷(及答案)一、选择题1.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( )A .0d >,170S >B .0d <,170S <C .0d >,180S <D .0d >,180S >2.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A .若//m α,//n α,则//m n B .若//m α,//m β,则//αβ C .若//m n ,n α⊥,则m α⊥ D .若//m α,αβ⊥,则m β⊥3.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥4.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 5.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A .12尺 B .815尺 C .1629尺 D .1631尺 7.已知{}n a 的前n 项和241n S n n =-+,则1210a a a +++=( )A .68B .67C .61D .608.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .58-B .58C .78-D .7810.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或1111.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④12.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知5a =,7b =,8c =,则A C +=A .90︒B .120︒C .135︒D .150︒二、填空题13.在平面直角坐标系xOy 中, 已知圆C 1 : x 2 + y 2=8与圆C 2 : x 2+y 2+2x +y -a =0相交于A ,B 两点.若圆C 1上存在点P ,使得△ABP 为等腰直角三角形,则实数a 的值组成的集合为______.14.设a >0,b >0,若3是3a 与3b 的等比中项,则11a b+的最小值是__. 15.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.16.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.17.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆心,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .18.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.19.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____.20.已知()()2,3,4,3A B -,点P 在直线AB 上,且32AP PB =,则点P 的坐标为________三、解答题21.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是[)70,80,[)80,90,[)90,100,[)90,100,[)100,110,[)110,120.()1求图中m 的值;()2根据频率分布直方图,估计这200名学生的平均分;()3若这200名学生的数学成绩中,某些分数段的人数x 与英语成绩相应分数段的人数y 之比如表所示,求英语成绩在[)90,120的人数.分数段[)90,100[)100,110[)110,120:x y6:51:21:122.已知23()sin cos 3cos f x x x x =+- (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;24.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455--,).(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 25.已知平面向量()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥. (1)求b 和c ;(2)若2m a b =-,n a c =+,求向量m 与向量n 的夹角的大小. 26.已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】利用等差数列的通项公式求和公式可判断出数列{}n a 的单调性,并结合等差数列的求和公式可得出结论. 【详解】9810S S S <<,90a ∴<,9100a a +>,100a ∴>,0d >. 179017S a =<∴,()1891090S a a =+>.故选:D. 【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.2.C解析:C 【解析】 【分析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断. 【详解】对于A 选项,若//m α,//n α,则m 与n 平行、相交、异面都可以,位置关系不确定; 对于B 选项,若l αβ=,且//m l ,m α⊄,m β⊄,根据直线与平面平行的判定定理知,//m α,//m β,但α与β不平行;对于C 选项,若//m n ,n α⊥,在平面α内可找到两条相交直线a 、b 使得n a ⊥,n b ⊥,于是可得出m a ⊥,m b ⊥,根据直线与平面垂直的判定定理可得m α⊥; 对于D 选项,若αβ⊥,在平面α内可找到一条直线a 与两平面的交线垂直,根据平面与平面垂直的性质定理得知a β⊥,只有当//m a 时,m 才与平面β垂直. 故选C . 【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.3.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.4.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭, 函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =.当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.6.C解析:C 【解析】试题分析:将此问题转化为等差数列的问题,首项为,,求公差,,解得:尺,故选C.考点:等差数列7.B解析:B 【解析】 【分析】首先运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出通项n a ,判断n a 的正负情况,再运用1022S S -即可得到答案. 【详解】当1n =时,112S a ==-;当2n ≥时,()()()22141141125n n n a S S n n n n n -⎡⎤=-=-+----+=-⎣⎦,故2,125,2n n a n n -=⎧=⎨-≥⎩;所以,当2n ≤时,0n a <,当2n >时,0n a >. 因此,()()()12101234101022612367a a a a a a a a S S +++=-+++++=-=-⨯-=.故选:B . 【点睛】本题考查了由数列的前n 项和公式求数列的通项公式,属于中档题,解题时特别注意两点,第一,要分类讨论,分1n =和2n ≥两种情形,第二要掌握()12n n n a S S n -=-≥这一数列中的重要关系,否则无法解决此类问题,最后还要注意对结果的处理,分段形式还是一个结果的形式.8.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.C解析:C 【解析】 由题意可得:1sin sin cos 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则217cos 2cos 22cos 121366168πππααα⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 本题选择C 选项.10.A解析:A 【解析】试题分析:根据直线平移的规律,由直线2x ﹣y+λ=0沿x 轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.解:把圆的方程化为标准式方程得(x+1)2+(y ﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x ﹣y+λ=0沿x 轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0, 因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5, 解得λ=﹣3或7 故选A考点:直线与圆的位置关系.11.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.12.B解析:B 【解析】 【分析】由已知三边,利用余弦定理可得1cos 2B =,结合b c <,B 为锐角,可得B ,利用三角形内角和定理即可求AC +的值. 【详解】 在ABC ∆中,5a =,7b =,8c =,∴由余弦定理可得:2222564491cos 22582a cb B ac +-+-===⨯⨯,b c <,故B 为锐角,可得60B =︒,18060120A C ∴+=︒-︒=︒,故选B . 【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.二、填空题13.【解析】【分析】先求得直线为:再分别讨论或和的情况根据几何性质求解即可【详解】由题则直线为:当或时设到的距离为因为等腰直角三角形所以即所以所以解得当时经过圆心则即故答案为:【点睛】本题考查圆与圆的位 解析:{}8,825,825-+【解析】 【分析】先求得直线AB 为:280x y a ++-=,再分别讨论90PAB ∠=︒或90PBA ∠=︒和90APB ∠=︒的情况,根据几何性质求解即可 【详解】由题,则直线AB 为:280x y a ++-=,当90PAB ∠=︒或90PBA ∠=︒时,设1C 到AB 的距离为d , 因为ABP △等腰直角三角形, 所以12d AB =,即2182d d =-,所以2d =, 所以228221a d -==+,解得825a =±,当90APB ∠=︒时,AB 经过圆心1C ,则80a -=,即8a =, 故答案为:{}8,825,825-+ 【点睛】本题考查圆与圆的位置关系的应用,考查点到直线距离公式的应用,考查分类讨论思想和数形结合思想14.【解析】由已知是与的等比中项则则当且仅当时等号成立故答案为2【点睛】本题考查基本不等式的性质等比数列的性质其中熟练应用乘1法是解题的关键 解析:【解析】由已知0,0a b >>, 3是3a 与b 的等比中项,则()233,1a b ab =⋅∴=则111111122ab a b ab a b a b a b ⎛⎫⎛⎫+=+⨯=+⨯=+≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立 故答案为2【点睛】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.15.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用解析:26米 【解析】 【分析】 【详解】如图建立直角坐标系,设抛物线方程为2x my =,将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =,故水面宽为26米,故答案为26米. 考点:抛物线的应用16.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 17.【解析】由题意可得所得到的几何体是由一个圆柱挖去两个半球而成;其中圆柱的底面半径为1母线长为2;体积为;两个半球的半径都为1则两个半球的体积为;则所求几何体的体积为考点:旋转体的组合体 解析:【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为 .考点:旋转体的组合体.18.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③ 【解析】 【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈ ⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫ ⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫=⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误. 【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确; 对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫⎪⎝⎭上单调递减,命题②错误;对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫= ⎪⎝⎭,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>, 由于该函数为偶函数,当0x π-<<时,()0f x >, 又()()()00f f f ππ=-==,所以,该函数在区间[],ππ-上有且只有三个零点.因此,正确命题的序号为①③. 故答案为:①③. 【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题.19.2x ﹣4y+3=0【解析】【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大此时直线l 与直线垂直即可算出的斜率求得直线l 的方程【详解】由题得当∠ACB 最小时直线l 与直线垂直此时又故又直线l 过点解析:2x ﹣4y +3=0 【解析】 【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大,此时直线l 与直线CM 垂直,即可算出CM 的斜率求得直线l 的方程. 【详解】由题得,当∠ACB 最小时,直线l 与直线CM 垂直,此时102112CM k -==-- ,又1CM l k k ⋅=-,故12l k =,又直线l 过点1(,1)2M ,所以11:1()22l y x -=-,即2430x y -+= . 故答案为:2430x y -+=【点睛】本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.20.【解析】【分析】设点得出向量代入坐标运算即得的坐标得到关于的方程从而可得结果【详解】设点因为点在直线且或即或解得或;即点的坐标是【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题意解析:(8,-15), 163,55⎛⎫- ⎪⎝⎭ 【解析】 【分析】设点(),P x y ,得出向量33,22AP BP AP BP ==-,代入坐标运算即得P 的坐标,得到关于,x y 的方程,从而可得结果.【详解】 设点(),P x y ,因为点P 在直线,且3||||2AP PB =, 33,22AP BP AP BP ∴==-, 3(2,3)(4,3)2x y x y ∴--=-+或, 3(2,3)(4,3)2x y x y ∴--=--+,即243122639x x y y -=-⎧⎨-=+⎩或243122639x x y y -=-+⎧⎨-=--⎩,解得815x y =⎧⎨=-⎩或16535x y ⎧=⎪⎪⎨⎪=-⎪⎩; 即点P 的坐标是(8,-15),163,55⎛⎫- ⎪⎝⎭.【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.三、解答题21.(1)0.005m =(2)平均数为93(3)140人 【解析】 【分析】(1)根据面积之和为1列等式解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数, (3)先计算出各分数段上的成绩,再根据比值计算出相应分数段上的英语成绩人数相加即可. 【详解】解:()1由()1020.020.030.041m ⨯+++=, 解得0.005m =.()2频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为0.05750.4850.3950.21050.0511593⨯+⨯+⨯+⨯+⨯=.()3由频率分布直方图可求出这200名学生的数学成绩在[)90,100,[)100,110,[)110,120的分别有60人,40人,10人,按照表中给的比例,则英语成绩在[)90,100,[)100,110,[)110,120的分别有50人,80人,10人,所以英语成绩在[)90,120的有140人. 【点睛】本题考查了频率分布直方图,属中档题. 22.(1)对称轴方程为()212k x k Z ππ=+∈(2)单调递增区间为[0,]12π和7[,]12ππ【解析】 【分析】(1)由二倍角公式和辅助角公式对函数进行整理,可得()sin(2)3f x x π=+,令2()32x k k Z πππ+=+∈即可求出对称轴.(2)由(1)知,令222()232k x k k Z πππππ-+++∈,即可求出函数的单调递增区间,令0k =和1可求得函数在[0,]π上的单调递增区间. 【详解】解:(1)已知2()sin cos f x x x x =+1sin 2cos 2)2x x =+ sin(2)3x π=+,令2()32x k k Z πππ+=+∈,解得:()212k x k Z ππ=+∈, 所以函数()f x 的对称轴方程为()212k x k Z ππ=+∈. (2)由(1)得:令:222()232k x k k Z πππππ-+++∈,整理得:5()1212k x k k Z ππππ-++∈,当0k =和1时, 函数在[0,]π上的单调递增区间为[0,]12π和7[,]12ππ. 【点睛】本题考查了二倍角公式,考查了辅助角公式,考查了三角函数的对称轴求解,考查了三角函数单调区间的求解.本题的关键是对函数解析式的化简.本题的易错点是在求单调区间时,解不等式求错.23.(1)见解析;(2)见解析; 【解析】 【分析】(1)要证BD⊥平面PAC ,只需在平面PAC 上找到两条直线跟BD 垂直即证,显然AC BD ⊥,从PA ⊥平面ABCD 中可证PA BD ⊥,即证. (2)要证明平面PAB⊥平面PAE,可证 A E ⊥平面PAB 即可. 【详解】(1)证明:因为PA ⊥平面ABCD ,所以PA BD ⊥; 因为底面ABCD 是菱形,所以AC BD ⊥; 因为PA AC A ⋂=,,PA AC ⊂平面PAC ,所以BD ⊥平面PAC .(2)证明:因为底面ABCD 是菱形且60ABC ∠=︒,所以ACD ∆为正三角形,所以AE CD ⊥,因为//AB CD ,所以AE AB ⊥;因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以AE PA ⊥; 因为PA AB A ⋂= 所以AE ⊥平面PAB ,AE ⊂平面PAE ,所以平面PAB ⊥平面PAE .【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力. 24.(Ⅰ)45;(Ⅱ)5665- 或1665. 【解析】 【分析】分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果. 【详解】详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-, 由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=. 点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 25.(1)()9,12b =,()4,3c =-;(2)34π. 【解析】 【分析】(1)利用共线向量的坐标表示和垂直向量的坐标表示并结合条件//a b ,a c ⊥,列方程求出x 、y 的值,可得出向量b 和c 的坐标;(2)求出m 、n 的坐标,利用向量数量积的坐标运算计算出向量m 与向量n 夹角的余弦值,由夹角的取值范围可求出这两个向量夹角的值. 【详解】(1)()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥,3493440x y =⨯⎧∴⎨⨯+=⎩, 解得123x y =⎧⎨=-⎩,因此,()9,12b =,()4,3c =-;(2)()()()223,49,123,4m a b =-=⨯-=--,()()()3,44,37,1n a c =+=+-=,则374125m n ⋅=-⨯-⨯=-,()()22345m ∴=-+-=,227152n =+=,设m 与n 的夹角为θ,2cos ,2552m n m n m n⋅∴===-⨯⋅,0θπ≤≤,则34πθ=. 因此,向量m 与向量n 的夹角为34π. 【点睛】本题考查平面向量的坐标运算,涉及共线向量、向量垂直以及利用坐标计算向量的夹角,解题的关键就是将问题转化为向量的坐标运算,考查计算能力,属于中等题.26.(1)2nn a =(*n N ∈);(2)()16232n n T n +=+-.【解析】 【分析】(1)根据等比数列通项的性质求出34,a a 的表达式,利用等差中项列方程求得公比,然后求得数列的通项公式.(2)利用错位相减求和法求得数列{}n n a b 的前n 项和n T 【详解】解:(1)设数列{}n a 的公比为,因为24a =,所以34a q =,244a q =.因为32a +是2a 和4a 的等差中项,所以()32422a a a +=+. 即()224244q q +=+,化简得220q q -=.因为公比0q ≠,所以2q .所以222422n n n n a a q--==⨯=(*n N ∈). (2)因为2nn a =,所以22log 121n n b a n =-=-.()212n n n a b n =-.则()()231123252232212n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-+-,①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-+-.②①-②得,()2312222222212n n n T n +-=+⨯+⨯+⋅⋅⋅+⨯--()()()11141222212623212n n n n n -++-=+⨯--=----,所以()16232n n T n +=+-.【点睛】本小题主要考查等比数列基本量的计算,等比数列通项公式的求解,考查等差中项的性质,考查错位相减求和法求数列的前n 项和,属于中档题.。
【典型题】高中必修二数学下期末第一次模拟试卷(带答案)(1)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.已知向量()cos ,sin a θθ=,()1,2b =,若a 与b 的夹角为6π,则a b +=( ) A .2B .7C .2D .13.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥4.某空间几何体的三视图如图所示,则该几何体的体积为( )A .73B .8π3- C .83D .7π3- 5.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +的最小值是() A .6-B .3-C .4-D .2-6.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π7.已知集合 ,则A .B .C .D .8.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.已知函数21(1)()2(1)ax x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-10.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞11.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=12.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.在ABC ∆中,若3B π=,3AC =2AB BC +的最大值为__________.14.已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.15.△ABC的内角A,B,C的对边分别为a,b,c,若cos A =4 5,cos C=513,a=1,则b=___.16.若x,y满足约束条件10,{30,30,x yx yx-+≥+-≥-≤则z=x−2y的最小值为__________.17.如图,在矩形中,为边的中点,1AB=,2BC=,分别以A、D为圆心,1为半径作圆弧EB、EC(在线段AD上).由两圆弧EB、EC及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .18.已知函数42,0()log,0x xf xx x⎧≤=⎨>⎩,若1[()]2f f a=-,则a的值是________. 19.若()1,x∈+∞,则131y xx=+-的最小值是_____.20.函数()sinf x xω=(0>ω)的图像与其对称轴在y轴右侧的交点从左到右依次记为1A,2A,3A,⋅⋅⋅,nA,⋅⋅⋅,在点列{}nA中存在三个不同的点kA、lA、pA,使得△k l pA A A是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为nω,则6ω=________.三、解答题21.某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.组号分组频数频率第1组[)160,16550.050第2组[)165,170①0.350第3组[)170,17530②第4组[)175,180200.200第5组[)180,185100.100(1)请先求出频率分布表中,①②位置的相应数据,再完成频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试; (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率. 22.已知不等式的解集为或.(1)求;(2)解关于的不等式23.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求角A 的大小;(2)若23,4a b c =+=,求ABC ∆的面积.25.如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ; (Ⅱ)求证:BD ⊥平面P AB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由.26.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.B解析:B 【解析】【分析】先计算a 与b 的模,再根据向量数量积的性质22()a b a b +=+即可计算求值. 【详解】因为()cos ,sin a θθ=,()1,2b =, 所以||1a =,||3b =.又222222()2||2||||cos||6a b a b a a b b a a b b +=+=+⋅+=+π+1372=++=, 所以7a b +=,故选B. 【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.3.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.4.B解析:B 【解析】 【分析】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积. 【详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅⋅=.故选B. 【点睛】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.5.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--, 所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+取得最小值为2(3)6⨯-=-, 故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.7.D解析:D 【解析】 试题分析:由得,所以,因为,所以,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a af x x f x x x=++'=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.10.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可. 【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<.故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.11.C解析:C 【解析】圆22220x y x y ++-=的圆心坐标为()1,1-,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --==,设所求圆的圆心为(),a b ,且圆心在直线40x y --==0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=.故选C .【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,考查了计算能力,属于中档题.12.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.二、填空题13.【解析】【分析】【详解】设最大值为考点:解三角形与三角函数化简点评:借助于正弦定理三角形内角和将边长用一内角表示转化为三角函数求最值只需将三角函数化简为的形式解析:【解析】 【分析】 【详解】设22sin sin 3AB BC A θθπθ====⎛⎫- ⎪⎝⎭22sin,3AB πθ⎛⎫∴=- ⎪⎝⎭2sin BC θ=()222sin 4sin 3AB BC πθθθϕ⎛⎫∴+=-+=+ ⎪⎝⎭,最大值为考点:解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为()sin cos a b θθθϕ+=+的形式14.【解析】【分析】先利用周期公式求出再利用平移法则得到新的函数表达式依据函数为奇函数求出的表达式即可求出的最小值【详解】由得所以向左平移个单位后得到因为其图像关于原点对称所以函数为奇函数有则故的最小值 解析:3π【解析】 【分析】先利用周期公式求出ω,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出m 的表达式,即可求出m 的最小值.【详解】 由2T ππω==得2ω=,所以sin 23y x π⎛⎫=+ ⎪⎝⎭,向左平移()0m m >个单位后,得到sin[2()]sin(22)33y x m x m ππ=++=++,因为其图像关于原点对称,所以函数为奇函数,有2,3m k k Z ππ+=∈,则62k m ππ=-+,故m 的最小值为3π.【点睛】本题主要考查三角函数的性质以及图像变换,以及sin()y A x ωϕ=+ 型的函数奇偶性判断条件.一般地sin()y A x ωϕ=+为奇函数,则k ϕπ=;为偶函数,则2k πϕπ=+;cos()y A x ωϕ=+为奇函数,则2k πϕπ=+;为偶函数,则k ϕπ=.15.【解析】试题分析:因为且为三角形的内角所以又因为所以【考点】正弦定理两角和差的三角函数公式【名师点睛】在解有关三角形的题目时要有意识地考虑用哪个定理更合适或是两个定理都要用要抓住能够利用某个定理的信 解析:2113【解析】 试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[()]sin()sin cos cos sin 65B AC A C A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.【解析】【分析】【详解】试题分析:由得记为点;由得记为点;由得记为点分别将ABC 的坐标代入得所以的最小值为【考点】简单的线性规划【名师点睛】利用线性规划求最值一般用图解法求解其步骤是:(1)在平面直 解析:5-【解析】【分析】【详解】试题分析:由10{30x y x y -+=+-=得12x y =⎧⎨=⎩,记为点()1,2A ;由10{30x y x -+=-=得34x y =⎧⎨=⎩,记为点()3,4Β;由30{30x x y -=+-=得30x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y =-的最小值为5-.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【解析】由题意可得所得到的几何体是由一个圆柱挖去两个半球而成;其中圆柱的底面半径为1母线长为2;体积为;两个半球的半径都为1则两个半球的体积为;则所求几何体的体积为考点:旋转体的组合体解析:【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.18.-1或2【解析】【分析】根据函数值的正负由可得求出再对分类讨论代入解析式即可求解【详解】当时当当所以或故答案为:或【点睛】本题考查求复合函数值认真审题理解分段函数的解析式考查分类讨论思想属于中档题解析:-1或2【解析】【分析】 根据函数值的正负,由1[()]02f f a =-<,可得()0f a >,求出()f a ,再对a 分类讨论,代入解析式,即可求解.【详解】当0x ≤时,()0,f x >1[()]02f f a =-<, 411[()]log (()),()22f f a f a f a ∴==-∴=, 当410,()log ,22a f a a a >==∴=, 当10,()2,12a a f a a ≤==∴=-, 所以1a =-或2a =.故答案为:1-或2.【点睛】本题考查求复合函数值,认真审题理解分段函数的解析式,考查分类讨论思想,属于中档题. 19.【解析】【分析】由已知可知然后利用基本不等式即可求解【详解】解:(当且仅当取等号)故答案为【点睛】本题主要考查了利用基本不等式求最值解题的关键是配凑积为定值属于基础试题解析:3+【解析】【分析】 由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解. 【详解】解:x 1>,()11y 3x 3x 13x 1x 1∴=+=-++--33≥=,(当且仅当13x =+取等号)故答案为3.【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.20.【解析】【分析】由可求得的横坐标进而得到的坐标;由正弦函数周期特点可知只需分析以为顶点的三角形为等腰直角三角形即可由垂直关系可得平面向量数量积为零进而求得的通项公式代入即可得到结果【详解】由得:……解析:112π 【解析】【分析】 由2x k πωπ=+可求得n A 的横坐标,进而得到n A 的坐标;由正弦函数周期特点可知只需分析以1A ,2n A ,41n A -为顶点的三角形为等腰直角三角形即可,由垂直关系可得平面向量数量积为零,进而求得n ω的通项公式,代入6n =即可得到结果.【详解】由2x k πωπ=+,k Z ∈得:()212k x πω+=,k Z ∈ 1,12A πω⎛⎫∴ ⎪⎝⎭,23,12A πω⎛⎫- ⎪⎝⎭,35,12A πω⎛⎫ ⎪⎝⎭,47,12A πω⎛⎫- ⎪⎝⎭,…… 若123A A A ∆为等腰直角三角形,则212232,2,240A A A A πππωωω⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭ 解得:2πω=,即12πω=同理若147A A A ∆为等腰直角三角形,则14470A A A A ⋅= 232πω∴= 同理若1611A A A ∆为等腰直角三角形,则166110A A A A ⋅= 352πω∴= 以此类推,可得:()212n n πω-=6112πω∴= 故答案为:112π 【点睛】 本题考查正弦型函数图象与性质的综合应用问题,关键是能够根据正弦函数周期性的特点确定所分析成等腰直角三角形的三个顶点的位置,进而由垂直关系得到平面向量数量积为零,构造方程求得结果.三、解答题21.(1)①35人,②0.300,直方图见解析;(2)3人、2人、1人;(3)35. 【解析】【分析】(1)由频率分布直方图能求出第2组的频数,第3组的频率,从而完成频率分布直方图.(2)根据第3,4,5组的频数计算频率,利用各层的比例,能求出第3,4,5组分别抽取进入第二轮面试的人数.(3)设第3组的3位同学为123,,A A A ,第4组的2位同学为12,B B ,第5组的1位同学为1C ,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.【详解】(1)①由题可知,第2组的频数为0.3510035⨯=人,②第3组的频率为300.300100=, 频率分布直方图如图所示,(2)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生进入第二轮面试,每组抽取的人数分别为: 第3组:306360⨯=人, 第4组:人, 第5组:106160⨯=人, 所以第3,4,5组分别抽取3人、2人、1人进入第二轮面试.(3)设第3组的3位同学为123,,A A A ,第4组的2位同学为12,B B ,第5组的1位同学为1C ,则从这六位同学中抽取两位同学有15种选法,分别为:12,A A (),13,A A (),11,A B (),12,A B (),11,A C (),23,A A (),21,A B (),22,A B (),21,A C (),31,A B (),32,A B (),31,A C (),12,B B (),11,B C (),21,B C (),其中第4组的2位同学12,B B 中至少有一位同学入选的有9种,分别为:11122122A B A B A B A B (,),(,),(,),(,),31321211A B A B B B B C (,),(,),(,),(,),21B C (,),∴第4组至少有一名学生被A 考官面试的概率为93155=. 【点睛】 本题考查频率分直方图、分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,是基础题.22.(1)a =1,b =2;(2)①当c >2时,解集为{x |2<x <c };②当c <2时,解集为{x |c <x <2};③当c =2时,解集为∅.【解析】【分析】(1)根据不等式ax 2﹣3x +6>4的解集,利用根与系数的关系,求得a 、b 的值;(2)把不等式ax 2﹣(ac +b )x +bc <0化为x 2﹣(2+c )x +2c <0,讨论c 的取值,求出对应不等式的解集.【详解】(1)因为不等式ax 2﹣3x +6>4的解集为{x |x <1,或x >b },所以1和b 是方程ax 2﹣3x +2=0的两个实数根,且b >1;由根与系数的关系,得,解得a =1,b =2; (2)所求不等式ax 2﹣(ac +b )x +bc <0化为x 2﹣(2+c )x +2c <0,即(x ﹣2)(x ﹣c )<0;①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x |2<x <c };②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x |c <x <2};③当c =2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.23.(1)0;(2),62ππ⎡⎤⎢⎥⎣⎦. 【解析】【分析】(1)首先化简()g x 解析式,然后求得左移ϕ个单位后函数()f x 的解析式,根据()f x 的奇偶性求得ϕ的值,进而求得()f ϕ的值.(2)根据(1)中求得的()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,求得226x πϕ++的取值范围,根据ϕ的取值范围,求得22πϕ+的取值范围,根据()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,以及正弦型函数的单调性列不等式,解不等式求得ϕ的取值范围.【详解】(1)()()314sin cos sin 3sin 21cos 222g x x x x x x ⎛⎫=-=-- ⎪ ⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭, ()2sin 2216f x x πϕ⎛⎫∴=++- ⎪⎝⎭, 又()f x 为偶函数,则262k ϕππ+=+π(k Z ∈),02πϕ<≤,6πϕ∴=. ()06f f πϕ⎛⎫∴== ⎪⎝⎭. (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,2222,22662x πππϕπϕπϕ⎛⎫∴++∈++++ ⎪⎝⎭, 02πϕ<≤,72,666πππϕ⎛⎤∴+∈ ⎥⎝⎦,32,222πππϕ⎛⎤+∈ ⎥⎝⎦, ()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数.262ππϕ∴+≥且02πϕ<≤. ,62ππϕ⎡⎤∴∈⎢⎥⎣⎦. 【点睛】本小题主要考查三角恒等变换,考查根据三角函数的奇偶性求参数,考查三角函数图像变换,考查三角函数单调区间有关问题的求解,考查运算求解能力,属于中档题.24.(1)23A π=;(2)3. 【解析】【分析】(1)已知等式左边利用两角差的余弦函数公式化简,求出()cos B C +的值,确定出B C +的度数,即可求出A 的度数;(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a 与b c +的值代入求出bc 的值,再由sin A 的值,利用三角形面积公式即可求出三角形ABC 的面积.【详解】(1)∵cos B cos C -sin B sin C =, ∴cos(B +C )=.∵A +B +C =π,∴cos(π-A )=.∴cos A =-.又∵0<A <π,∴A =.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A .则(2)2=(b +c )2-2bc -2bc ·cos .∴12=16-2bc -2bc ·(-).∴bc =4. ∴S △ABC =bc ·sin A =×4×=.【点睛】本题主要考查余弦定理、特殊角的三角函数以及三角形面积公式的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.25.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.【解析】【分析】(Ⅰ)由题意可得CD ⊥平面P AD ,从而易得CD ⊥PD ;(Ⅱ)要证BD ⊥平面P AB ,关键是证明BD AB ⊥;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.【详解】(Ⅰ)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥P A .因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面P AD .因为PD ⊂平面P AD ,所以CD ⊥PD .(II )因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A .在直角梯形ABCD 中,12BC CD AD ==, 由题意可得2AB BD BC ==, 所以222AD AB BD =+, 所以BD AB ⊥.因为PA AB A =,所以BD ⊥平面P AB .(Ⅲ)解:在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.证明:取P A 的中点N ,连接MN ,BN ,因为M是PD的中点,所以12MN AD.因为12BC AD,所以MN BC.所以MNBC是平行四边形,所以CM∥BN.因为CM⊄平面P AB, BN⊂平面P AB.所以//CM平面P AB.【点睛】本题考查平面与平面垂直的判定定理,以及直线与平面平行的判定定理的应用,考查空间想象能力,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.26.(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得n S的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.。